1
|
Stahl DA. The path leading to the discovery of the ammoniaoxidizing archaea. Environ Microbiol 2020; 22:4507-4519. [PMID: 32955155 DOI: 10.1111/1462-2920.15239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022]
Affiliation(s)
- David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Haas S, Desai DK, LaRoche J, Pawlowicz R, Wallace DWR. Geomicrobiology of the carbon, nitrogen and sulphur cycles in Powell Lake: a permanently stratified water column containing ancient seawater. Environ Microbiol 2019; 21:3927-3952. [PMID: 31314947 DOI: 10.1111/1462-2920.14743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/30/2022]
Abstract
We present the first geomicrobiological characterization of the meromictic water column of Powell Lake (British Columbia, Canada), a former fjord, which has been stably stratified since the last glacial period. Its deepest layers (300-350 m) retain isolated, relict seawater from that period. Fine-scale vertical profiling of the water chemistry and microbial communities allowed subdivision of the water column into distinct geomicrobiological zones. These zones were further characterized by phylogenetic and functional marker genes from amplicon and shotgun metagenome sequencing. Binning of metagenomic reads allowed the linkage of function to specific taxonomic groups. Statistical analyses (analysis of similarities, Bray-Curtis similarity) confirmed that the microbial community structure followed closely the geochemical zonation. Yet, our characterization of the genetic potential relevant to carbon, nitrogen and sulphur cycling of each zone revealed unexpected features, including potential for facultative anaerobic methylotrophy, nitrogen fixation despite high ammonium concentrations and potential micro-aerobic nitrifiers within the chemocline. At the oxic-suboxic interface, facultative anaerobic potential was found in the widespread freshwater lineage acI (Actinobacteria), suggesting intriguing ecophysiological similarities to the marine SAR11. Evolutionary divergent lineages among diverse phyla were identified in the ancient seawater zone and may indicate novel adaptations to this unusual environment.
Collapse
Affiliation(s)
- Sebastian Haas
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Dhwani K Desai
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| | - Rich Pawlowicz
- Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada
| | - Douglas W R Wallace
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Lee PO, McLellan SL, Graham LE, Young EB. Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities. FEMS Microbiol Ecol 2014; 91:1-12. [DOI: 10.1093/femsec/fiu001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
4
|
Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China. World J Microbiol Biotechnol 2013; 30:1291-300. [PMID: 24214680 DOI: 10.1007/s11274-013-1553-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.
Collapse
|
5
|
Affiliation(s)
- David A. Stahl
- Department of Civil and Environmental Engineering and Department of Microbiology, University of Washington, Seattle, Washington 98195-2700;
| | - José R. de la Torre
- Department of Biology, San Francisco State University, San Francisco, California 94132-1722;
| |
Collapse
|
6
|
Stock A, Breiner HW, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 2011; 16:21-34. [DOI: 10.1007/s00792-011-0401-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/27/2011] [Indexed: 02/03/2023]
|
7
|
Coolen MJL, van de Giessen J, Zhu EY, Wuchter C. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 2011; 13:2299-314. [DOI: 10.1111/j.1462-2920.2011.02489.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Abstract
The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (~51,000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed full-length Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, ~69-84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96-97% identity). Importance of the lake nitrogen cycling was also suggested by >5% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages.
Collapse
|
9
|
Coolen MJL, Shtereva G. Vertical distribution of metabolically active eukaryotes in the water column and sediments of the Black Sea. FEMS Microbiol Ecol 2009; 70:525-39. [PMID: 19732144 DOI: 10.1111/j.1574-6941.2009.00756.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Recent DNA-based phylogenetic studies have reported high eukaryotal diversities in a wide range of settings including samples obtained from anoxic environments. However, parallel RNA-based surveys are required in order to verify whether the species detected are in fact metabolically active in such extreme environments. The Black Sea is the World's largest anoxic basin but remains undersampled with respect to molecular eukaryotic diversity studies. Here, we report the distribution of active eukaryotes (18S rRNA-based survey) along a vertical nutrient and redox gradient in the water column and surface sediments of the Black Sea. A wide variety of eukaryotes were active in suboxic deep waters. Notably, certain species were active but escaped detection during a parallel 18S rDNA survey. The 18S rDNA survey from surface sediments yielded taxa of pelagic origin but none of these were identified from the water column at the time of sampling. Our data also indicate that gene transcripts do not always provide unequivocal proof that active microorganisms are indigenous to a specific position in an environmental gradient, because certain zoo- and phytoplankton species were still viable with detectable 18S rRNA in up to 300-year-old sulfidic sediments that underlie approximately 830 m of sulfidic waters.
