1
|
Reiß F, Kiefer N, Purahong W, Borken W, Kalkhof S, Noll M. Active soil microbial composition and proliferation are directly affected by the presence of biocides from building materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168689. [PMID: 38000743 DOI: 10.1016/j.scitotenv.2023.168689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat. This study aimed to characterize the effect of the biocides terbutryn, isoproturon, octhilinone, and combinations thereof on the total and metabolically active soil microbial community composition and functions. Total soil microbial community was retrieved directly from the nucleic acid extracts, while the DNA of the active soil microbial community was separated after bromodeoxyuridine labeling. Bacterial 16S rRNA gene and fungal internal transcribed spacer region gene-based amplicon sequencing was carried out for both active and total, while gene copy numbers were quantified only for the total soil microbial community. Additionally, soil respiration and physico-chemical parameters were analyzed to investigate overall soil microbial activity. The bacterial and fungal gene copy numbers were significantly affected by single biocides and combined biocide soil treatment but not soil respiration and physico-chemical parameters. While the total soil microbiome experienced only minor effects from single and combined biocide treatment, the active soil microbiome was significantly impacted in its diversity, richness, composition, and functional patterns. The active bacterial richness was more sensitive than fungal richness. However, the adverse effects of the biocide combination treatments on soil bacterial richness were highly dependent on the identities of the biocide combination. Our results demonstrate that the presence of biocides frequently used in building materials affects the active soil microbiome. Thereby, the approach described herein can be used as an ecotoxicological measure for the effect on complex soil environments in future studies.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Nadine Kiefer
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Werner Borken
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Stefan Kalkhof
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany; Proteomics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Yao T, Sun P, Zhao W. Triazine Herbicides Risk Management Strategies on Environmental and Human Health Aspects Using In-Silico Methods. Int J Mol Sci 2023; 24:ijms24065691. [PMID: 36982765 PMCID: PMC10052965 DOI: 10.3390/ijms24065691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
As an effective herbicide, 1, 3, 5-Triazine herbicides (S-THs) are used widely in the pesticide market. However, due to their chemical properties, S-THs severely threaten the environment and human health (e.g., human lung cytotoxicity). In this study, molecular docking, Analytic Hierarchy Process—Technique for Order Preference by Similarity to the Ideal Solution (AHP-TOPSIS), and a three-dimensional quantitative structure-active relationship (3D-QSAR) model were used to design S-TH substitutes with high herbicidal functionality, high microbial degradability, and low human lung cytotoxicity. We discovered a substitute, Derivative-5, with excellent overall performance. Furthermore, Taguchi orthogonal experiments, full factorial design of experiments, and the molecular dynamics method were used to identify three chemicals (namely, the coexistence of aspartic acid, alanine, and glycine) that could promote the degradation of S-THs in maize cropping fields. Finally, density functional theory (DFT), Estimation Programs Interface (EPI), pharmacokinetic, and toxicokinetic methods were used to further verify the high microbial degradability, favorable aquatic environment, and human health friendliness of Derivative 5. This study provided a new direction for further optimizations of novel pesticide chemicals.
Collapse
|
3
|
Yu Z, Dai Y, Li T, Gu W, Yang Y, Li X, Peng P, Yang L, Li X, Wang J, Su Z, Li X, Xu M, Zhang H. A Novel Pathway of Chlorimuron-Ethyl Biodegradation by Chenggangzhangella methanolivorans Strain CHL1 and Its Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms23179890. [PMID: 36077288 PMCID: PMC9456165 DOI: 10.3390/ijms23179890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorimuron-ethyl is a widely used herbicide in agriculture. However, uncontrolled chlorimuron-ethyl application causes serious environmental problems. Chlorimuron-ethyl can be effectively degraded by microbes, but the underlying molecular mechanisms are not fully understood. In this study, we identified the possible pathways and key genes involved in chlorimuron-ethyl degradation by the Chenggangzhangella methanolivorans strain CHL1, a Methylocystaceae strain with the ability to degrade sulfonylurea herbicides. Using a metabolomics method, eight intermediate degradation products were identified, and three pathways, including a novel pyrimidine-ring-opening pathway, were found to be involved in chlorimuron-ethyl degradation by strain CHL1. Transcriptome sequencing indicated that three genes (atzF, atzD, and cysJ) are involved in chlorimuron-ethyl degradation by strain CHL1. The gene knock-out and complementation techniques allowed for the functions of the three genes to be identified, and the enzymes involved in the different steps of chlorimuron-ethyl degradation pathways were preliminary predicted. The results reveal a previously unreported pathway and the key genes of chlorimuron-ethyl degradation by strain CHL1, which have implications for attempts to enrich the biodegradation mechanism of sulfonylurea herbicides and to construct engineered bacteria in order to remove sulfonylurea herbicide residues from environmental media.
Collapse
Affiliation(s)
- Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Basic Medical College, Shenyang Medical College, Shenyang 100034, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Pai Peng
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Lijie Yang
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (M.X.); (H.Z.)
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (M.X.); (H.Z.)
| |
Collapse
|
4
|
Degradation of Residual Herbicide Atrazine in Agri-Food and Washing Water. Foods 2022; 11:foods11162416. [PMID: 36010414 PMCID: PMC9407628 DOI: 10.3390/foods11162416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Atrazine, an herbicide used to control grassy and broadleaf weed, has become an essential part of agricultural crop protection tools. It is widely sprayed on corn, sorghum and sugar cane, with the attendant problems of its residues in agri-food and washing water. If ingested into humans, this residual atrazine can cause reproductive harm, developmental toxicity and carcinogenicity. It is therefore important to find clean and economical degradation processes for atrazine. In recent years, many physical, chemical and biological methods have been proposed to remove atrazine from the aquatic environment. This review introduces the research works of atrazine degradation in aqueous solutions by method classification. These methods are then compared by their advantages, disadvantages, and different degradation pathways of atrazine. Moreover, the existing toxicological experimental data for atrazine and its metabolites are summarized. Finally, the review concludes with directions for future research and major challenges to be addressed.
