1
|
Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, Marcus S, Knox JP, Firdaus-Raih M, Henrissat B, Davies GJ, Walton PH, Parkin A, Hemsworth GR. Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae. IUCRJ 2024; 11:260-274. [PMID: 38446458 PMCID: PMC10916295 DOI: 10.1107/s2052252524001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
Collapse
Affiliation(s)
- Badri S. Rajagopal
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nick Yates
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jake Smith
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Catherine Tétard-Jones
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - William G. T. Willats
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Susan Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gideon J. Davies
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. Appl Environ Microbiol 2023; 89:e0074423. [PMID: 38009998 PMCID: PMC10734418 DOI: 10.1128/aem.00744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study highlights diversity in iron acquisition and regulation in bacteria. The mechanisms of iron acquisition and its regulation in Teredinibacter turnerae, as well as its connection to cellulose utilization, a hallmark phenotype of T. turnerae, expand the paradigm of bacterial iron acquisition. Two of the four TonB genes identified in T. turnerae exhibit functional redundancy and play a crucial role in siderophore-mediated iron transport. Unlike typical TonB genes in bacteria, none of the TonB genes in T. turnerae are clearly iron regulated. This unusual regulation could be explained by another important finding in this study, namely, that the two TonB genes involved in iron transport are also essential for cellulose utilization as a carbon source, leading to the expression of TonB genes even under iron-rich conditions.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529781. [PMID: 36865190 PMCID: PMC9980095 DOI: 10.1101/2023.02.23.529781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont that resides in the gills of shipworms, wood-eating bivalve mollusks. This bacterium produces a catechol siderophore, turnerbactin, required for the survival of this bacterium under iron limiting conditions. The turnerbactin biosynthetic genes are contained in one of the secondary metabolite clusters conserved among T. turnerae strains. However, Fe(III)-turnerbactin uptake mechanisms are largely unknown. Here, we show that the first gene of the cluster, fttA a homologue of Fe(III)-siderophore TonB-dependent outer membrane receptor (TBDR) genes is indispensable for iron uptake via the endogenous siderophore, turnerbactin, as well as by an exogenous siderophore, amphi-enterobactin, ubiquitously produced by marine vibrios. Furthermore, three TonB clusters containing four tonB genes were identified, and two of these genes, tonB1b and tonB2, functioned not only for iron transport but also for carbohydrate utilization when cellulose was a sole carbon source. Gene expression analysis revealed that none of the tonB genes and other genes in those clusters were clearly regulated by iron concentration while turnerbactin biosynthesis and uptake genes were up-regulated under iron limiting conditions, highlighting the importance of tonB genes even in iron rich conditions, possibly for utilization of carbohydrates derived from cellulose.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, the University of Utah
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University
| | | |
Collapse
|
4
|
Martinez-D’Alto A, Yan X, Detomasi TC, Sayler RI, Thomas WC, Talbot NJ, Marletta MA. Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Proc Natl Acad Sci U S A 2023; 120:e2215426120. [PMID: 36791100 PMCID: PMC9974505 DOI: 10.1073/pnas.2215426120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Blast disease in cereal plants is caused by the fungus Magnaporthe oryzae and accounts for a significant loss in food crops. At the outset of infection, expression of a putative polysaccharide monooxygenase (MoPMO9A) is increased. MoPMO9A contains a catalytic domain predicted to act on cellulose and a carbohydrate-binding domain that binds chitin. A sequence similarity network of the MoPMO9A family AA9 showed that 220 of the 223 sequences in the MoPMO9A-containing cluster of sequences have a conserved unannotated region with no assigned function. Expression and purification of the full length and two MoPMO9A truncations, one containing the catalytic domain and the domain of unknown function (DUF) and one with only the catalytic domain, were carried out. In contrast to other AA9 polysaccharide monooxygenases (PMOs), MoPMO9A is not active on cellulose but showed activity on cereal-derived mixed (1→3, 1→4)-β-D-glucans (MBG). Moreover, the DUF is required for activity. MoPMO9A exhibits activity consistent with C4 oxidation of the polysaccharide and can utilize either oxygen or hydrogen peroxide as a cosubstrate. It contains a predicted 3-dimensional fold characteristic of other PMOs. The DUF is predicted to form a coiled-coil with six absolutely conserved cysteines acting as a zipper between the two α-helices. MoPMO9A substrate specificity and domain architecture are different from previously characterized AA9 PMOs. The results, including a gene ontology analysis, support a role for MoPMO9A in MBG degradation during plant infection. Consistent with this analysis, deletion of MoPMO9A results in reduced pathogenicity.
