1
|
Mohapatra B, Malhotra H, Phale PS. Life Within a Contaminated Niche: Comparative Genomic Analyses of an Integrative Conjugative Element ICE nahCSV86 and Two Genomic Islands From Pseudomonas bharatica CSV86 T Suggest Probable Role in Colonization and Adaptation. Front Microbiol 2022; 13:928848. [PMID: 35875527 PMCID: PMC9298801 DOI: 10.3389/fmicb.2022.928848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Comparative genomic and functional analyses revealed the presence of three genomic islands (GIs, >50 Kb size): ICEnahCSV86, Pseudomonas bharatica genomic island-1 (PBGI-1), and PBGI-2 in the preferentially aromatic-degrading soil bacterium, Pseudomonas bharatica CSV86T. Site-specific genomic integration at or near specific transfer RNAs (tRNAs), near-syntenic structural modules, and phylogenetic relatedness indicated their evolutionary lineage to the type-4 secretion system (T4SS) ICEclc family, thus predicting these elements to be integrative conjugative elements (ICEs). These GIs were found to be present as a single copy in the genome and the encoded phenotypic traits were found to be stable, even in the absence of selection pressure. ICEnahCSV86 harbors naphthalene catabolic (nah-sal) cluster, while PBGI-1 harbors Co-Zn-Cd (czc) efflux genes as cargo modules, whereas PBGI-2 was attributed to as a mixed-function element. The ICEnahCSV86 has been reported to be conjugatively transferred (frequency of 7 × 10–8/donor cell) to Stenotrophomonas maltophilia CSV89. Genome-wide comparative analyses of aromatic-degrading bacteria revealed nah-sal clusters from several Pseudomonas spp. as part of probable ICEs, syntenic to conjugatively transferable ICEnahCSV86 of strain CSV86T, suggesting it to be a prototypical element for naphthalene degradation. It was observed that the plasmids harboring nah-sal clusters were phylogenetically incongruent with predicted ICEs, suggesting genetic divergence of naphthalene metabolic clusters in the Pseudomonas population. Gene synteny, divergence estimates, and codon-based Z-test indicated that ICEnahCSV86 is probably derived from PBGI-2, while multiple recombination events masked the ancestral lineage of PBGI-1. Diversifying selection pressure (dN-dS = 2.27–4.31) imposed by aromatics and heavy metals implied the modular exchange-fusion of various cargo clusters through events like recombination, rearrangement, domain reshuffling, and active site optimization, thus allowing the strain to evolve, adapt, and maximize the metabolic efficiency in a contaminated niche. The promoters (Pnah and Psal) of naphthalene cargo modules (nah, sal) on ICEnahCSV86 were proved to be efficient for heterologous protein expression in Escherichia coli. GI-based genomic plasticity expands the metabolic spectrum and versatility of CSV86T, rendering efficient adaptation to the contaminated niche. Such isolate(s) are of utmost importance for their application in bioremediation and are the probable ideal host(s) for metabolic engineering.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Luan X, Tang H. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. CHEMOSPHERE 2017; 184:384-392. [PMID: 28609744 DOI: 10.1016/j.chemosphere.2017.05.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China; School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| | - Zhisong Cui
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Xiao Luan
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Hui Tang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| |
Collapse
|
3
|
Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor. Anal Bioanal Chem 2016; 408:8761-8770. [DOI: 10.1007/s00216-016-9490-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
4
|
Shah N, Naseby D. Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron 2015; 68:447-453. [DOI: 10.1016/j.bios.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/13/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
5
|
Jiang B, Song Y, Zhang D, Huang WE, Zhang X, Li G. The influence of carbon sources on the expression of the recA gene and genotoxicity detection by an Acinetobacter bioreporter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:835-843. [PMID: 25764502 DOI: 10.1039/c4em00692e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacterial whole-cell bioreporters are practical and reliable analytical tools to assess the toxicity and bioavailability of environmental contaminants, yet evidence has shown that their performance could be affected by different carbon sources. This paper evaluated the influence of carbon sources on the recA gene (ACIAD1385) in a DNA damage-inducible recA::luxCDABE Acinetobacter bioreporter and optimized the induction conditions for its practical application in environmental monitoring. Different carbon sources, including LB, potassium acetate (MMA), sodium citrate (MMC), sodium pyruvate (MMP), and sodium succinate (MMS), significantly influenced (p < 0.05) the bioluminescence intensity of the genotoxicity bioreporter. A reverse transcription quantitative PCR (RT-qPCR) showed the different expression levels of the DNA damage-inducible gene recA (p < 0.05), suggesting that carbon sources influenced the DNA damage response in the Acinetobacter bioreporter at the transcriptional level. Additionally, proteomic analysis identified 122 proteins that were differentially expressed after exposure to mitomycin C in defined media and LB, and 5 of them were related to the DNA damage response, indicating the effects of carbon sources on the DNA damage response in Acinetobacter at the translational level. The repression effect caused by the rich medium, LB, was possibly related to the mechanism of carbon catabolite repression. Our results suggest that the practical application of Acinetobacter bioreporters to the genotoxicity assessment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils could be significantly improved by using a standard medium of defined composition, as this could increase their sensitivity.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | | | | | | | | | | |
