1
|
Qian Y, Lai L, Cheng M, Fang H, Fan D, Zylstra GJ, Huang X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl Environ Microbiol 2024; 90:e0151224. [PMID: 39431819 DOI: 10.1128/aem.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff. Herein, a novel amidase AphA was identified from a pure cultured strain that can concurrently mediate the hydrolytic inactivation of CHL, TAP, and Ff, yielding products p-nitrophenylserinol, thiamphenicol amine (TAP-amine), and florfenicol amine (Ff-amine), respectively. The antibacterial activity of these antibiotic hydrolysates exhibited a significant reduction or complete loss in comparison to the parent compounds. Notably, AphA shared less than 26% amino acid sequence identity with previously reported enzymes and exhibited high conservation within the sphingomonad species. Through enzymatic kinetic analysis, the AphA exhibited markedly superior affinity and catalytic activity toward Ff in comparison to CHL and TAP. Site-directed mutagenesis analysis revealed the indispensability of catalytic triad residues, particularly serine 153 and histidine 277, in forming crucial hydrogen bonds essential for AphA's hydrolytic activity. Comparative genomic analysis showed that aphA genes in some species are closely adjacent to various transposable elements, indicating that there is a high potential risk of horizontal gene transfer (HGT). This study established a hydrolysis resistance mechanism of amphenicol antibiotics in sphingomonads, which offers theoretical guidance and a novel marker gene for assessing the prevalent risk of amphenicol antibiotics in the environment.IMPORTANCEAmphenicol antibiotics are pervasive emerging contaminants that present a substantial threat to ecological systems. Few studies have elucidated resistance genes or mechanisms that can act on CHL, TAP, and Ff simultaneously. The results of this study fill this knowledge gap and identify a novel amidase AphA from the bacterium Sphingobium yanoikuyae B1, which mediates three typical amphenicol antibiotic inactivation, and the molecular mechanism is elucidated. The diverse types of transposable elements were identified in the flanking regions of the aphA gene, indicating the risk of horizontal transfer of this antibiotic resistance genes (ARG). These findings offer new insights into the bacterial resistance to amphenicol antibiotics. The gene reported herein can be utilized as a novel genetic diagnostic marker for monitoring the environmental fate of amphenicol antibiotics, thereby enriching risk assessment efforts within the context of antibiotic resistance.
Collapse
Affiliation(s)
- Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Fan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Park J, Tae Eom G, Young Oh J, Hyun Park J, Chang Kim S, Kwang Song J, Hoon Ahn J. High-Level Production of Bacteriotoxic Phospholipase A1 in Bacterial Host Pseudomonas fluorescens Via ABC Transporter-Mediated Secretion and Inducible Expression. Microorganisms 2020; 8:microorganisms8020239. [PMID: 32053917 PMCID: PMC7074900 DOI: 10.3390/microorganisms8020239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 02/03/2023] Open
Abstract
Bacterial phospholipase A1 (PLA1) is used in various industrial fields because it can catalyze the hydrolysis, esterification, and transesterification of phospholipids to their functional derivatives. It also has a role in the degumming process of crude plant oils. However, bacterial expression of the foreign PLA1-encoding gene was generally hampered because intracellularly expressed PLA1 is inherently toxic and damages the phospholipid membrane. In this study, we report that secretion-based production of recombinant PlaA, a bacterial PLA1 gene, or co-expression of PlaS, an accessory gene, minimizes this harmful effect. We were able to achieve high-level PlaA production via secretion-based protein production. Here, TliD/TliE/TliF, an ABC transporter complex of Pseudomonas fluorescens SIK-W1, was used to secrete recombinant proteins to the extracellular medium. In order to control the protein expression with induction, a new strain of P. fluorescens, which had the lac operon repressor gene lacI, was constructed and named ZYAI strain. The bacteriotoxic PlaA protein was successfully produced in a bacterial host, with help from ABC transporter-mediated secretion, induction-controlled protein expression, and fermentation. The final protein product is capable of degumming oil efficiently, signifying its application potential.