Collapse
Affiliation(s)
- Marco J L Coolen
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
10
|
Mueller-Spitz SR, Goetz GW, McLellan SL. Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 2009; 67:511-22. [PMID: 19220863 DOI: 10.1111/j.1574-6941.2008.00639.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The spatial and temporal variability of bacterial communities were determined for the nearshore waters of Lake Michigan, an oligotrophic freshwater inland sea. A freshwater estuary and nearshore sites were compared six times during 2006 using denaturing gradient gel electrophoresis (DGGE). Bacterial composition clustered by individual site and date rather than by depth. Seven 16S rRNA gene clone libraries were constructed, yielding 2717 bacterial sequences. Spatial variability was detected among the DGGE banding patterns and supported by clone library composition. The clone libraries from deep waters and the estuary environment revealed highest overall bacterial diversity. Betaproteobacteria sequence types were the most dominant taxa, comprising 40.2-67.7% of the clone libraries. BAL 47 was the most abundant freshwater cluster of Betaproteobacteria, indicating widespread distribution of this cluster in the nearshore waters of Lake Michigan. Incertae sedis 5 and Oxalobacteraceae sequence types were prevalent in each clone library, displaying more diversity than previously described in other freshwater environments. Among the Oxalobacteraceae sequences, a globally distributed freshwater cluster was determined. The nearshore waters of Lake Michigan are a dynamic environment that experience forces similar to the coastal ocean environment and share common bacterial diversity with other freshwater habitats.
Collapse
|
11
|
Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T. Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin. Environ Microbiol 2008; 11:360-81. [PMID: 18826436 DOI: 10.1111/j.1462-2920.2008.01777.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea, Acantharea and Euglenozoa, all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities.
Collapse
Affiliation(s)
- Eva Alexander
- University of Kaiserslautern, School of Biology, Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Davis RE, Moyer CL. Extreme spatial and temporal variability of hydrothermal microbial mat communities along the Mariana Island Arc and southern Mariana back-arc system. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005413] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard E. Davis
- Biology Department; Western Washington University; Bellingham Washington USA
| | - Craig L. Moyer
- Biology Department; Western Washington University; Bellingham Washington USA
| |
Collapse
|
13
|
Li Y, Li F, Zhang X, Qin S, Zeng Z, Dang H, Qin Y. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (approximately 13 degrees N). Extremophiles 2008; 12:573-85. [PMID: 18418544 DOI: 10.1007/s00792-008-0159-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/10/2008] [Indexed: 11/25/2022]
Abstract
The community structure and vertical distribution of prokaryotes in a deep-sea (ca. 3,191 m) cold sediment sample (ca. 43 cm long) collected at the East Pacific Rise (EPR) approximately 13 degrees N were studied with 16SrDNA-based molecular analyses. Total community DNA was extracted from each of four discrete layers EPRDS-1, -2, -3 and -4 (from top to bottom) and 16S rDNA were amplified by PCR. Cluster analysis of DGGE profiles revealed that the bacterial communities shifted sharply between EPRDS-1 and EPRDS-2 in similarity coefficient at merely 49%. Twenty-three sequences retrieved from DGGE bands fell into 11 groups based on BLAST and bootstrap analysis. The dominant groups in the bacterial communities were Chloroflexi, Gamma proteobacteria, Actinobacterium and unidentified bacteria, with their corresponding percentages varying along discrete layers. Pairwise Fst (F-statistics) values between the archaeal clone libraries indicated that the archaeal communities changed distinctly between EPRDS-2 and EPRDS-3. Sequences from the archaeal libraries were divided to eight groups. Crenarchaea Marine Group I (MGI) was prevalent in EPRDS-1 at 83%, while Uncultured Crenarchaea group II B (UCII B) abounded in EPRDS-4 at 61%. Our results revealed that the vertically stratified distribution of prokaryotic communities might be in response to the geochemical settings and suggested that the sampling area was influenced by hydrothermalism. The copresence of members related to hydrothermalism and cold deep-sea environments in the microbial community indicated that the area might be a transitional region from hydrothermal vents to cold deep-sea sediments.