Collapse
|
6
|
Roda A, Roda B, Cevenini L, Michelini E, Mezzanotte L, Reschiglian P, Hakkila K, Virta M. Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 2011; 401:201-11. [PMID: 21603915 DOI: 10.1007/s00216-011-5091-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 11/30/2022]
Abstract
Whole-cell bioluminescent (BL) bioreporter technology is a useful analytical tool for developing biosensors for environmental toxicology and preclinical studies. However, when applied to real samples, several methodological problems prevent it from being widely used. Here, we propose a methodological approach for improving its analytical performance with complex matrix. We developed bioluminescent Escherichia coli and Saccharomyces cerevisiae bioreporters for copper ion detection. In the same cell, we introduced two firefly luciferases requiring the same luciferin substrate emitting at different wavelengths. The expression of one was copper ion specific. The other, constitutively expressed, was used as a cell viability internal control. Engineered BL cells were characterized using the noninvasive gravitational field-flow fractionation (GrFFF) technique. Homogeneous cell population was isolated. Cells were then immobilized in a polymeric matrix improving cell responsiveness. The bioassay was performed in 384-well black polystyrene microtiter plates directly on the sample. After 2 h of incubation at 37 °C and the addition of the luciferin, we measured the emitted light. These dual-color bioreporters showed more robustness and a wider dynamic range than bioassays based on the same strains with a single reporter gene and that uses a separate cell strain as BL control. The internal correction allowed to accurately evaluate the copper content even in simulated toxic samples, where reduced cell viability was observed. Homogenous cells isolated by GrFFF showed improvement in method reproducibility, particularly for yeast cells. The applicability of these bioreporters to real samples was demonstrated in tap water and wastewater treatment plant effluent samples spiked with copper and other metal ions.
Collapse
Affiliation(s)
- Aldo Roda
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
da Silva MLB, Alvarez PJJ. Indole-based assay to assess the effect of ethanol on Pseudomonas putida F1 dioxygenase activity. Biodegradation 2009; 21:425-30. [DOI: 10.1007/s10532-009-9312-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
|
8
|
Yong YC, Zhong JJ. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal. Biosens Bioelectron 2009; 25:41-7. [DOI: 10.1016/j.bios.2009.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/31/2009] [Accepted: 06/02/2009] [Indexed: 11/30/2022]
|
9
|
Nucleic Acid–Based Methods of Analysis. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Niazi JH, Kim BC, Ahn JM, Gu MB. A novel bioluminescent bacterial biosensor using the highly specific oxidative stress-inducible pgi gene. Biosens Bioelectron 2008; 24:670-5. [DOI: 10.1016/j.bios.2008.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|
11
|
Olaniran AO, Motebejane RM, Pillay B. Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents. ACTA ACUST UNITED AC 2008; 10:889-93. [PMID: 18688458 DOI: 10.1039/b805055d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significant amounts of toxic substances which are hazardous to animals, plants, microorganisms, and other living organisms including humans are released annually into aquatic and terrestrial environments, mostly from improper wastewater discharges. Early detection of such pollutants in wastewater effluents and proper monitoring before their final release into the environment is therefore necessary. In this study, two whole-cell bacterial biosensors were constructed by transforming competent cells of Shigella flexneri and Shigella sonnei with pLUX plasmids and evaluated for their potential to monitor wastewater samples undergoing degradation by measuring bioluminescence response using a microplate luminometer. Both bacterial biosensors were found to be extremely sensitive to the wastewater samples, with different patterns, concomitant with those of the COD removals demonstrated at the different days of the degradation. Generally higher bioluminescence values were obtained at the later days of the degradation period compared to the initial values, with up to 571.76% increase in bioluminescence value obtained at day 5 for 0.1% (v/v) effluent concentration. Also, a steady decrease in bioluminescence was observed for the bacterial biosensors with increasing time of exposure to the wastewater effluent for all the sampling days. These biosensor constructs could therefore be applicable to indicate the bioavailability of pollutants in a way that chemical analysis cannot, and for in situ monitoring of biodegradation. This has great potential to offer a risk assessment strategy in predicting the level of bioremediation required during municipal wastewater treatment before their final discharge into the aquatic milieu.