Collapse
|
5
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
6
|
Cyanuric Acid Biodegradation via Biuret: Physiology, Taxonomy, and Geospatial Distribution. Appl Environ Microbiol 2020; 86:AEM.01964-19. [PMID: 31676480 DOI: 10.1128/aem.01964-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cyanuric acid is an industrial chemical produced during the biodegradation of s-triazine pesticides. The biodegradation of cyanuric acid has been elucidated using a single model system, Pseudomonas sp. strain ADP, in which cyanuric acid hydrolase (AtzD) opens the s-triazine ring and AtzEG deaminates the ring-opened product. A significant question remains as to whether the metabolic pathway found in Pseudomonas sp. ADP is the exception or the rule in bacterial genomes globally. Here, we show that most bacteria utilize a different pathway, metabolizing cyanuric acid via biuret. The new pathway was determined by reconstituting the pathway in vitro with purified enzymes and by mining more than 250,000 genomes and metagenomes. We isolated soil bacteria that grow on cyanuric acid as a sole nitrogen source and showed that the genome from a Herbaspirillum strain had a canonical cyanuric acid hydrolase gene but different flanking genes. The flanking gene trtB encoded an enzyme that we show catalyzed the decarboxylation of the cyanuric acid hydrolase product, carboxybiuret. The reaction generated biuret, a pathway intermediate further transformed by biuret hydrolase (BiuH). The prevalence of the newly defined pathway was determined by cooccurrence analysis of cyanuric acid hydrolase genes and flanking genes. Here, we show the biuret pathway was more than 1 order of magnitude more prevalent than the original Pseudomonas sp. ADP pathway. Mining a database of over 40,000 bacterial isolates with precise geospatial metadata showed that bacteria with concurrent cyanuric acid and biuret hydrolase genes were distributed throughout the United States.IMPORTANCE Cyanuric acid is produced naturally as a contaminant in urea fertilizer, and it is used as a chlorine stabilizer in swimming pools. Cyanuric acid-degrading bacteria are used commercially in removing cyanuric acid from pool water when it exceeds desired levels. The total volume of cyanuric acid produced annually exceeds 200 million kilograms, most of which enters the natural environment. In this context, it is important to have a global understanding of cyanuric acid biodegradation by microbial communities in natural and engineered systems. Current knowledge of cyanuric acid metabolism largely derives from studies on the enzymes from a single model organism, Pseudomonas sp. ADP. In this study, we obtained and studied new microbes and discovered a previously unknown cyanuric acid degradation pathway. The new pathway identified here was found to be much more prevalent than the pathway previously established for Pseudomonas sp. ADP. In addition, the types of environment, taxonomic prevalences, and geospatial distributions of the different cyanuric acid degradation pathways are described here.
Collapse
|
7
|
Shi K, Cho S, Aukema KG, Lee T, Bera AK, Seffernick JL, Wackett LP, Aihara H. Crystal structures of Moorella thermoacetica cyanuric acid hydrolase reveal conformational flexibility and asymmetry important for catalysis. PLoS One 2019; 14:e0216979. [PMID: 31181074 PMCID: PMC6557486 DOI: 10.1371/journal.pone.0216979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
An ancient enzyme family responsible for the catabolism of the prebiotic chemical cyanuric acid (1,3,5-triazine-2,4,6-triol) was recently discovered and is undergoing proliferation in the modern world due to industrial synthesis and dissemination of 1,3,5-triazine compounds. Cyanuric acid has a highly stabilized ring system such that bacteria require a unique enzyme with a novel fold and subtle active site construction to open the ring. Each cyanuric acid hydrolase monomer consists of three isostructural domains that coordinate and activate the three-fold symmetric substrate cyanuric acid for ring opening. We have now solved a series of X-ray structures of an engineered, thermostable cyanuric acid ring-opening enzyme at 1.51 ~ 2.25 Å resolution, including various complexes with the substrate, a tight-binding inhibitor, or an analog of the reaction intermediate. These structures reveal asymmetric interactions between the enzyme and bound ligands, a metal ion binding coupled to conformational changes and substrate binding important for enzyme stability, and distinct roles of the isostructural domains of the enzyme. The multiple conformations of the enzyme observed across a series of structures and corroborating biochemical data suggest importance of the structural dynamics in facilitating the substrate entry and the ring-opening reaction, catalyzed by a conserved Ser-Lys dyad.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Seunghee Cho
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kelly G. Aukema
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Thomas Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Asim K. Bera
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jennifer L. Seffernick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail: (HA); (LPW)
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (HA); (LPW)
| |
Collapse
|
8
|
Yang X, Wei H, Zhu C, Geng B. Biodegradation of atrazine by the novel Citricoccus sp. strain TT3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:144-150. [PMID: 28841530 DOI: 10.1016/j.ecoenv.2017.08.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
A previously undescribed atrazine-degrading bacterial strain TT3 capable of growing with atrazine as its sole nitrogen source was isolated from soil at the wastewater outfall of a pesticide factory in China. Phenotypic characterization and 16S rRNA gene sequencing indicated that the isolate belonged to the genus Citricoccus. Polymerase chain reaction (PCR) analysis revealed that TT3 contained the atrazine-degrading genes trzN, atzB, and atzC. The range for growth and atrazine degradation of TT3 was found to be pH 6.0-11.0, with a preference for alkaline conditions. At 30°C and pH 7.0, the strain removed 50mg/L atrazine in 66h with 1% inoculum. These results demonstrate that Citricoccus sp. TT3 has great potential for bioremediation of atrazine-contaminated sites, particularly in alkaline environments. To the best of our knowledge, there are no previous reports of Citricoccus strains that degrade atrazine, and therefore this work provides a novel candidate for atrazine bioremediation.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huanyu Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
9
|
Uysal T, Yilmaz S, Turkoglu M, Sadikoglu M. Investigation of some disinfection chemicals and water quality parameters in swimming pools in the city center and districts of Canakkale, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:338. [PMID: 28620710 DOI: 10.1007/s10661-017-6031-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
In this study, the variations in concentrations of some disinfection chemicals such as cyanuric acid (CyA), free chlorine (FC), and residual chlorine (RC), which affect human health, were investigated in the water of swimming pools. In addition, quality parameters such as temperature, pH, and total alkalinity (TA) in 44 swimming pools located in the city center and districts of Canakkale, Turkey, were examined in the summer period. While FC and RC amounts were analyzed using tablet tests with N-N-diethyl phenylenediamine (DPD 1) and potassium iodine (DPD 3) using the colorimetric method in the comparator, TA and CyA levels were measured with a photometric method. Temperature and pH were measured using YSI 556 MPS. Levels of CyA, FC, RC, pH, temperature, and TA varied between 0.00 and 725.0 mg L-1 (108.0 ± 111.4 mg L-1), 0.00 and 5.00 mg L-1 (1.60 ± 0.962 mg L-1), 0 and 0.55 mg L-1 (0.087 ± 0.059), 6.40 and 8.20 mg L-1 (7.30 ± 0.038 mg L-1), 22.0 and 32.0 °C (27.6 ± 1.45 °C), and 0.00 and 391.0 mg L-1 (129.3 ± 89.0), respectively. The findings were compared to standard limit values of the Ministry of Health of the Turkish Republic and other countries. Not only maximum concentrations of CyA but also the average concentrations exceeded the standard limit values of different countries in July and August with high tourism activity in Turkey. Although there is no problem in view of average values of other quality parameters, there are some problems in view of the maximum values in pool waters compared to standard limit values.