Collapse
Affiliation(s)
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, UK
| | - Tyler C. Detomasi
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Richard I. Sayler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - William C. Thomas
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NorwichNR4 7UH, UK
| | - Michael A. Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Altamia MA, Distel DL. Transport of symbiont-encoded cellulases from the gill to the gut of shipworms via the enigmatic ducts of Deshayes: a 174-year mystery solved. Proc Biol Sci 2022; 289:20221478. [PMID: 36350208 PMCID: PMC9653257 DOI: 10.1098/rspb.2022.1478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Shipworms (Bivalvia, Teredinidae) are the principal consumers of wood in marine environments. Like most wood-eating organisms, they digest wood with the aid of cellulolytic enzymes supplied by symbiotic bacteria. However, in shipworms the symbiotic bacteria are not found in the digestive system. Instead, they are located intracellularly in the gland of Deshayes, a specialized tissue found within the gills. It has been independently demonstrated that symbiont-encoded cellulolytic enzymes are present in the digestive systems and gills of two shipworm species, <i>Bankia setacea</i> and <i>Lyrodus pedicellatus</i>, confirming that these enzymes are transported from the gills to the lumen of the gut. However, the mechanism of enzyme transport from gill to gut remains incompletely understood. Recently, a mechanism was proposed by which enzymes are transported within bacterial cells that are expelled from the gill and transported to the mouth by ciliary action of the branchial or food grooves. Here we use <i>in situ</i> immunohistochemical methods to provide evidence for a different mechanism in the shipworm <i>B. setacea</i>, in which cellulolytic enzymes are transported via the ducts of Deshayes, enigmatic structures first described 174 years ago, but whose function have remained unexplained.
Collapse
Affiliation(s)
- Marvin A. Altamia
- Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA, USA
| | - Daniel L. Distel
- Ocean Genome Legacy Center, Department of Marine and Environmental Science, Northeastern University, Nahant, MA, USA
| |
Collapse
|
6
|
Robes JMD, Altamia MA, Murdock EG, Concepcion GP, Haygood MG, Puri AW. A Conserved Biosynthetic Gene Cluster Is Regulated by Quorum Sensing in a Shipworm Symbiont. Appl Environ Microbiol 2022; 88:e0027022. [PMID: 35611654 PMCID: PMC9195952 DOI: 10.1128/aem.00270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial symbionts often provide critical functions for their hosts. For example, wood-boring bivalves called shipworms rely on cellulolytic endosymbionts for wood digestion. However, how the relationship between shipworms and their bacterial symbionts is formed and maintained remains unknown. Quorum sensing (QS) often plays an important role in regulating symbiotic relationships. We identified and characterized a QS system found in Teredinibacter sp. strain 2052S, a gill isolate of the wood-boring shipworm Bactronophorus cf. thoracites. We determined that 2052S produces the signal N-decanoyl-l-homoserine lactone (C10-HSL) and that this signal controls the activation of a biosynthetic gene cluster colocated in the symbiont genome that is conserved among all symbiotic Teredinibacter isolates. We subsequently identified extracellular metabolites associated with the QS regulon, including ones linked to the conserved biosynthetic gene cluster, using mass spectrometry-based molecular networking. Our results demonstrate that QS plays an important role in regulating secondary metabolism in this shipworm symbiont. This information provides a step toward deciphering the molecular details of the relationship between these symbionts and their hosts. Furthermore, because shipworm symbionts harbor vast yet underexplored biosynthetic potential, understanding how their secondary metabolism is regulated may aid future drug discovery efforts using these organisms. IMPORTANCE Bacteria play important roles as symbionts in animals ranging from invertebrates to humans. Despite this recognized importance, much is still unknown about the molecular details of how these relationships are formed and maintained. One of the proposed roles of shipworm symbionts is the production of bioactive secondary metabolites due to the immense biosynthetic potential found in shipworm symbiont genomes. Here, we report that a shipworm symbiont uses quorum sensing to coordinate activation of its extracellular secondary metabolism, including the transcriptional activation of a biosynthetic gene cluster that is conserved among many shipworm symbionts. This work is a first step toward linking quorum sensing, secondary metabolism, and symbiosis in wood-boring shipworms.