Collapse
Affiliation(s)
- Jiyeon Park
- Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea;
- Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea;
| | - Gyeong Tae Eom
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) 1, Ulsan 44429, Korea;
| | - Joon Young Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (J.Y.O.); (J.H.P.); (J.K.S.)
| | - Ji Hyun Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (J.Y.O.); (J.H.P.); (J.K.S.)
| | - Sun Chang Kim
- Intelligent Synthetic Biology Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea;
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jae Kwang Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (J.Y.O.); (J.H.P.); (J.K.S.)
| | - Jung Hoon Ahn
- Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Korea;
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-51-606-2335
| |
Collapse
|
3
|
Liu W, Li M, Yan Y. Heterologous expression and characterization of a new lipase from Pseudomonas fluorescens Pf0-1 and used for biodiesel production. Sci Rep 2017; 7:15711. [PMID: 29146968 PMCID: PMC5691200 DOI: 10.1038/s41598-017-16036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a kind of important biocatalysts, Pseudomonas lipases are commonly applied in various industrial fields. Pflip1, a new extracellular lipase gene from Pseudomonas. fluorescens Pf0-1, was first cloned and respectively expressed in Escherichia coli BL21(DE3) and Pichia pastoris KM71, the recombinant proteins Pflip1a and Pflip1b were later purified separately. Then Pflip1a was further characterized. The optimum pH of Pflip1a was 8.0 and its optimal temperature was 70 °C. After incubation at 70 °C for 12 h, Pflip1a could retain over 95% of its original activity. It showed the highest activity towards p-nitrophenyl caprylate. Moreover, its activity was profoundly affected by metal ion, ionic surfactants and organic solvents. Furthermore, the two obtained recombinant lipases were immobilized on the magnetic nanoparticles for biodiesel preparation. The GC analysis showed that for the immobilized lipases Pflip1b and Pflip1a, the biodiesel yield within 24 h respectively attained 68.5% and 80.5% at 70 °C. The activities of the two immobilized lipases still remained 70% and 82% after 10 cycles of operations in non-solvent system. These characteristics and transesterification capacity of the recombinant protein indicated its great potential for organic synthesis, especially for biodiesel production.
Collapse
Affiliation(s)
- Wu Liu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Menggang Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Li M, Yan J, Yan Y. The Pseudomonas transcriptional regulator AlgR controls LipA expression via the noncoding RNA RsmZ in Pseudomonas protegens Pf-5. Biochem Biophys Res Commun 2017; 487:173-180. [DOI: 10.1016/j.bbrc.2017.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 01/25/2023]
|
5
|
Eom GT, Oh JY, Park JH, Jegal J, Song JK. Secretory production of enzymatically active endo -β-1,4-mannanase from Bacillus subtilis by ABC exporter in Escherichia coli. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Eom GT, Oh JY, Park JH, Lim HJ, Lee SJ, Kim EY, Choi JE, Jegal J, Song BK, Yu JH, Song JK. Alleviation of temperature-sensitive secretion defect of Pseudomonas fluorescens ATP-binding cassette (ABC) transporter, TliDEF, by a change of single amino acid in the ABC protein, TliD. J Biosci Bioeng 2016; 122:283-6. [PMID: 27033673 DOI: 10.1016/j.jbiosc.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/12/2016] [Accepted: 02/28/2016] [Indexed: 11/25/2022]
Abstract
An ABC transporter, TliDEF, from Pseudomonas fluorescens SIK W1, mediates the secretion of its cognate lipase, TliA, in a temperature-dependent secretion manner; the TliDEF-mediated secretion of TliA was impossible at the temperatures over 33°C. To isolate a mutant TliDEF capable of secreting TliA at 35°C, the mutagenesis of ABC protein (TliD) was performed. The mutated tliD library where a random point mutation was introduced by error-prone PCR was coexpressed with the wild-type tliE, tliF and tliA in Escherichia coli. Among approximately 10,000 colonies of the tliD library, we selected one colony that formed transparent halo on LB-tributyrin plates at 35°C. At the growth temperature of 35°C, the selected mutant TliD showed 1.75 U/ml of the extracellular lipase activity, while the wild-type TliDEF did not show any detectable lipase activity in the culture supernatant of E. coli. Moreover, the mutant TliD also showed higher level of TliA secretion than the wild-type TliDEF at other culture temperatures, 20°C, 25°C and 30°C. The mutant TliD had a single amino acid change (Ser287Pro) in the predicted transmembrane region in the membrane domain of TliD, implying that the corresponding region of TliD was important for causing the temperature-dependent secretion of TliDEF. These results suggested that the property of ABC transporter could be changed by the change of amino acid in the ABC protein.