Collapse
Affiliation(s)
- Tolga Uysal
- Faculty of Arts and Sciences, Department of Chemistry, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020, Canakkale, Turkey
| | - Selehattin Yilmaz
- Faculty of Arts and Sciences, Department of Chemistry, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020, Canakkale, Turkey
| | - Muhammet Turkoglu
- Faculty of Marine Sciences and Technology, Department of Hydrobiology, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020, Canakkale, Turkey
| | - Murat Sadikoglu
- Faculty of Education, Department of Science Education, Gaziosmanpasa University, 60240, Tokat, Turkey.
| |
Collapse
|
10
|
High-Resolution X-Ray Structures of Two Functionally Distinct Members of the Cyclic Amide Hydrolase Family of Toblerone Fold Enzymes. Appl Environ Microbiol 2017; 83:AEM.03365-16. [PMID: 28235873 DOI: 10.1128/aem.03365-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 01/28/2023] Open
Abstract
The Toblerone fold was discovered recently when the first structure of the cyclic amide hydrolase, AtzD (a cyanuric acid hydrolase), was elucidated. We surveyed the cyclic amide hydrolase family, finding a strong correlation between phylogenetic distribution and specificity for either cyanuric acid or barbituric acid. One of six classes (IV) could not be tested due to a lack of expression of the proteins from it, and another class (V) had neither cyanuric acid nor barbituric acid hydrolase activity. High-resolution X-ray structures were obtained for a class VI barbituric acid hydrolase (1.7 Å) from a Rhodococcus species and a class V cyclic amide hydrolase (2.4 Å) from a Frankia species for which we were unable to identify a substrate. Both structures were homologous with the tetrameric Toblerone fold enzyme AtzD, demonstrating a high degree of structural conservation within the cyclic amide hydrolase family. The barbituric acid hydrolase structure did not contain zinc, in contrast with early reports of zinc-dependent activity for this enzyme. Instead, each barbituric acid hydrolase monomer contained either Na+ or Mg2+, analogous to the structural metal found in cyanuric acid hydrolase. The Frankia cyclic amide hydrolase contained no metal but instead formed unusual, reversible, intermolecular vicinal disulfide bonds that contributed to the thermal stability of the protein. The active sites were largely conserved between the three enzymes, differing at six positions, which likely determine substrate specificity.IMPORTANCE The Toblerone fold enzymes catalyze an unusual ring-opening hydrolysis with cyclic amide substrates. A survey of these enzymes shows that there is a good correlation between physiological function and phylogenetic distribution within this family of enzymes and provide insights into the evolutionary relationships between the cyanuric acid and barbituric acid hydrolases. This family of enzymes is structurally and mechanistically distinct from other enzyme families; however, to date the structure of just two, physiologically identical, enzymes from this family has been described. We present two new structures: a barbituric acid hydrolase and an enzyme of unknown function. These structures confirm that members of the CyAH family have the unusual Toblerone fold, albeit with some significant differences.
Collapse
|
11
|
Bera AK, Aukema KG, Elias M, Wackett LP. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel. Sci Rep 2017; 7:45277. [PMID: 28345631 PMCID: PMC5366886 DOI: 10.1038/srep45277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/23/2017] [Indexed: 11/09/2022] Open
Abstract
Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.
Collapse
Affiliation(s)
- Asim K Bera
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Kelly G Aukema
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Mikael Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
12
|
Ancient Evolution and Recent Evolution Converge for the Biodegradation of Cyanuric Acid and Related Triazines. Appl Environ Microbiol 2016; 82:1638-1645. [PMID: 26729715 DOI: 10.1128/aem.03594-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanuric acid was likely present on prebiotic Earth, may have been a component of early genetic materials, and is synthesized industrially today on a scale of more than one hundred million pounds per year in the United States. In light of this, it is not surprising that some bacteria and fungi have a metabolic pathway that sequentially hydrolyzes cyanuric acid and its metabolites to release the nitrogen atoms as ammonia to support growth. The initial reaction that opens the s-triazine ring is catalyzed by the unusual enzyme cyanuric acid hydrolase. This enzyme is in a rare protein family that consists of only cyanuric acid hydrolase (CAH) and barbiturase, with barbiturase participating in pyrimidine catabolism by some actinobacterial species. The X-ray structures of two cyanuric acid hydrolase proteins show that this family has a unique protein fold. Phylogenetic, bioinformatic, enzymological, and genetic studies are consistent with the idea that CAH has an ancient protein fold that was rare in microbial populations but is currently becoming more widespread in microbial populations in the wake of anthropogenic synthesis of cyanuric acid and other s-triazine compounds that are metabolized via a cyanuric acid intermediate. The need for the removal of cyanuric acid from swimming pools and spas, where it is used as a disinfectant stabilizer, can potentially be met using an enzyme filtration system. A stable thermophilic cyanuric acid hydrolase from Moorella thermoacetica is being tested for this purpose.
Collapse
|
13
|
Bacterial Cyanuric Acid Hydrolase for Water Treatment. Appl Environ Microbiol 2015; 81:6660-8. [PMID: 26187963 DOI: 10.1128/aem.02175-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.
Collapse
|
14
|
Fernandes AFT, da Silva MBP, Martins VV, Miranda CES, Stehling EG. Isolation and characterization of a Pseudomonas aeruginosa from a virgin Brazilian Amazon region with potential to degrade atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13974-13978. [PMID: 25035056 DOI: 10.1007/s11356-014-3316-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The use of pesticides to increase agricultural production can result in the contamination of the environment, causing changes in the genetic structure of organisms and in the loss of biodiversity. This practice is also inducing changes in the rainforest ecosystem. In this work, a Pseudomonas aeruginosa isolated from a preservation soil area of the Brazilian Amazon Forest, without usage of any pesticide, was evaluated for its potential to degrade atrazine. This isolate presented all responsible genes (atzA, atzB, atzC, atzD, atzE, and atzF) for atrazine mineralization and demonstrated capacity to use atrazine as a nitrogen source, having achieved a reduction of 44 % of the initial concentration of atrazine after 24 h. These results confirm gene dispersion and/or a possible contamination of the area with the herbicide, which reinforces global concern of the increase and intensive use of pesticides worldwide.
Collapse
Affiliation(s)
- Ana Flavia Tonelli Fernandes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP-Ribeirão Preto, Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, Brazil, 14040-903
| | | | | | | | | |
Collapse
|
15
|
Wang J, Zhu L, Wang Q, Wang J, Xie H. Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6. PLoS One 2014; 9:e107270. [PMID: 25238246 PMCID: PMC4169520 DOI: 10.1371/journal.pone.0107270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 08/14/2014] [Indexed: 12/03/2022] Open
Abstract
Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, People's Republic of China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, People's Republic of China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, People's Republic of China
- * E-mail:
| | - Qi Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, People's Republic of China
| | - Hui Xie
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agriculture University, People's Republic of China
| |
Collapse
|
16
|
Solomon RDJ, Kumar A, Satheeja Santhi V. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil. J Zhejiang Univ Sci B 2014; 14:1162-72. [PMID: 24302716 DOI: 10.1631/jzus.b1300001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.