Collapse
Affiliation(s)
- Ademola O Olaniran
- Discipline of Microbiology, School of Biochemistry, Genetics, Microbiology and Plant Pathology, University of KwaZulu-Natal, Westville Campus, Durban, 4000, Republic of South Africa.
| | | | | |
Collapse
|
12
|
Chen G, Srinivasa Ranga VP, Mao Y, Chen K, Qiao H. Impact of lux gene insertion on bacterial surface properties and transport. Res Microbiol 2008; 159:145-51. [DOI: 10.1016/j.resmic.2007.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/30/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
|
13
|
Keane A, Lau PCK, Ghoshal S. Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactants. Biotechnol Bioeng 2008; 99:86-98. [PMID: 17570716 DOI: 10.1002/bit.21524] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The whole-cell bioluminescent biosensor Pseudomonas putida F1G4 (PpF1G4), which contains a chromosomally-based sep-lux transcriptional fusion, was used as a tool for direct measurement of the bioavailability of hydrophobic organic compounds (HOCs) partitioned into surfactant micelles. The increased bioluminescent response of PpF1G4 in micellar solutions (up to 10 times the critical micellar concentration) of Triton X-100 and Brij 35 indicated higher intracellular concentrations of the test compounds, toluene, naphthalene, and phenanthrene, compared to control systems with no surfactants present. In contrast, Brij 30 caused a decrease in the bioluminescent response to the test compounds in single-solute systems, without adversely affecting cell growth. The decrease in bioluminescent response in the presence of Brij 30 did not occur in the presence of multiple HOCs extracted into the surfactant solutions from crude oil and creosote. The effect of the micellar solutions on the toluene biodegradation rate was consistent with the bioluminescent response in single-solute systems. None of the surfactants were toxic to PpF1G4 at the doses employed in this study, and PpF1G4 did not produce a bioluminescent response to the surfactants nor utilize them as growth substrates. TEM images suggest that the surfactants did not rupture the cell membranes. The results demonstrate that for Pseudomonas putida F1, nonionic surfactants such as Triton X-100 and Brij 35, at doses between 2 and 10 CMC, may increase the bioavailability and direct uptake of micellar phase HOCs that are common pollutants at contaminated sites.
Collapse
Affiliation(s)
- Angela Keane
- Department of Civil Engineering, McGill University, Macdonald Engineering Bldg, 817 Sherbrooke Street West, Montreal, Quebec, Canada
| | | | | |
Collapse
|
14
|
Niazi JH, Kim BC, Gu MB. Characterization of superoxide-stress sensing recombinant Escherichia coli constructed using promoters for genes zwf and fpr fused to lux operon. Appl Microbiol Biotechnol 2007; 74:1276-83. [PMID: 17216460 DOI: 10.1007/s00253-006-0758-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
To measure the toxicity experienced by superoxide-generating compounds, two plasmids were constructed in which the superoxide-inducible fpr and zwf promoters from Escherichia coli were fused to promoterless Vibrio fischeri luxCDABE operon present in plasmid pUCD615. The bioluminescent response of E. coli harboring these constructs was studied as a function of the toxicity and was shown to be specific for superoxide generating chemicals. The two promoters employed, fpr and zwf, responded differentially to the redox-chemicals tested. Furthermore, a DeltamarA strain bearing the fpr::luxCDABE fusion had a weaker response to paraquat (methyl viologen) than its isogenic parent strain, whereas zwf induction was not inhibited in DeltamarA or Deltarob strains. The fpr and zwf promoters were also induced by alkylating agents but were unresponsive in DeltamarA or Deltarob strains. Using optimized assay conditions, the abilities of these strains to differentially respond to superoxide stress and alkylating agents that may be present in contaminants proves them to be good biosensor candidates for monitoring toxicity.
Collapse
Affiliation(s)
- Javed H Niazi
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
15
|
Alkorta I, Epelde L, Mijangos I, Amezaga I, Garbisu C. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. REVIEWS ON ENVIRONMENTAL HEALTH 2006; 21:139-52. [PMID: 16898676 DOI: 10.1515/reveh.2006.21.2.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A major factor governing the toxicity of heavy metals in soils is their bioavailability. Traditionally, sequential extraction procedures using different extractants followed by chemical analysis have been used for determining the biologically available fraction of metals in soils. Yet, the transfer of results obtained on non-biological systems to biological ones is certainly questionable. Therefore, bioluminescence-based bacterial biosensors have been developed using genetically engineered microorganisms, constructed by fusing transcriptionally active components of metal resistance mechanisms to lux genes from naturally bioluminescent bacteria like Vibrio fischeri for the assessment of metal toxicity and bioavailability in polluted soils. As compared to chemical methods, bacterial biosensors present certain advantages, such as selectivity, sensitivity, simplicity, and low cost. Despite certain inherent limitations, bacterial bioluminescent systems have proven their usefulness in soils under laboratory and field conditions. Finally, green fluorescent protein-based bacterial biosensors are also applicable for determining with high sensitivity the bioavailability of heavy metals in soil samples.