Collapse
Affiliation(s)
- Gyeong Tae Eom
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea; Center for Industrial Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 45 Jongga-ro, Jung-gu, Ulsan 681-802, Republic of Korea
| | - Joon Young Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Ji Hyun Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Hye Jin Lim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - So Jeong Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Eun Young Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Ji-Eun Choi
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea; Center for Industrial Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 45 Jongga-ro, Jung-gu, Ulsan 681-802, Republic of Korea
| | - Bong Keun Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea; Center for Industrial Chemical Biotechnology, Korea Research Institute of Chemical Technology (KRICT), 45 Jongga-ro, Jung-gu, Ulsan 681-802, Republic of Korea
| | - Ju-Hyun Yu
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Jae Kwang Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
7
|
A vector system for ABC transporter-mediated secretion and purification of recombinant proteins in Pseudomonas species. Appl Environ Microbiol 2014; 81:1744-53. [PMID: 25548043 DOI: 10.1128/aem.03514-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species.
Collapse
|
8
|
Eom GT, Oh JY, Song JK. High-level production of Serratia proteamaculans metalloprotease using a recombinant ABC protein exporter-mediated secretion system in Pseudomonas fluorescens. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Eom GT, Lee SH, Oh YH, Choi JE, Park SJ, Song JK. Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters. Biotechnol Lett 2014; 36:2037-42. [DOI: 10.1007/s10529-014-1567-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/23/2014] [Indexed: 11/28/2022]
|
10
|
Eom GT, Song JK. Enhanced production of ATP-binding cassette protein exporter-dependent lipase by modifying the growth medium components of Pseudomonas fluorescens. Biotechnol Lett 2014; 36:1687-92. [PMID: 24737082 DOI: 10.1007/s10529-014-1528-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
The industrially-important thermostable lipase, TliA, was extracellularly produced in the recombinant Pseudomonas fluorescens by the homologous expression of TliA and its cognate ABC protein exporter, TliDEF. To increase the secretory production of TliA, we optimized the growth temperature and the culture medium of P. fluorescens. The total amount and the specific productivity of lipase was highest at 25 °C of cell growth temperature, although maximal cell growth was observed at 30 °C. Using the culture medium composed of 20 g dextrin l(-1), 40 g Tween 80 l(-1) and 30 g peptone l(-1), TliA was produced at a level of 2,200 U ml(-1) in a flask culture. The TliA production increased about 3.8-fold (8,450 U ml(-1)) in batch fermentation using a 2.5 l fermentor, which was about 7.7-fold higher than that of previously reported TliA production.
Collapse
Affiliation(s)
- Gyeong Tae Eom
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 305-600, Republic of Korea
| | | |
Collapse
|
11
|
Towards the development of systems for high-yield production of microbial lipases. Biotechnol Lett 2013; 35:1551-60. [PMID: 23743957 DOI: 10.1007/s10529-013-1256-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.