Collapse
|
17
|
Cho S, Shi K, Seffernick JL, Dodge AG, Wackett LP, Aihara H. Cyanuric acid hydrolase from Azorhizobium caulinodans ORS 571: crystal structure and insights into a new class of Ser-Lys dyad proteins. PLoS One 2014; 9:e99349. [PMID: 24915109 PMCID: PMC4051656 DOI: 10.1371/journal.pone.0099349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Cyanuric acid hydrolase (CAH) catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine), an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7 Å resolution. The CAH protein fold consists of three structurally homologous domains forming a β-barrel-like structure with external α-helices that result in a three-fold symmetry, a dominant feature of the structure and active site that mirrors the three-fold symmetrical shape of the substrate cyanuric acid. The active site structure of CAH is similar to that of the recently determined AtzD with three pairs of active site Ser-Lys dyads. In order to determine the role of each Ser-Lys dyad in catalysis, a mutational study using a highly sensitive, enzyme-coupled assay was conducted. The 109-fold loss of activity by the S226A mutant was at least ten times lower than that of the S79A and S333A mutants. In addition, bioinformatics analysis revealed the Ser226/Lys156 dyad as the only absolutely conserved dyad in the CAH/barbiturase family. These data suggest that Lys156 activates the Ser226 nucleophile which can then attack the substrate carbonyl. Our combination of structural, mutational, and bioinformatics analyses differentiates this study and provides experimental data for mechanistic insights into this unique protein family.
Collapse
Affiliation(s)
- Seunghee Cho
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jennifer L. Seffernick
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anthony G. Dodge
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail: (LPW); (HA)
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail: (LPW); (HA)
| |
Collapse
|
18
|
Wang H, Li J, Hu A, Qin D, Xu H, Yu CP. Melaminivora alkalimesophila gen. nov., sp. nov., a melamine-degrading betaproteobacterium isolated from a melamine-producing factory. Int J Syst Evol Microbiol 2014; 64:1938-1944. [DOI: 10.1099/ijs.0.055103-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on strain CY1T, which is a novel bacterium isolated from wastewater sludge of a melamine-producing factory in Sanming city, Fujian, China. Strain CY1T was shown to rapidly and completely degrade melamine to NH3 and CO2 under aerobic conditions. The isolate was Gram-stain-negative, short-rod-shaped and motile by one unipolar flagellum. Growth was observed at salinities from 0 to 7 % NaCl (optimum, 0.1 %), at temperatures from 15 to 50 °C (optimum, 40–45 °C) and at pH 7–9.5 (optimum pH 9.5). Quinone-8 was detected as the major respiratory quinone. 16S rRNA gene sequence comparisons showed that strain CY1T was affiliated to the family
Comamonadaceae
in the class
Betaproteobacteria
. It was most closely related to members of the genera
Alicycliphilus
(95.5 %),
Diaphorobacter
(94.6–95.1 %),
Acidovorax
(92.9–95.4 %),
Delftia
(93.0–93.6 %) and
Comamonas
(92.6–93.9 %). The average nucleotide identity (ANI) values between strain CY1T and those representing related genera ranged from 84.0 to 86.1 % using Mummer, and from 74.9 to 81.1 % using blast. The dominant fatty acids were C16 : 1ω7c and/or C16 : 1ω6c, C16 : 0, C10 : 0 3-OH and C18 : 1ω7c and/or C18 : 1ω6c, and the major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and one unidentified aminophospholipid. The G+C content of the chromosomal DNA was 69.5 mol%. On the basis of the phenotypic and phylogenetic data, strain CY1T represents a novel species of a new genus, for which the name Melaminivora alkalimesophila gen. nov., sp. nov. is proposed. The type strain of Melaminivora alkalimesophila is CY1T ( = CCTCC AB 2012024T = DSM 26006T).
Collapse
Affiliation(s)
- Han Wang
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan City 354300, PR China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jiangwei Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Anyi Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Dan Qin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Heli Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Chang-Ping Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
19
|
Abstract
The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by (13)C nuclear magnetic resonance ((13)C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria.
Collapse
|
20
|
Cho S, Shi K, Wackett LP, Aihara H. Crystallization and preliminary X-ray diffraction studies of cyanuric acid hydrolase from Azorhizobium caulinodans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:880-3. [PMID: 23908033 PMCID: PMC3729164 DOI: 10.1107/s1744309113017077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/19/2013] [Indexed: 11/10/2022]
Abstract
Cyanuric acid is synthesized industrially and forms during the microbial metabolism of s-triazine herbicides. Cyanuric acid is metabolized by some microorganisms via cyanuric acid hydrolase (CAH), which opens the s-triazine ring as a prelude to further metabolism. CAH is a member of the rare cyanuric acid hydrolase/barbiturase family. Here, the crystallization and preliminary X-ray diffraction analysis of CAH from Azorhizobium caulinodans are reported. CAH was cocrystallized with barbituric acid, a close analog of cyanuric acid that is a tight-binding competitive inhibitor. Crystals suitable for X-ray diffraction experiments were grown in conditions containing PEG 8K or magnesium sulfate as precipitants. An X-ray diffraction data set was collected from CAH-barbituric acid crystals to 2.7 Å resolution. The crystals were found to belong to space group I4₁22, with unit-cell parameters a = b = 237.9, c = 105.3 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Seunghee Cho
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Peat TS, Balotra S, Wilding M, French NG, Briggs LJ, Panjikar S, Cowieson N, Newman J, Scott C. Cyanuric acid hydrolase: evolutionary innovation by structural concatenation. Mol Microbiol 2013; 88:1149-63. [PMID: 23651355 PMCID: PMC3758960 DOI: 10.1111/mmi.12249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2013] [Indexed: 11/29/2022]
Abstract
The cyanuric acid hydrolase, AtzD, is the founding member of a newly identified family of ring-opening amidases. We report the first X-ray structure for this family, which is a novel fold (termed the 'Toblerone' fold) that likely evolved via the concatenation of monomers of the trimeric YjgF superfamily and the acquisition of a metal binding site. Structures of AtzD with bound substrate (cyanuric acid) and inhibitors (phosphate, barbituric acid and melamine), along with mutagenesis studies, allowed the identification of the active site. The AtzD monomer, active site and substrate all possess threefold rotational symmetry, to the extent that the active site possesses three potential Ser-Lys catalytic dyads. A single catalytic dyad (Ser85-Lys42) is hypothesized, based on biochemical evidence and crystallographic data. A plausible catalytic mechanism based on these observations is also presented. A comparison with a homology model of the related barbiturase, Bar, was used to infer the active-site residues responsible for substrate specificity, and the phylogeny of the 68 AtzD-like enzymes in the database were analysed in light of this structure-function relationship.