Collapse
Affiliation(s)
- I Alkorta
- Biophysics Unit, University of the Basque Country, Bilbao, Spain
| | | | | | | | | |
Collapse
|
16
|
Marqués S, Aranda-Olmedo I, Ramos JL. Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotechnol 2005; 17:50-6. [PMID: 16359853 DOI: 10.1016/j.copbio.2005.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Bacterial biosensors for the detection of pollutants are based on the regulatory elements that control the corresponding degradation pathways. An increasing number of catabolic pathways under the control of specific regulators are now known to be influenced by the presence of alternative carbon sources, which to different extents repress expression of the pathway despite the presence of the inducer. The molecular basis underlying the control of each catabolic pathway is different, although all sense a high energy state of the cell resulting from the presence of more favourable carbon sources. Biosensor tests mimicking field conditions point to global regulation being relevant for biosensor performance; thus, this global regulation must be taken into account when designing whole-cell biosensors.
Collapse
Affiliation(s)
- Silvia Marqués
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008, Granada, Spain.
| | | | | |
Collapse
|
17
|
Dorn JG, Brusseau ML, Maier RM. Real-time, in situ monitoring of bioactive zone dynamics in heterogeneous systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:8898-905. [PMID: 16329198 DOI: 10.1021/es0508626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Successful implementation of in situ bioremediation is contingent upon understanding how physicochemical and microbial factors affect the formation and dynamics of microbially active regions known as bioactive zones (BAZs). This study demonstrates how a novel fiber optic detection system can be used to test hypotheses concerning real-time, in situ BAZ formation and dynamics. This study focuses on naphthalene transport in saturated porous media containing defined physicochemical and microbial heterogeneities. Biological activity was measured using a lux reporter bacterium, Pseudomonas putida RB1353, that bioluminesces during naphthalene catabolism. Results show that the presence of defined heterogeneities drives the development of BAZs at material-property interfaces where the confluence of naphthalene, dissolved oxygen, and sufficient microbial density is optimal. Thus, despite successful transport of P. putida RB1353 into a sterile low-permeability region containing substrate, BAZ formation in this region was limited by local physicochemical conditions (e.g., naphthalene and dissolved oxygen bioavailability). In another instance, transport of P. putida RB1353 occurred against advective flow, resulting in BAZ formation upgradient of inoculated regions. Defined systems such as this can be used as a basis for predicting localization of activity in complex subsurface systems.
Collapse
Affiliation(s)
- Jonathan G Dorn
- Department of Soil, Water and Environmental Science, The University of Arizona, 429 Shantz Building #38, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
18
|
Chan K, Kim CC, Falkow S. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect Immun 2005; 73:5438-49. [PMID: 16113260 PMCID: PMC1231100 DOI: 10.1128/iai.73.9.5438-5449.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA microarrays provide an opportunity to combine the principles of signature-tagged mutagenesis (STM) with microarray technology to identify potentially important bacterial virulence genes. The scope of DNA microarrays allows for less laborious screening on a much larger scale than possible by STM alone. We have adapted a microarray-based transposon tracking strategy for use with a Salmonella enterica serovar Typhimurium cDNA microarray in order to identify genes important for survival and replication in RAW 264.7 mouse macrophage-like cells or in the spleens of BALB/cJ mice. A 50,000-CFU transposon library of S. enterica serovar Typhimurium strain SL1344 was serially passaged in cultured macrophages or intraperitoneally inoculated into BALB/cJ mice. The bacterial genomic DNA was isolated and processed for analysis on the microarray. The novel application of this approach to identify mutants unable to survive in cultured cells resulted in the identification of components of Salmonella pathogenicity island 2 (SPI2), which is known to be critical for intracellular survival and replication. In addition, array results indicated that a number of SPI1-associated genes, currently not associated with intracellular survival, are negatively selected. However, of the SPI1-associated mutants individually tested for intracellular survival, only a sirA mutant exhibited reduced numbers relative to those of wild-type bacteria. Of the mutants unable to survive in mice, significant proportions are either components of the SPI2 pathogenicity island or involved in lipopolysaccharide synthesis. This observation is in agreement with results obtained in the original S. enterica serovar Typhimurium STM screen, illustrating the utility of this approach for the high-throughput identification of virulence factors important for survival in the host.