Collapse
Affiliation(s)
- Youxun Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Weiss A, Jérôme V, Freitag R. Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853:190-7. [PMID: 17442638 DOI: 10.1016/j.jchromb.2007.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/05/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
The goal of the project was the extraction of PCR-compatible genomic DNA representative of the entire microbial community from municipal biogas plant samples (mash, bioreactor content, process water, liquid fertilizer). For the initial isolation of representative DNA from the respective lysates, methods were used that employed adsorption, extraction, or precipitation to specifically enrich the DNA. Since no dedicated method for biogas plant samples was available, preference was given to kits/methods suited to samples that resembled either the bioreactor feed, e.g. foodstuffs, or those intended for environmental samples including wastewater. None of the methods succeeded in preparing DNA that was directly PCR-compatible. Instead the DNA was found to still contain considerable amounts of difficult-to-remove enzyme inhibitors (presumably humic acids) that hindered the PCR reaction. Based on the isolation method that gave the highest yield/purity for all sample types, subsequent purification was attempted by agarose gel electrophoresis followed by electroelution, spermine precipitation, or dialysis through nitrocellulose membrane. A combination of phenol/chloroform extraction followed by purification via dialysis constituted the most efficient sample treatment. When such DNA preparations were diluted 1:100 they did no longer inhibit PCR reactions, while they still contained sufficient genomic DNA to allow specific amplification of specific target sequences.
Collapse
Affiliation(s)
- Agnes Weiss
- Process Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
15
|
Stoeck T, Zuendorf A, Breiner HW, Behnke A. A molecular approach to identify active microbes in environmental eukaryote clone libraries. MICROBIAL ECOLOGY 2007; 53:328-39. [PMID: 17264997 DOI: 10.1007/s00248-006-9166-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 07/21/2006] [Accepted: 09/07/2006] [Indexed: 05/13/2023]
Abstract
A rapid method for the simultaneous extraction of RNA and DNA from eukaryote plankton samples was developed in order to discriminate between indigenous active cells and signals from inactive or even dead organisms. The method was tested using samples from below the chemocline of an anoxic Danish fjord. The simple protocol yielded RNA and DNA of a purity suitable for amplification by reverse transcription-polymerase chain reaction (RT-PCR) and PCR, respectively. We constructed an rRNA-derived and an rDNA-derived clone library to assess the composition of the microeukaryote assemblage under study and to identify physiologically active constituents of the community. We retrieved nearly 600 protistan target clones, which grouped into 84 different phylotypes (98% sequence similarity). Of these phylotypes, 27% occurred in both libraries, 25% exclusively in the rRNA library, and 48% exclusively in the rDNA library. Both libraries revealed good correspondence of the general community composition in terms of higher taxonomic ranks. They were dominated by anaerobic ciliates and heterotrophic stramenopile flagellates thriving below the fjord's chemocline. The high abundance of these bacterivore organisms points out their role as a major trophic link in anoxic marine systems. A comparison of the two libraries identified phototrophic dinoflagellates, "uncultured marine alveolates group I," and different parasites, which were exclusively detected with the rDNA-derived library, as nonindigenous members of the anoxic microeukaryote community under study.
Collapse
Affiliation(s)
- Thorsten Stoeck
- School of Biology, University of Kaiserslautern, Erwin-Schroedinger-Str. 14, D-67663, Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
16
|
Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T. Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 2006; 72:3626-36. [PMID: 16672511 PMCID: PMC1472314 DOI: 10.1128/aem.72.5.3626-3636.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To resolve the fine-scale architecture of anoxic protistan communities, we conducted a cultivation-independent 18S rRNA survey in the superanoxic Framvaren Fjord in Norway. We generated three clone libraries along the steep O(2)/H(2)S gradient, using the multiple-primer approach. Of 1,100 clones analyzed, 753 proved to be high-quality protistan target sequences. These sequences were grouped into 92 phylotypes, which displayed high protistan diversity in the fjord (17 major eukaryotic phyla). Only a few were closely related to known taxa. Several sequences were dissimilar to all previously described sequences and occupied a basal position in the inferred phylogenies, suggesting that the sequences recovered were derived from novel, deeply divergent eukaryotes. We detected sequence clades with evolutionary importance (for example, clades in the euglenozoa) and clades that seem to be specifically adapted to anoxic environments, challenging the hypothesis that the global dispersal of protists is uniform. Moreover, with the detection of clones affiliated with jakobid flagellates, we present evidence that primitive descendants of early eukaryotes are present in this anoxic environment. To estimate sample coverage and phylotype richness, we used parametric and nonparametric statistical methods. The results show that although our data set is one of the largest published inventories, our sample missed a substantial proportion of the protistan diversity. Nevertheless, statistical and phylogenetic analyses of the three libraries revealed the fine-scale architecture of anoxic protistan communities, which may exhibit adaptation to different environmental conditions along the O(2)/H(2)S gradient.