Collapse
Affiliation(s)
- Thomas S Peat
- CSIRO Materials, Science and EngineeringParkville, Vic., 3801, Australia
| | - Sahil Balotra
- CSIRO Ecosystem SciencesBlack Mountain, Canberra, ACT, 2601, Australia
| | - Matthew Wilding
- CSIRO Ecosystem SciencesBlack Mountain, Canberra, ACT, 2601, Australia
| | - Nigel G French
- CSIRO Ecosystem SciencesBlack Mountain, Canberra, ACT, 2601, Australia
| | - Lyndall J Briggs
- CSIRO Ecosystem SciencesBlack Mountain, Canberra, ACT, 2601, Australia
| | - Santosh Panjikar
- Australian SynchrotronClayton, Vic., 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash UniversityVic., 3800, Australia
| | | | - Janet Newman
- CSIRO Materials, Science and EngineeringParkville, Vic., 3801, Australia
| | - Colin Scott
- CSIRO Ecosystem SciencesBlack Mountain, Canberra, ACT, 2601, Australia
| |
Collapse
|
22
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
23
|
Defining sequence space and reaction products within the cyanuric acid hydrolase (AtzD)/barbiturase protein family. J Bacteriol 2012; 194:4579-88. [PMID: 22730121 DOI: 10.1128/jb.00791-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed (13)C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment.
Collapse
|
24
|
Takagi K, Fujii K, Yamazaki KI, Harada N, Iwasaki A. Biodegradation of melamine and its hydroxy derivatives by a bacterial consortium containing a novel Nocardioides species. Appl Microbiol Biotechnol 2011; 94:1647-56. [DOI: 10.1007/s00253-011-3673-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/09/2011] [Accepted: 10/26/2011] [Indexed: 11/24/2022]
|
25
|
Udiković-Kolić N, Devers-Lamrani M, Petrić I, Hršak D, Martin-Laurent F. Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Appl Microbiol Biotechnol 2011; 90:1547-54. [DOI: 10.1007/s00253-011-3198-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
26
|
Jason Krutz L, Shaner DL, Weaver MA, Webb RM, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ. Agronomic and environmental implications of enhanced s-triazine degradation. PEST MANAGEMENT SCIENCE 2010; 66:461-481. [PMID: 20127867 DOI: 10.1002/ps.1909] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.
Collapse
Affiliation(s)
- L Jason Krutz
- United States Department of Agriculture, Agriculture Research Service, Crop Production Systems Research Unit, Stoneville, MS 38776, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Udiković Kolić N, Martin-Laurent F, Devers M, Petrić I, Begonja Kolar A, Hrsak D. Genetic potential, diversity and activity of an atrazine-degrading community enriched from a herbicide factory effluent. J Appl Microbiol 2010; 105:1334-43. [PMID: 19146484 DOI: 10.1111/j.1365-2672.2008.03890.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS To characterize an atrazine-degrading bacterial community enriched from the wastewater of a herbicide factory. METHODS AND RESULTS The community mineralized 81.4 +/- 1.9% of [(14)C-ring]atrazine and 31.0 +/- 1.8% of [(14)C-ethyl]atrazine within 6 days of batch cultivation in mineral salts medium containing atrazine as the sole nitrogen source. Degradation activity of the community towards different chloro- and methylthio-substituted s-triazine compounds was also demonstrated. Restriction analysis of amplified 16S rDNA revealed high diversity of bacterial populations forming the community, with Pseudomonas species dominating in the clone library. Atrazine-degrading genetic potential of the community determined by PCR revealed the presence of trzN, atzB, atzC and trzD genes. The trzN, atzB and atzC genes were shown to be located on a plasmid of 322 kb. Quantitative PCR showed that relative abundances of atzB, atzC and trzD genes were approx. 100-fold lower than 16S rDNA. CONCLUSIONS The enriched community represents a complex bacterial association expressing substantial atrazine-mineralizing activity and a broad specificity towards a range of s-triazine compounds. SIGNIFICANCE AND IMPACT OF THE STUDY Our study is beginning to yield insights into the richness, genetic potential and density of functional atrazine-mineralizing community that could be a potential bioaugmentation agent for improving biotransformation processes in wastewaters bearing different s-triazine compounds.
Collapse
Affiliation(s)
- N Udiković Kolić
- Rudjer Bosković Institute, Center for Marine and Environmental Research, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
28
|
Mineralization of s-triazine herbicides by a newly isolated Nocardioides species strain DN36. Appl Microbiol Biotechnol 2010; 86:1585-92. [DOI: 10.1007/s00253-010-2460-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 01/03/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
|
29
|
Satsuma K. Complete biodegradation of atrazine by a microbial community isolated from a naturally derived river ecosystem (microcosm). CHEMOSPHERE 2009; 77:590-596. [PMID: 19596136 DOI: 10.1016/j.chemosphere.2009.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/14/2009] [Accepted: 06/15/2009] [Indexed: 05/28/2023]
Abstract
A microbial community, designated as AN4, capable of mineralizing the herbicide atrazine was isolated from a model river ecosystem (microcosm). The profile of degradation of atrazine by the AN4 community seemed to well reflect what occurred in the microcosm: rapid degradation of atrazine and transient accumulation of cyanuric acid, followed by relatively slow mineralization. The community comprised multiple phylogenetically distinct microbial strains, and the microbes were suspended and probably aggregated in the water phase of the microcosm. Denaturing gradient gel electrophoresis (DGGE) revealed that multiple bacterial strains exist in the AN4 community, and we successfully isolated two strains, which belonged to the genera Nocardioides and Pedomicrobium. Nocardioides sp. strain AN4-4 degraded atrazine to cyanuric acid and harbored the trzN and atzC genes encoding the s-triazine-degrading enzymes. This strain also degraded other chloro-substituted s-triazines like simazine and propazine, but it showed little degradability for simetryn (a methylthio-substituted s-triazine). Additionally, strain AN4-4 could grow on basal salt agar containing ethylamine or isopropylamine as the only carbon and nitrogen sources. Another strain, Pedomicrobium sp. strain AN4-9 could mineralize cyanuric acid alone. Therefore, we found that the coexistence of these two community members functionally serves to completely biodegrade atrazine.
Collapse
Affiliation(s)
- Koji Satsuma
- Chemistry Division, The Institute of Environmental Toxicology, 4321 Uchimoriya-Machi, Joso, Ibaraki 303-0043, Japan.
| |
Collapse
|
30
|
Thermostable cyanuric acid hydrolase from Moorella thermoacetica ATCC 39073. Appl Environ Microbiol 2009; 75:6986-91. [PMID: 19767460 DOI: 10.1128/aem.01605-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications.