Collapse
Affiliation(s)
- Kaman Chan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5124, USA.
| | | | | |
Collapse
|
19
|
Wiles S, Ferguson K, Stefanidou M, Young DB, Robertson BD. Alternative luciferase for monitoring bacterial cells under adverse conditions. Appl Environ Microbiol 2005; 71:3427-32. [PMID: 16000745 PMCID: PMC1169068 DOI: 10.1128/aem.71.7.3427-3432.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/07/2005] [Indexed: 11/20/2022] Open
Abstract
The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.
Collapse
Affiliation(s)
- Siouxsie Wiles
- Centre for Molecular Microbiology and Infection, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Fesenko DO, Nasedkina TV, Prokopenko DV, Mirzabekov AD. Biosensing and monitoring of cell populations using the hydrogel bacterial microchip. Biosens Bioelectron 2005; 20:1860-5. [PMID: 15681206 DOI: 10.1016/j.bios.2004.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 06/08/2004] [Accepted: 06/09/2004] [Indexed: 11/29/2022]
Abstract
Advanced development of the hydrogel bacterial microchip (HBMChip) technique is proposed. The microchip represents an array of hemispherical gel elements 0.3-60 nl in volume attached to hydrophobic glass surface and containing live immobilized microbial cells. Separate gel elements contain each up to 10(5) cells and retain them inside even while the cells are dividing. Porous structure of the gel provides easy access of nutrients and tested substances to the immobilized cells. Optical signals from the cells are easily measurable and allow monitoring of intracellular metabolism using vital fluorescent stains or engineered constructs encoding bioluminescent or fluorescent reporters. Two possible application modes of the HBMChip have been investigated, i.e. the observation of bacteria and biosensing. The dynamics of nucleic acids synthesis in growing E. coli cells has been analyzed using vital fluorescent stain SYTO 9. A special function has been suggested for evaluation of the cell growth parameters. Biosensing properties of the HBMChip have been illustrated by quantitative analysis of antibiotics and the detection of sodium meta-arsenite.
Collapse
Affiliation(s)
- D O Fesenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | | | | | | |
Collapse
|
21
|
Dorn JG, Mahal MK, Brusseau ML, Maier RM. Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media: system performance update. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Valdman E, Valdman B, Battaglini F, Leite S. On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00248-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Lovanh N, Alvarez PJJ. Effect of ethanol, acetate, and phenol on toluene degradation activity andtod-lux expression inPseudomonas putida TOD102: evaluation of the metabolic flux dilution model. Biotechnol Bioeng 2004; 86:801-8. [PMID: 15162456 DOI: 10.1002/bit.20090] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The reporter strain Pseudomonas putida TOD102 (with a tod-lux fusion) was used in chemostat experiments with binary substrate mixtures to investigate the effect of potentially occurring cosubstrates on toluene degradation activity. Although toluene was simultaneously utilized with other cosubstrates, its metabolic flux (defined as the toluene utilization rate per cell) decreased with increasing influent concentrations of ethanol, acetate, or phenol. Three inhibitory mechanisms were considered to explain these trends: (1) repression of the tod gene (coding for toluene dioxygenase) by acetate and ethanol, which was quantified by a decrease in specific bioluminescence; (2) competitive inhibition of toluene dioxygenase by phenol; and (3) metabolic flux dilution (MFD) by all three cosubstrates. Based on experimental observations, MFD was modeled without any fitting parameters by assuming that the metabolic flux of a substrate in a mixture is proportional to its relative availability (expressed as a fraction of the influent total organic carbon). Thus, increasing concentrations of alternative carbon sources "dilute" the metabolic flux of toluene without necessarily repressing tod, as observed with phenol (a known tod inducer). For all cosubstrates, the MFD model slightly overpredicted the measured toluene metabolic flux. Incorporating catabolite repression (for experiments with acetate or ethanol) or competitive inhibition (for experiments with phenol) with independently obtained parameters resulted in more accurate fits of the observed decrease in toluene metabolic flux with increasing cosubstrate concentration. These results imply that alternative carbon sources (including inducers) are likely to hinder toluene utilization per unit cell, and that these effects can be accurately predicted with simple mathematical models.