Collapse
|
12
|
Lipase and protease double-deletion mutant of Pseudomonas fluorescens suitable for extracellular protein production. Appl Environ Microbiol 2012; 78:8454-62. [PMID: 23042178 DOI: 10.1128/aem.02476-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas fluorescens, a widespread Gram-negative bacterium, is an ideal protein manufacturing factory (PMF) because of its safety, robust growth, and high protein production. P. fluorescens possesses a type I secretion system (T1SS), which mediates secretion of a thermostable lipase (TliA) and a protease (PrtA) through its ATP-binding cassette (ABC) transporter. Recombinant proteins in P. fluorescens are attached to the C-terminal signal region of TliA for transport as fusion proteins to the extracellular medium. However, intrinsic TliA from the P. fluorescens genome interferes with detection of the recombinant protein and the secreted recombinant protein is hydrolyzed, due to intrinsic PrtA, resulting in decreased efficiency of the PMF. In this research, the lipase and protease genes of P. fluorescens SIK W1 were deleted using the targeted gene knockout method. Deletion mutant P. fluorescens ΔtliA ΔprtA secreted fusion proteins without TliA or protein degradation. Using wild-type P. fluorescens as an expression host, degradation of the recombinant protein varied depending on the type of culture media and aeration; however, degradation did not occur with the P. fluorescens ΔtliA ΔprtA double mutant irrespective of growth conditions. By homologous expression of tliA and the ABC transporter in a plasmid, TliA secreted from P. fluorescens ΔprtA and P. fluorescens ΔtliA ΔprtA cells was found to be intact, whereas that secreted from the wild-type P. fluorescens and P. fluorescens ΔtliA cells was found to be hydrolyzed. Our results demonstrate that the P. fluorescens ΔtliA ΔprtA deletion mutant is a promising T1SS-mediated PMF that enhances production and detection of recombinant proteins in extracellular media.
Collapse
|
13
|
Park Y, Moon Y, Ryoo J, Kim N, Cho H, Ahn JH. Identification of the minimal region in lipase ABC transporter recognition domain of Pseudomonas fluorescens for secretion and fluorescence of green fluorescent protein. Microb Cell Fact 2012; 11:60. [PMID: 22578275 PMCID: PMC3430570 DOI: 10.1186/1475-2859-11-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022] Open
Abstract
Background TliA is a thermostable lipase secreted by the type 1 secretion system (T1SS) of Pseudomonas fluorescens. The secretion is promoted by its secretion/chaperone domain located near the C-terminus, which is composed mainly of four Repeat-in-Toxin (RTX) repeats. In order to identify the minimal region of TliA responsible for its secretion, five different copies of the secretion/chaperone domain, each involving truncated N-terminal residues and a common C-terminus, were acquired and named as lipase ABC transporter recognition domains (LARDs). Each LARD was fused to epidermal growth factor (EGF) or green fluorescent protein (GFP), and the secretion of EGF-LARD or GFP-LARD fusion proteins was assessed in Escherichia coli with ABC transporter. Results Among the fusion proteins, GFP or EGF with 105-residue LARD3 was most efficiently secreted. In addition, GFP-LARD3 emitted wild type GFP fluorescence. Structurally, LARD3 had the 4 RTX repeats exposed at the N-terminus, while other LARDs had additional residues prior to them or missed some of the RTX repeats. LARD3 was both necessary and sufficient for efficient secretion and maintenance of GFP fluorescence in E. coli, which was also confirmed in P. fluorescens and P. fluorescens ▵tliA, a knock-out mutant of tliA. Conclusion LARD3 was a potent secretion signal in T1SS for its fusion flanking RTX motif, which enhanced secretion and preserved the fluorescence of GFP. LARD3-mediated secretion in E. coli or P. fluorescens will enable the development of enhanced protein manufacturing factory and recombinant microbe secreting protein of interest in situ.