Collapse
|
31
|
Stamper DM, Krzycki JA, Nicomrat D, Stamper DM, Krzycki JA, Nicomrat D, Traina SJ, Tuovinen OH. Ring-cleaving cyanuric acid amidohydrolase activity in the atrazine-mineralizingRalstonia basilensisM91-3. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500372260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Govantes F, Porrúa O, García-González V, Santero E. Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb Biotechnol 2008; 2:178-85. [PMID: 21261912 PMCID: PMC3815838 DOI: 10.1111/j.1751-7915.2008.00073.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Atrazine is an herbicide of the s‐triazine family that is used primarily as a nitrogen source by degrading microorganisms. While many catabolic pathways for xenobiotics are subjected to catabolic repression by preferential carbon sources, atrazine utilization is repressed in the presence of preferential nitrogen sources. This phenomenon appears to restrict atrazine elimination in nitrogen‐fertilized soils by indigenous organisms or in bioaugmentation approaches. The mechanisms of nitrogen control have been investigated in the model strain Pseudomonas sp. ADP. Expression of atzA, atzB ad atzC, involved in the conversion of atrazine in cyanuric acid, is constitutive. The atzDEF operon, encoding the enzymes responsible for cyanuric acid mineralization, is a target for general nitrogen control. Regulation of atzDEF involves a complex interplay between the global regulatory elements of general nitrogen control and the pathway‐specific LysR‐type regulator AtzR. In addition, indirect evidence suggests that atrazine transport may also be a target for nitrogen regulation in this strain. The knowledge about regulatory mechanisms may allow the design of rational bioremediation strategies such as biostimulation using carbon sources or the use of mutant strains impaired in the assimilation of nitrogen sources for bioaugmentation.
Collapse
Affiliation(s)
- Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain.
| | | | | | | |
Collapse
|
34
|
Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor. J Ind Microbiol Biotechnol 2008; 36:275-84. [PMID: 19002512 DOI: 10.1007/s10295-008-0496-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
35
|
Gonod LV, Martin-Laurent F, Chenu C. 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiol Ecol 2007; 58:529-37. [PMID: 17117994 DOI: 10.1111/j.1574-6941.2006.00159.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D.
Collapse
Affiliation(s)
- Laure Vieublé Gonod
- UMR Environnement et Grandes Cultures, INRA-INAPG, Bâtiment EGER, Thiverval Grignon, France.
| | | | | |
Collapse
|
36
|
Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP. Evolution of catabolic pathways: Genomic insights into microbial s-triazine metabolism. J Bacteriol 2006; 189:674-82. [PMID: 17114259 PMCID: PMC1797303 DOI: 10.1128/jb.01257-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- N Shapir
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shiomi N, Yamaguchi Y, Nakai H, Fujita T, Katsuda T, Katoh S. Degradation of cyanuric acid in soil by Pseudomonas sp. NRRL B-12227 using bioremediation with self-immobilization system. J Biosci Bioeng 2006; 102:206-9. [PMID: 17046534 DOI: 10.1263/jbb.102.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 06/05/2006] [Indexed: 11/17/2022]
Abstract
The rates of degradation of cyanuric acid, a key intermediate in a metabolic pathway of s-triazine herbicides, were measured for Pseudomonas sp. NRRL B-12227. The rate of degradation was affected by the rate of cyanuric acid transport through cell membranes and the activity of cyanuric acid amidohydrolase inside the cells. At low concentrations of cyanuric acid, the acclimation of cells to cyanuric acid and/or added nutrients effectively enhanced the degradation rate. The strain was also applied to bioremediation using a Bioremediation with Self-Immobilization System (BSIS), in which Pseudomonas sp. NRRL B-12227 cells were co-immobilized with Bacillus subtilis, the latter of which secretes a viscous polymer, in a shallow layer of soil packed in a column. More than 70% of the Pseudomonas sp. NRRL B-12227 cells were co-immobilized with the B. subtilis in a 7.5 cm layer of the packed soil by self-aggregation. More than 60% of the 1 mM cyanuric acid supplied to the packed soil was degraded in this layer during a 72 h period.
Collapse
Affiliation(s)
- Naofumi Shiomi
- Department of Biosphere Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Morán AC, Müller A, Manzano M, González B. Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. ADP. J Appl Microbiol 2006; 101:26-35. [PMID: 16834588 DOI: 10.1111/j.1365-2672.2006.02990.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study biological removal of the herbicide simazine in soils with different history of herbicide treatment and to test bioaugmentation with a simazine-degrading bacterial strain. METHODS AND RESULTS Simazine removal was studied in microcosms prepared with soils that had been differentially exposed to this herbicide. Simazine removal was much higher in previously exposed soils than in unexposed ones. Terminal restriction fragment length polymorphism analysis and multivariate analysis showed that soils previously exposed to simazine contained bacterial communities that were significantly impacted by simazine but also had an increased resilience. The biodegradation potential was also related to the presence of high levels of the atz-like gene sequences involved in simazine degradation. Bioaugmentation with Pseudomonas sp. ADP resulted in an increased initial rate of simazine removal, but this strain scarcely survived. After 28 days, residual simazine removals were the same in bioaugmented and not bioaugmented microcosms. CONCLUSIONS In soils with a history of simazine treatment bacterial communities were able to overcome subsequent impacts with the herbicide. The success of bioaugmentation was limited by the low survival of the introduced strain. SIGNIFICANCE AND IMPACT OF THE STUDY Conclusions from this work provided insights on simazine biodegradation potential of soils and the convenience of bioaugmentation.
Collapse
Affiliation(s)
- A C Morán
- Laboratorio de Microbiología, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
39
|
Satsuma K. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem. PEST MANAGEMENT SCIENCE 2006; 62:340-9. [PMID: 16493696 DOI: 10.1002/ps.1172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A Gram-positive bacterial strain able to degrade the herbicide atrazine was isolated using a simple model ecosystem constituted with Japanese riverbed sediment and its associated water (microcosm). Treatment of the water phase of the microcosm with 1 mg litre-1 [ring-14C]atrazine resulted in the rapid degradation of atrazine after a 10 day lag phase period. The [ring-14C]cyanuric acid formed was transiently accumulated as an intermediary metabolite in the water phase and was subsequently mineralised through triazine ring cleavage. Possible atrazine-degrading microbes suspended in the water phase of the microcosm were isolated by the plating method while rapid degradation of atrazine was in progress. Among the 48 strains that were isolated, 47 exhibited atrazine-degrading activity. From these 47 isolates, 12 strains that were randomly selected were found to identically convert atrazine to cyanuric acid via hydroxyatrazine. Polymerase chain reaction (PCR) amplification of the genes corresponding to atrazine degradation revealed that these strains at least carried the genes trzN (atrazine chlorohydrolase from Nocardioides C190) and atzC (N-isopropylammelide isopropyl amidohydrolase from Pseudomonas ADP). Physiological characteristics and 16S rDNA partial sequences of six strains that were further selected strongly suggested that all these isolates originated from the same Nocardioides sp. strain. Additionally, only one isolate could mineralise the triazine ring of cyanuric acid. Based on microscopic observations, this strain appears to be a two-membered microbial consortium consisting of Nocardioides sp. and a Gram-negative bacterium. In conclusion, atrazine biodegradation in the microcosm appeared to occur predominantly by Nocardioides sp. to yield cyanuric acid, which could be mineralised by the other relatively ubiquitous microbes.