Collapse
Affiliation(s)
- Nanh Lovanh
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 317, P.O. Box 1892, Houston, TX 77251-1892, USA
| | | |
Collapse
|
24
|
Yolcubal I, Dorn JG, Maier RM, Brusseau ML. The influence of substrate and electron acceptor availability on bioactive zone dynamics in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2003; 66:219-237. [PMID: 14568400 DOI: 10.1016/s0169-7722(03)00027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two approaches were used to investigate the influence of dissolved oxygen (DO) and substrate availability on the formation and dynamics of "bioactive zones" in a water-saturated porous medium. A bioactive zone is defined as a region where a microbial community is sufficiently active to metabolize bioavailable substrates. In the first approach, microbial activity was characterized by monitoring the spatial and temporal variability of DO and aqueous substrate (salicylate and naphthalene) concentrations during miscible-displacement experiments. In the second approach, microbial activity was monitored using multiple fiber optics emplaced in the porous medium to detect luminescence produced by Pseudomonas putida RB1353, a bioluminescent reporter organism that produces light when salicylate (an intermediate of naphthalene degradation) is present. The results of both approaches show that the location and size of the bioactive zones were influenced by in situ DO and substrate availability. When DO was not a limiting factor (i.e., lower substrate input concentrations), the bioactive zone encompassed the entire column, with the majority of the microbial activity occurring between the inlet and midpoint. However, as the availability of DO became limiting for the higher substrate input experiments, the size of the bioactive zone shrank and was ultimately limited to the proximity of the column inlet.
Collapse
Affiliation(s)
- Irfan Yolcubal
- Department of Hydrology and Water Resources, University of Arizona, 429 Shantz, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
25
|
Durand MJ, Thouand G, Dancheva-Ivanova T, Vachon P, DuBow M. Specific detection of organotin compounds with a recombinant luminescent bacteria. CHEMOSPHERE 2003; 52:103-111. [PMID: 12729692 DOI: 10.1016/s0045-6535(03)00225-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organotin compounds are widely used as biocides in marine and terrestrial environments. Several currently used techniques allow either the measurement of the chemicals or their effects on living organisms. Our current research focuses on the development of a complementary method based on a bacterial bioluminescence-based bioassay for the specific detection of organotin compounds. The performance of the bioassay was assessed. The Escherichia coli bacterial strain used in this study is specific for TBT and DBT (with Cl, Br or I as the halogen group) with the central tin atom important for light production. The assay is conducted after overnight culture of the bacterial strain, followed by 60 min of contact time with the organotin compound for significant light production. The detection limits were found to be 0.08 microM for TBT (26 microgl(-1)) and 0.0001 microM for DBT (0.03 microgl(-1)) with a linear range of one logarithm. The repeatability of the bioassay is 8% and the reproducibility for TBT and DBT was approximately 14%. Lyophilization of the strains did not significantly modify the detection limit as well as the range of detection. Applications of the bioassay to environmental samples are discussed.
Collapse
Affiliation(s)
- Marie José Durand
- Département Génie Biologique, Laboratoire de Microbiologie, Université de Nantes, IUT, 18 Bd G. Defferre, 85000, La Roche sur Yon, France
| | | | | | | | | |
Collapse
|
26
|
Dorn JG, Frye RJ, Maier RM. Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353. Appl Environ Microbiol 2003; 69:2209-16. [PMID: 12676702 PMCID: PMC154800 DOI: 10.1128/aem.69.4.2209-2216.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Accepted: 01/02/2003] [Indexed: 11/20/2022] Open
Abstract
One limitation of employing lux bioreporters to monitor in situ microbial gene expression in dynamic, laboratory-scale systems is the confounding variability in the luminescent responses. For example, despite careful control of oxygen tension, growth stage, and cell number, luminescence from Pseudomonas putida RB1353, a naphthalene-degrading lux bioreporter, varied by more than sevenfold during saturated flow column experiments in our laboratory. Therefore, this study was conducted to determine what additional factors influence the luminescent response. Specifically, this study investigated the impact of temperature, pH, and initial cell number (variations within an order of magnitude) on the peak luminescence of P. putida RB1353 and the maximum degradation rate (V(max)) during salicylate and naphthalene catabolism. Statistical analyses based on general linear models indicated that under constant oxygen tension, temperature and pH accounted for 98.1% of the variability in luminescence during salicylate catabolism and 94.2 and 49.5% of the variability in V(max) during salicylate and naphthalene catabolism, respectively. Temperature, pH, and initial substrate concentration accounted for 99.9% of the variability in luminescence during naphthalene catabolism. Initial cell number, within an order of magnitude, did not have a significant influence on either peak luminescence or V(max) during salicylate and naphthalene catabolism. Over the ranges of temperature and pH evaluated, peak luminescence varied by more than 4 orders of magnitude. The minimum parameter deviation required to alter lux gene expression during salicylate and naphthalene catabolism was a change in temperature of 1 degrees C, a change in pH of 0.2, or a change in initial cell number of 1 order of magnitude. Results from this study indicate that there is a need for careful characterization of the impact of environmental conditions on both the expression of the reporter and catabolic genes and the activities of the gene products. For example, even though lux gene expression was occurring at approximately 35 degrees C, the luciferase enzyme was inactive. Furthermore, this study demonstrates that with careful characterization and standardization of measurement conditions, the attainment of a reproducible luminescent response and an understanding of the response are feasible.