Collapse
Affiliation(s)
- Yeonwoo Park
- Korea Science Academy of KAIST, 899 Tanggam 3-Dong, Busanjin-Gu, Busan, 614-822, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Technical methods to improve yield, activity and stability in the development of microbial lipases. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
YU HW, HAN J, LI N, QIE XS, JIA YM. Fermentation Performance and Characterization of Cold-Adapted Lipase Produced with Pseudomonas Lip35. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60300-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Wang X, Yu X, Xu Y. Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Chung CW, You J, Kim K, Moon Y, Kim H, Ahn JH. Export of recombinant proteins in Escherichia coli using ABC transporter with an attached lipase ABC transporter recognition domain (LARD). Microb Cell Fact 2009; 8:11. [PMID: 19178697 PMCID: PMC2642768 DOI: 10.1186/1475-2859-8-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/29/2009] [Indexed: 11/21/2022] Open
Abstract
Background ATP binding cassette (ABC) transporter secretes the protein through inner and outer membranes simultaneously in gram negative bacteria. Thermostable lipase (TliA) of Pseudomonas fluorescens SIK W1 is secreted through the ABC transporter. TliA has four glycine-rich repeats (GGXGXD) in its C-terminus, which appear in many ABC transporter-secreted proteins. From a homology model of TliA derived from the structure of P. aeruginosa alkaline protease (AprA), lipase ABC transporter domains (LARDs) were designed for the secretion of fusion proteins. Results The LARDs included four glycine-rich repeats comprising a β-roll structure, and were added to the C-terminus of test proteins. Either Pro-Gly linker or Factor Xa site was added between fusion proteins and LARDs. We attached different length of LARDs such as LARD0, LARD1 or whole TliA (the longest LARD) to three types of proteins; green fluorescent protein (GFP), epidermal growth factor (EGF) and cytoplasmic transduction peptide (CTP). These fusion proteins were expressed in Escherichia coli together with ABC transporter of either P. fluorescens or Erwinia chrysanthemi. Export of fusion proteins with the whole TliA through the ABC transporter was evident on the basis of lipase enzymatic activity. Upon supplementation of E. coli with ABC transporter, GFP-LARDs and EGF-LARDs were excreted into the culture supernatant. Conclusion The LARDs or whole TliA were attached to C-termini of model proteins and enabled the export of the model proteins such as GFP and EGF in E. coli supplemented with ABC transporter. These results open the possibility for the extracellular production of recombinant proteins in Pseudomonas using LARDs or TliA as a C-terminal signal sequence.
Collapse
Affiliation(s)
- Chan Woo Chung
- Korea Science Academy, #899, Tanggam 3-Dong, Busanjin-Gu, Busan, 614-822, Korea.
| | | | | | | | | | | |
Collapse
|
18
|
Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl Biochem Biotechnol 2008; 159:355-65. [PMID: 19005622 DOI: 10.1007/s12010-008-8419-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Pseudomonas lipases are important biocatalysts widely used in a variety of industrial fields. An extracellular lipase gene lipA with 1,854-bp open reading frame was cloned from Pseudomonas fluorescens 26-2. The multialignment assay of the putative amino acid and the secondary structure prediction revealed this enzyme could be classified into the lipolytic subfamily I.3 and secreted via adenosine-triphosphate-binding cassette pathway. The lipA gene was integrated into Pichia pastoris GS115, and the methanol-inducible recombinants with Mut(S) and Mut(+) phenotypes were acquired. The characteristics and the transesterification capacity shown by this enzyme suggested it is a useful biocatalyst for biodiesel preparation.
Collapse
|
19
|
Elend C, Schmeisser C, Hoebenreich H, Steele HL, Streit WR. Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J Biotechnol 2007; 130:370-7. [PMID: 17601620 DOI: 10.1016/j.jbiotec.2007.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/23/2007] [Accepted: 05/08/2007] [Indexed: 11/30/2022]
Abstract
We report on the isolation and biochemical characterization of a novel, cold-active and metagenome-derived lipase with a high stereo-selectivity for pharmaceutically important substrates. The respective gene was isolated from a cosmid library derived from oil contaminated soil and designated lipCE. The deduced aa sequence indicates that the protein belongs to the lipase family l.3, with high similarity to Pseudomonas fluorescens lipases containing a C-terminal secretion signal for ABC dependent transport together with possible motifs for Ca(2+)-binding sites. The overexpressed protein revealed a molecular weight of 53.2kDa and was purified by refolding from inclusion bodies after expression in Escherichia coli. The optimum temperature of LipCE was determined to be 30 degrees C. However, the enzyme still displayed 28% residual activity at 0 degrees C and 16% at -5 degrees C. Calcium ions strongly increased activity and thermal stability of the protein. Further detailed biochemical characterization of the recombinant enzyme showed an optimum pH of 7 and that it retained activity in the presence of a range of metal ions and solvents. A detailed analysis of the enzyme's substrate spectrum with more than 34 different substrates indicated that the enzyme was able to hydrolyze a wide variety of substrates including the conversion of long chain fatty acid substrates with maximum activity for pNP-caprate (C(10)). Furthermore LipCE was able to hydrolyze stereo-selectively ibuprofen-pNP ester with a high preference for the (R) enantiomer of >91% ee and it demonstrated selectivity for esters of primary alcohols, whereas esters of secondary or tertiary alcohols were nearly not converted.