Collapse
Affiliation(s)
- Koji Satsuma
- Chemistry Division, The Institute of Environmental Toxicology, 303-0043 Ibaraki, Japan.
| |
Collapse
|
40
|
Cheng G, Shapir N, Sadowsky MJ, Wackett LP. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism. Appl Environ Microbiol 2005; 71:4437-45. [PMID: 16085834 PMCID: PMC1183272 DOI: 10.1128/aem.71.8.4437-4445.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biochemistry, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
41
|
Smith D, Alvey S, Crowley DE. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 2005; 53:265-73. [PMID: 16329946 DOI: 10.1016/j.femsec.2004.12.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 12/15/2004] [Accepted: 12/22/2004] [Indexed: 11/27/2022] Open
Abstract
Atrazine degradation previously has been shown to be carried out by individual bacterial species or by relatively simple consortia that have been isolated using enrichment cultures. Here, the degradative pathway for atrazine was examined for a complex 8-membered enrichment culture. The species composition of the culture was determined by PCR-DGGE. The bacterial species included Agrobacterium tumefaciens, Caulobacter crescentus, Pseudomonas putida, Sphingomonas yaniokuyae, Nocardia sp., Rhizobium sp., Flavobacterium oryzihabitans, and Variovorax paradoxus. All of the isolates were screened for the presence of known genes that function for atrazine degradation including atzA,-B,-C,-D,-E,-F and trzD,-N. Dechlorination of atrazine, which was obligatory for complete mineralization, was carried out exclusively by Nocardia sp., which contained the trzN gene. Following dechlorination, the resulting product, hydroxyatrazine was further degraded via two separate pathways. In one pathway Nocardia converted hydroxyatrazine to N-ethylammelide via an unidentified gene product. In the second pathway, hydroxyatrazine generated by Nocardia sp. was hydrolyzed to N-isopropylammelide by Rhizobium sp., which contained the atzB gene. Each member of the enrichment culture contained atzC, which is responsible for ring cleavage, but none of the isolates carried the atzD,-E, or -F genes. Each member further contained either trzD or exhibited urease activity. The enrichment culture was destabilized by loss of Nocardia sp. when grown on ethylamine, ethylammelide, and cyanuric acid, after which the consortium was no longer able to degrade atrazine. The analysis of this enrichment culture highlights the broad level bacterial community interactions that may be involved in atrazine degradation in nature.
Collapse
Affiliation(s)
- Daniel Smith
- Department of Environmental Sciences, University of California, Riverside, 92521, USA
| | | | | |
Collapse
|
42
|
Devers M, Soulas G, Martin-Laurent F. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 2004; 56:3-15. [PMID: 14706746 DOI: 10.1016/j.mimet.2003.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The level of expression of highly conserved, plasmid-borne, and widely dispersed atrazine catabolic genes (atz) was studied by RT-qPCR in two telluric atrazine-degrading microbes. RT-qPCR assays, based on the use of real-time PCR, were developed in order to quantify atzABCDEF mRNAs in Pseudomonas sp. ADP and atzABC mRNAs in Chelatobacter heintzii. atz gene expression was expressed as mRNA copy number per 10(6) 16S rRNA. In Pseudomonas sp. ADP, atz genes were basally expressed. It confirmed atrazine-degrading kinetics indicating that catabolic activity starts immediately after adding the herbicide. atz gene expression increased transitorily in response to atrazine treatment. This increase was only observed while low amount of atrazine remained in the medium. In C. heintzii, only atzA was basally expressed. atzA and atzB expression levels were similarly and significantly increased in response to atrazine treatment. atzC was not expressed even in the presence of high amounts of atrazine. This study showed that atz genes are basally expressed and up-regulated in response to atrazine treatment. atz gene expression patterns are different in Pseudomonas ADP and C. heintzii suggesting that the host may influence the expression of plasmid-borne atrazine-catabolic potential.
Collapse
Affiliation(s)
- Marion Devers
- INRA-CMSE, UMR 1229 INRA-Université de Bourgogne, Microbiologie et Géochimie des Sols, 17 rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | | | | |
Collapse
|
43
|
Fiamegos YC, Konidari CN, Stalikas CD. Cyanuric Acid Trace Analysis by Extractive Methylation via Phase-Transfer Catalysis and Capillary Gas Chromatography Coupled with Flame Thermoionic and Mass-Selective Detection. Process Parameter Studies and Kinetics. Anal Chem 2003; 75:4034-42. [PMID: 14632115 DOI: 10.1021/ac030057e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A GC method using phase-transfer catalysis for the simultaneous derivatization, extraction, and preconcentration of the highly polar cyanuric acid (CYA) was developed. The method was based on the extractive N-methylation of the analyte of concern in two- and three-phase systems, whereby the 1,3,5-trimethyl-1,3,5-triazine-2,4,6-(1H,3H,5H)trione was formed. Subsequent detection was performed using flame thermoionic specific detection (FTD) and mass spectrometry (MS) selective-ion monitoring (SIM) using electron impact. The optimal experimental conditions related to pH, kind of catalyst and solvents, methyl iodide concentration, phase volumes, reaction time, temperature, and agitation were suitably established. Inter alia, the resulting method is highly sensitive, almost free from interferences, and was easily applied to the determination of cyanuric acid in swimming pool water, surface water, human urine, and simulated air filter samples. The minimal quantitable concentration was found to be less than 1 and 90 microg L(-1) using GC-MS-(SIM) and GC-FTD, respectively. The overall precision for the workup procedure did not exceed 3.6% (n = 6) for 5.0 microg L(-1) CYA-spiked urine and river water while the respective value for the same matrixes spiked at a concentration of 200 microg L(-1) was calculated to be in the range 1.9-4.0% (n = 6). The overall recovery from spiked samples was 98 +/- 5% for microgram per liter levels of CYA. A kinetic study conducted was helpful to get a better insight into the N-methylation reaction mechanism.
Collapse
Affiliation(s)
- Yiannis C Fiamegos
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Ioannina, Ioannina 451 10, Greece
| | | | | |
Collapse
|
44
|
Fruchey I, Shapir N, Sadowsky MJ, Wackett LP. On the origins of cyanuric acid hydrolase: purification, substrates, and prevalence of AtzD from Pseudomonas sp. strain ADP. Appl Environ Microbiol 2003; 69:3653-7. [PMID: 12788776 PMCID: PMC161465 DOI: 10.1128/aem.69.6.3653-3657.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 03/06/2003] [Indexed: 11/20/2022] Open
Abstract
Cyanuric acid hydrolase (AtzD) from Pseudomonas sp. strain ADP was purified to homogeneity. Of 22 cyclic amides and triazine compounds tested, only cyanuric acid and N-methylisocyanuric acid were substrates. Other cyclic amidases were found not to hydrolyze cyanuric acid. Ten bacteria that use cyanuric acid as a sole nitrogen source for growth were found to contain either atzD or trzD, but not both genes.