Collapse
Affiliation(s)
- Jonathan G Dorn
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
27
|
Abstract
Bioluminescence from the lux-based bacterial reporter Pseudomonas fluorescens HK44 was experimentally investigated under growth substrate-rich and limiting conditions in batch, continuous stirred tank (CSTR), and turbidostat reactors. A mechanistically based, mathematical model was developed to describe bioluminescence based on 1) production and decay of catalytic enzymes, and 2) reactant cofactor availability. In the model, bioluminescence was a function of inducer, growth substrate, and biomass concentration. A saturational dependence on growth substrate concentration accommodated dependence on cofactor availability and inducer concentration to accommodate enzyme production was incorporated in the model. Under growth substrate and inducer limiting conditions in the batch reactor and CSTR, bioluminescence was found to decrease in response to cellular energy limitations. The effective lux system enzyme decay rate was determined in independent measurements to be 0.35 hr(-1) and the model captured most of the bioluminescent behavior, except at long growth times and high cell density.
Collapse
Affiliation(s)
- Christine J Kelly
- Department of Chemical Engineering and Materials Science, Syracuse University, 220 Hinds Hall, Syracuse, New York 13244, USA
| | | | | |
Collapse
|
28
|
Shaw LJ, Burns RG. Biodegradation of Organic Pollutants in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2003; 53:1-60. [PMID: 14696315 DOI: 10.1016/s0065-2164(03)53001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Liz J Shaw
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|
29
|
Yolcubal I, Pierce SA, Maier RM, Brusseau ML. Biodegradation during contaminant transport in porous media: V. The influence of growth and cell elution on microbial distribution. JOURNAL OF ENVIRONMENTAL QUALITY 2002; 31:1824-1830. [PMID: 12469831 DOI: 10.2134/jeq2002.1824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigated the interaction between microbial growth and cell elution, and their influence on resultant microbial distribution between the aqueous and solid phases during solute transport in a sandy, low-organic-carbon-content porous medium. Miscible displacement experiments were conducted with salicylate as the model compound, and with different initial conditions (e.g., substrate concentrations and cell densities) to attain various degrees of microbial growth. For each experiment, salicylate and dissolved oxygen concentrations as well as cell densities were monitored in the column effluent. Cell densities were also measured in the porous medium at the beginning and end of each experiment. Total microbial growth was determined in two ways, one based on a cell mass balance for the system and the other based on total amount of salicylate degraded. For conditions yielding a considerable amount of microbial growth, the majority of the biomass was associated with the aqueous phase (68-90%). Conversely, under minimal-growth conditions, most cells (approximately 60-70%) were attached to particle surfaces. Significant cell elution was observed for most conditions, the rate of which increased in the presence of the substrate. The results suggest that the increase in aqueous-phase cells observed for the experiments exhibiting the greatest growth is associated with the production of new cells, and that under appropriate conditions aqueous-phase biomass can contribute significantly to contaminant biodegradation.
Collapse
Affiliation(s)
- Irfan Yolcubal
- Dep. of Hydrology and Water Resources, Univ. of Arizona, 429 Shantz, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
30
|
Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJJ. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:734-741. [PMID: 12118890 DOI: 10.1094/mpmi.2002.15.7.734] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previously, we have described the selection of a plant-bacterium pair that is efficient in rhizoremediating naphthalene pollution in microcosm studies. After repeated selection for efficient root tip colonization upon inoculation of seeds of grass cv. Barmultra and for stable and efficient growth on naphthalene, Pseudomonas putida PCL1444 was selected as the most efficient colonizer of Barmultra roots. Here, we report the analysis of Barmultra root exudate composition and our subsequent tests of the growth rate of the bacterium and of the expression of the naphthalene degradation genes on individual exudate components. High performance liquid chromatography analysis of the organic acid and sugar root-exudate components revealed that glucose and fructose are the most abundant sugars, whereas succinic acid and citric acid are the most abundant organic acids. Tn5luxAB mutants of PCL1444 impaired in naphthalene degradation appeared to be impaired in genes homologous to genes of the upper naphthalene degradation pathway present in various Pseudomonas strains and to genes of the lower pathway genes for naphthalene degradation in P. stutzeri. Highest expression for both pathways involved in naphthalene degradation during growth in minimal medium with the carbon source to be tested was observed at the start of the logarithmic phase. Naphthalene did not induce the upper pathway, but a different pattern of expression was observed in the lower pathway reporter, probably due to the conversion of naphthalene to salicylic acid. Salicylic acid, which is described as an intermediate of the naphthalene degradation pathway in many Pseudomonas strains, did induce both pathways, resulting in an up to sixfold higher expression level at the start of the logarithmic phase. When expression levels during growth on the different carbon sources present in root exudate were compared, highest expression was observed on the two major root exudate components, glucose and succinic acid. These results show an excellent correlation between successful naphthalene rhizoremediation by the Barmultra-P. putida PCL1444 pair and both efficient utilization of the major exudate components for growth and high transcription of the naphthalene catabolic genes on the major exudate components. Therefore, we hypothesize that efficient root colonizing and naphthalene degradation is the result of the applied colonization enrichment procedure.