Collapse
Affiliation(s)
- C Elend
- Biozentrum Klein Flottbeck, Abteilung Mikrobiologie, University Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Song JK, Oh JY, Eom GT, Song BK. High-level secretion of Pseudomonas fluorescens type I secretion system-dependent lipase in Serratia marcescens. J Biotechnol 2007; 130:311-5. [PMID: 17555839 DOI: 10.1016/j.jbiotec.2007.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/20/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
The type I secretion system-dependent lipase, TliA, of Pseudomonas fluorescens was successfully produced in quantity in Serratia marcescens by coexpressing its cognate ABC transporter, TliDEF. Compared with P. fluorescens and Escherichia coli, S. marcescens showed an outstanding capacity for the secretory production of TliA, which was done with the expression vectors available for use in E. coli, and no growth phase-dependency, which was unlike the typical feature of TOSS-mediated protein secretion. Among the S. marcescens tested, the highest amount of TliA (approximately 2600 units ml(-1)) was achieved by S. marcescens KCTC 2798 containing the expression plasmid pTliDEFA-223. Our results also suggest that strains of Serratia will provide a valuable opportunity for producing other extracellular TOSS-dependent proteins effectively as well as the TliDEF-dependent TliA in this study.
Collapse
Affiliation(s)
- Jae Kwang Song
- Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea.
| | | | | | | |
Collapse
|
21
|
Eom GT, Song JK, Ahn JH, Seo YS, Rhee JS. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system. Appl Environ Microbiol 2005; 71:3468-74. [PMID: 16000750 PMCID: PMC1169004 DOI: 10.1128/aem.71.7.3468-3474.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.
Collapse
Affiliation(s)
- Gyeong Tae Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
22
|
Jung HC, Ko S, Ju SJ, Kim EJ, Kim MK, Pan JG. Bacterial cell surface display of lipase and its randomly mutated library facilitates high-throughput screening of mutants showing higher specific activities. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.molcatb.2003.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ma Q, Zhai Y, Schneider JC, Ramseier TM, Saier MH. Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:223-33. [PMID: 12659964 DOI: 10.1016/s0005-2736(03)00059-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gram-negative bacteria have evolved numerous systems for the export of proteins across their dual-membrane envelopes. Three of these systems (types I, III and IV) secrete proteins across both membranes in a single energy-coupled step. Four systems (Sec, Tat, MscL and Holins) secrete only across the inner membrane, and four systems [the main terminal branch (MTB), fimbrial usher porin (FUP), autotransporter (AT) and two-partner secretion families (TPS)] secrete only across the outer membrane. We have examined the genome sequences of Pseudomonas aeruginosa PAO1 and Pseudomonas fluorescens Pf0-1 for these systems. All systems except type IV were found in P. aeruginosa, and all except types III and IV were found in P. fluorescens. The numbers of each such system were variable depending on the system and species examined. Biochemical and physiological functions were assigned to these systems when possible, and the structural constituents were analyzed. Available information regarding the mechanisms of transport and energy coupling as well as physiological functions is summarized. This report serves to identify and characterize protein secretion systems in two divergent pseudomonads, one an opportunistic human pathogen, the other a plant symbiont.
Collapse
Affiliation(s)
- Qinhong Ma
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Lipases constitute the most important group of biocatalysts for biotechnological applications. The high-level production of microbial lipases requires not only the efficient overexpression of the corresponding genes but also a detailed understanding of the molecular mechanisms governing their folding and secretion. The optimisation of industrially relevant lipase properties can be achieved by directed evolution. Furthermore, novel biotechnological applications have been successfully established using lipases for the synthesis of biopolymers and biodiesel, the production of enantiopure pharmaceuticals, agrochemicals, and flavour compounds.
Collapse
Affiliation(s)
- Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | | |
Collapse
|