Collapse
Affiliation(s)
- Anke Behnke
- Department of Biology, Technische Universität Kaiserslautern, Erwin-Schrödinger Strasse 14, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Inagaki F, Nealson KH. Molecular signals from ancient materials: challenges to deep-biosphere and paleo-environmental research--a response to the comments of Sinninghe Damsté and Coolen. ASTROBIOLOGY 2006; 6:303-7. [PMID: 16689648 DOI: 10.1089/ast.2006.6.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Fumio Inagaki
- Subground Animalcule Retrieval (SUGAR) Program, Extremobiosphere Research, Center, Japan
| | | |
Collapse
|
18
|
Abstract
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.Key words: Archaea, methanogen, extreme halophile, hyperthermophile, thermoacidophile, uncultured archaea, habitats.
Collapse
Affiliation(s)
- Bonnie Chaban
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
19
|
Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 2005; 71:2162-9. [PMID: 15812052 PMCID: PMC1082574 DOI: 10.1128/aem.71.4.2162-2169.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative analysis of bacterial diversity in freshwater sediment collected from a shallow eutrophic lake was performed by using 16S rRNA gene clone library and improved cultivation-based techniques. Our study demonstrated that the use of gellan gum as a gelling reagent instead of agar was more effective at increasing culturability, cultivating a diverse array of novel microbes, and reducing the gaps of the results between molecular and cultivation-based analyses.
Collapse
Affiliation(s)
- Hideyuki Tamaki
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Vetriani C, Tran HV, Kerkhof LJ. Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 2004; 69:6481-8. [PMID: 14602603 PMCID: PMC262261 DOI: 10.1128/aem.69.11.6481-6488.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomass samples from the Black Sea collected in 1988 were analyzed for SSU genes from Bacteria and Archaea after 10 years of storage at -80 degrees C. Both clonal libraries and direct fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analyses were used to assess the microbial community. Uniform and discrete depth distributions of different SSU phylotypes were observed. However, most recombinant clones were not restricted to a specific depth in the water column, and many of the major T-RFLP peaks remain uncharacterized. Of the clones obtained, an epsilon-Proteobacteria and a Pseudoalteromonas-like clone accounted for major peaks in the fingerprint, while deeply branching lineages of alpha- and gamma-Proteobacteria were associated with smaller peaks. Additionally, members were found among both the delta-Proteobacteria related to sulfate reducers and the Archaea related to phylotypes from the ANME groups that anaerobically oxidize methane.
Collapse
Affiliation(s)
- Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | | | |
Collapse
|
21
|
Keough BP, Schmidt TM, Hicks RE. Archaeal nucleic acids in picoplankton from great lakes on three continents. MICROBIAL ECOLOGY 2003; 46:238-48. [PMID: 14708748 DOI: 10.1007/s00248-003-1003-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phylogenetic analysis of PCR-amplified 16S rRNA genes revealed the presence of archaea in picoplankton collected from the Laurentian Great Lakes in North America, Africa's Lake Victoria, and Lakes Ladoga and Onega in northeastern Eurasia. From 1 to 10% of the rRNA extracted from size-fractionated picoplankton (>0.2 microm but <1.2 microm) collected in the epilimnion and hypolimnion of these lakes was specific to the Archaea, whereas the majority of rRNA was derived from Bacteria. Analysis of the 16S rRNA genes cloned from these samples indicated they were closely related to crenarchaeal sequences that have been widely characterized from marine environments. The presence of nearly identical 16S rDNA clones in several of these geographically disparate lakes suggests a cosmopolitan distribution of specific subgroups of these Archaea in freshwater environments. Despite their abundance in the water column of freshwater lakes, we have no representatives of these crenarchaea in pure culture, and so their physiological characteristics and ecological role remain unknown.
Collapse
Affiliation(s)
- B P Keough
- University of Minnesota--Duluth, Duluth, MN, USA.
| | | | | |
Collapse
|