Collapse
Affiliation(s)
- Irene Kuiper
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Yarwood RR, Rockhold ML, Niemet MR, Selker JS, Bottomley PJ. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions. Appl Environ Microbiol 2002; 68:3597-605. [PMID: 12089048 PMCID: PMC126793 DOI: 10.1128/aem.68.7.3597-3605.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r(2) = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 x 10(12) cells; calculated, 1.7 x 10(12) cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.
Collapse
Affiliation(s)
- R R Yarwood
- Department of Microbiolog, Oregon State University, Corvallis, OR 97331-3804, USA
| | | | | | | | | |
Collapse
|
32
|
Uesugi SL, Yarwood RR, Selker JS, Bottomley PJ. A model that uses the induction phase of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 to quantify cell density in translucent porous media. J Microbiol Methods 2001; 47:315-22. [PMID: 11714522 DOI: 10.1016/s0167-7012(01)00337-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A cooled charge-coupled device (CCD) camera was used to follow the kinetics of induction of lux gene-dependent bioluminescence in Pseudomonas fluorescens HK44 held either in aqueous suspensions minus sand, saturated or unsaturated translucent sand (0.348 and 0.07 cm(3) H(2)O/cm(3) of sand, respectively), and at cell densities ranging between 1 x 10(6) and 8.5 x 10(8) cells/ml. Before O(2) availability became a limiting factor, the rate of light emission (L) increased with the square of time (t) and linearly with increasing cell density (c). A nonlinear model was developed that contains a "rate of increase in light emission" constant, B', which is determined directly from the slope of a plot of radical L/c against t. The model predicted the behavior of lux induction in HK44 under a variety of conditions. Similar B' values were determined [49.0-57.6 x 10(-10) light units/(cell min(2))] for cell suspensions held in aqueous medium minus sand, in saturated or unsaturated 40/50 grade sand (0.36 mm grain diameter) and in two other textural classes of translucent sand. Although both the growth phase, and the presence of glucose during lux induction affected the first detectable time (FDT) of bioluminescence by HK44 in sand, the kinetics of induction of light emission were similar among treatments (stationary phase cells plus glucose, B'=61.6+/-3.2, log phase cells plus glucose, B'=63.2+/-7.2). The potential exists to use a combination of a CCD camera system, an inducible lux gene containing bioluminescent bacterium, and a light transmission chamber to nonintrusively visualize and quantify in real time the interactions between bacterial growth and unsaturated flow of water and solutes in porous media.
Collapse
Affiliation(s)
- S L Uesugi
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331-3804, USA
| | | | | | | |
Collapse
|
33
|
Sayler GS, Fleming JT, Nivens DE. Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Curr Opin Biotechnol 2001; 12:455-60. [PMID: 11604320 DOI: 10.1016/s0958-1669(00)00245-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two methods recently developed to monitor the gene expression of microbial communities in soil are the extraction and detection of messenger RNA from soil microorganisms and the construction and use of lux-based bioreporter strains. The goal of these approaches is to assess microbial activity in natural and impacted soil environments.
Collapse
Affiliation(s)
- G S Sayler
- Department of Microbiology, University of Tennessee, 676 Dabney Hall, Knoxville TN 37996-1605, USA.
| | | | | |
Collapse
|
34
|
Sandrin SK, Jordan FL, Maier RM, Brusseau ML. Biodegradation during contaminant transport in porous media: 4. Impact of microbial lag and bacterial cell growth. JOURNAL OF CONTAMINANT HYDROLOGY 2001; 50:225-242. [PMID: 11523326 DOI: 10.1016/s0169-7722(01)00112-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish.
Collapse
Affiliation(s)
- S K Sandrin
- Department of Soil, Water, and Environmental Science, 429 Shantz, Tucson, AZ 85719, USA
| | | | | | | |
Collapse
|
35
|
Yolcubal I, Piatt JJ, Pierce SA, Brusseau ML, Maier RM. Fiber optic detection of in situ lux reporter gene activity in porous media: system design and performance. Anal Chim Acta 2000. [DOI: 10.1016/s0003-2670(00)01072-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|