Collapse
Affiliation(s)
- Isaac Fruchey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
45
|
Martin-Laurent F, Piutti S, Hallet S, Wagschal I, Philippot L, Catroux G, Soulas G. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR. PEST MANAGEMENT SCIENCE 2003; 59:259-268. [PMID: 12639042 DOI: 10.1002/ps.630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the development of quantitative competitive (QC) PCR assays for quantifying the 16S, 18S ribosomal and atzC genes in nucleic acids directly extracted from soil. QC-PCR assays were standardised, calibrated and evaluated with an experimental study aiming to evaluate the impact of atrazine application on soil microflora. Comparison of QC-PCR 16S and 18S results with those of soil microbial biomass showed that, following atrazine application, the microbial biomass was not affected and that the amount of 16S rDNA gene representing 'bacteria' increased transitorily, while the amount of 18S rDNA gene representing fungi decreased in soil. In addition, comparison of atzC QC-PCR results with those of atrazine mineralisation revealed that, in response to atrazine treatment, the amount of atzC gene increased transitorily in soil pre-treated with atrazine, suggesting that accelerated atrazine biodegradation in soil could be due to a transient increase in the size of the atrazine mineralising community.
Collapse
Affiliation(s)
- Fabrice Martin-Laurent
- INRA-CMSE, UMR 111 INRA-Université de Bourgogne, Microbiologie des Sols-Geosol, 17 rue Sully, BP 86510, 21 065 Dijon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Anderson KL, Wheeler KA, Robinson JB, Tuovinen OH. Atrazine mineralization potential in two wetlands. WATER RESEARCH 2002; 36:4785-4794. [PMID: 12448521 DOI: 10.1016/s0043-1354(02)00209-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fate of atrazine in agricultural soils has been studied extensively but attenuation in wetland systems has received relatively little attention. The purpose of this study was to evaluate the mineralization of atrazine in two wetlands in central Ohio. One was a constructed wetland, which is fed by Olentangy River water from an agricultural catchment area. The other was a natural fen (Cedar Bog) in proximity to atrazine-treated cornfields. Atrazine mineralization potential was measured by 14CO2 evolution from [U-ring-14C]-atrazine in biometers. The constructed wetland showed 70-80% mineralization of atrazine within 1 month. Samples of wetland water that were pre-concentrated 200-fold by centrifugation also mineralized 60-80% of the added atrazine. A high extent of atrazine mineralization (75-81% mineralized) was also associated with concentrated water samples from the Olentangy River that were collected upstream and downstream of the wetland. The highest levels of mineralization were localized to the top 5 cm zone of the wetland sediment, and the activity close to the outflow at the Olentangy wetland was approximately equal to that near the inflow. PCR amplification of DNA extracted from the wetland sediment samples showed no positive signals for the atzA gene (atrazine chlorohydrolase), while Southern blots of the amplified DNA showed positive bands in five of the six Olentangy wetland sediment samples. Amplification with the trzD (cyanuric acid amidohydrolase) primers showed a positive PCR signal for all Olentangy wetland sediment samples. There was little mineralization of atrazine in any of the Cedar Bog samples. DNA extracted from Cedar Bog samples did not yield PCR products, and the corresponding Southern hybridization signals were absent. The data show that sediment microbial communities in the Olentangy wetland mineralize atrazine. The level of activity may be related to the seasonality of atrazine runoff entering the wetland. Comparable activity was not observed in the Cedar Bog, perhaps because it does not directly receive agricultural runoff. Qualitatively, the detection of the genes was associated with measurable mineralization activity which was consistent with the differences between the two study sites.
Collapse
Affiliation(s)
- Kristen L Anderson
- Department of Microbiology, Ohio State University, Columbus 43210-1292, USA
| | | | | | | |
Collapse
|
47
|
Seffernick JL, Shapir N, Schoeb M, Johnson G, Sadowsky MJ, Wackett LP. Enzymatic degradation of chlorodiamino-s-triazine. Appl Environ Microbiol 2002; 68:4672-5. [PMID: 12200330 PMCID: PMC124118 DOI: 10.1128/aem.68.9.4672-4675.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2-Chloro-4,6-diamino-s-triazine (CAAT) is a metabolite of atrazine biodegradation in soils. Atrazine chlorohydrolase (AtzA) catalyzes the dechlorination of atrazine but is unreactive with CAAT. In this study, melamine deaminase (TriA), which is 98% identical to AtzA, catalyzed deamination of CAAT to produce 2-chloro-4-amino-6-hydroxy-s-triazine (CAOT). CAOT underwent dechlorination via hydroxyatrazine ethylaminohydrolase (AtzB) to yield ammelide. This represents a newly discovered dechlorination reaction for AtzB. Ammelide was subsequently hydrolyzed by N-isopropylammelide isopropylaminohydrolase to produce cyanuric acid, a compound metabolized by a variety of soil bacteria.
Collapse
Affiliation(s)
- Jennifer L Seffernick
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rousseaux S, Soulas G, Hartmann A. Plasmid localisation of atrazine-degrading genes in newly described Chelatobacter and Arthrobacter strains. FEMS Microbiol Ecol 2002; 41:69-75. [DOI: 10.1111/j.1574-6941.2002.tb00967.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Soong CL, Ogawa J, Sakuradani E, Shimizu S. Barbiturase, a novel zinc-containing amidohydrolase involved in oxidative pyrimidine metabolism. J Biol Chem 2002; 277:7051-8. [PMID: 11748240 DOI: 10.1074/jbc.m110784200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Barbiturase, which catalyzes the reversible amidohydrolysis of barbituric acid to ureidomalonic acid in the second step of oxidative pyrimidine degradation, was purified to homogeneity from Rhodococcus erythropolis JCM 3132. The characteristics and gene organization of barbiturase suggested that it is a novel zinc-containing amidohydrolase that should be grouped into a new family of the amidohydrolases superfamily. The amino acid sequence of barbiturase exhibited 48% identity with that of herbicide atrazine-decomposing cyanuric acid amidohydrolase but exhibited no significant homology to other proteins, indicating that cyanuric acid amidohydrolase may have evolved from barbiturase. A putative uracil phosphoribosyltransferase gene was found upstream of the barbiturase gene, suggesting mutual interaction between pyrimidine biosynthesis and oxidative degradation. Metal analysis with an inductively coupled radiofrequency plasma spectrophotometer revealed that barbiturase contains approximately 4.4 mol of zinc per mol of enzyme. The homotetrameric enzyme had K(m) and V(max) values of 1.0 mm and 2.5 micromol/min/mg of protein, respectively, for barbituric acid. The enzyme specifically acted on barbituric acid, and dihydro-l-orotate, alloxan, and cyanuric acid competitively inhibited its activity. The full-length gene encoding the barbiturase (bar) was cloned and overexpressed in Escherichia coli. The kinetic parameters and physicochemical properties of the cloned enzyme were apparently similar to those of the wild-type.
Collapse
Affiliation(s)
- Chee-Leong Soong
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
50
|
Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 2001; 183:5684-97. [PMID: 11544232 PMCID: PMC95461 DOI: 10.1128/jb.183.19.5684-5697.2001] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPbeta plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how plasmids are structured, and thus evolve, to encode the catabolism of compounds recently added to the biosphere.
Collapse
Affiliation(s)
- B Martinez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|