Collapse
Affiliation(s)
- Jose Miguel D. Robes
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
- The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Marvin A. Altamia
- The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Ethan G. Murdock
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Gisela P. Concepcion
- The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Margo G. Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Miller BW, Lim AL, Lin Z, Bailey J, Aoyagi KL, Fisher MA, Barrows LR, Manoil C, Schmidt EW, Haygood MG. Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter. Cell Chem Biol 2021; 28:1628-1637.e4. [PMID: 34146491 PMCID: PMC8605984 DOI: 10.1016/j.chembiol.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont in the gills of wood-eating shipworms, where it is proposed to use antibiotics to defend itself and its animal host. Several biosynthetic gene clusters are conserved in T. turnerae and their host shipworms around the world, implying that they encode defensive compounds. Here, we describe turnercyclamycins, lipopeptide antibiotics encoded in the genomes of all sequenced T. turnerae strains. Turnercyclamycins are bactericidal against challenging Gram-negative pathogens, including colistin-resistant Acinetobacter baumannii. Phenotypic screening identified the outer membrane as the likely target. Turnercyclamycins and colistin operate by similar cellular, although not necessarily molecular, mechanisms, but turnercyclamycins kill colistin-resistant A. baumannii, potentially filling an urgent clinical need. Thus, by exploring environments that select for the properties we require, we harvested the fruits of evolution to discover compounds with potential to target unmet health needs. Investigating the symbionts of shipworms is a powerful example of this principle.
Collapse
Affiliation(s)
- Bailey W Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Albebson L Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA
| | - Jeannie Bailey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari L Aoyagi
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Louis R Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| | - Margo G Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 81112, USA.
| |
Collapse
|
8
|
Pesante G, Sabbadin F, Elias L, Steele-King C, Shipway JR, Dowle AA, Li Y, Busse-Wicher M, Dupree P, Besser K, Cragg SM, Bruce NC, McQueen-Mason SJ. Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. BMC Biol 2021; 19:233. [PMID: 34724941 PMCID: PMC8561940 DOI: 10.1186/s12915-021-01162-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal’s gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. Results Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. Conclusion Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm’s mouth and digestive tract, where they aid in wood digestion. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01162-6.
Collapse
Affiliation(s)
- Giovanna Pesante
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Federico Sabbadin
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Luisa Elias
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Clare Steele-King
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - J Reuben Shipway
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department, of Biology, University of York, York, YO10 5DD, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Marta Busse-Wicher
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Katrin Besser
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon M Cragg
- Institute of Marine Sciences Laboratories, Langstone Harbour, Ferry Road, Eastney, Portsmouth, PO4 9LY, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
9
|
Chalifour B, Li J. A Review of the Molluscan Microbiome: Ecology, Methodology and Future. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| |
Collapse
|
10
|
Maldonado GC, Moura MMS, Skinner LF, AraÚjo FÁV. Evaluation of wood degradation rates by Teredinidae (Mollusca: Bivalvia) in two ecologically distinct areas, and temperature and salinity influences on the cellulolytic activity of associated bacteria. AN ACAD BRAS CIENC 2020; 92:e20180970. [PMID: 33084749 DOI: 10.1590/0001-3765202020180970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Teredinidae (shipworms) is a family of marine wood-boring bivalves that has an important role in the degradation of wood through its symbiotic relationship with cellulolytic bacteria. To evaluate the rate of degradation of wood by teredinids in two sites with different oceanographic conditions in Rio de Janeiro State, Brazil, artificial structures composed of pine wood sheets were immersed in the ocean for three months at Arraial do Cabo in an area under the influence of upwelling, and at Ilha Grande Bay under tropical and oligotrophic influences. After the immersion period, teredinids were removed from the collectors, identified, and counted. Wood consumption by the teredinids was quantified by comparing the dry weights of the collectors before and after immersion. Associated bacteria were isolated and their cellulolytic activities evaluated at different temperatures and salinities. Two Teredinidae species were recorded: Bankia gouldi and Lyrodus floridanus. The highest wood degradation rate and enzymatic activities of the isolated bacterial strains were recorded at Arraial do Cabo, suggesting that upwelling influenced the activities of those species.
Collapse
Affiliation(s)
- Gustavo C Maldonado
- Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Instituto de Biologia, Outeiro de São João Batista, s/n, Centro, 24020-971 Niterói, RJ, Brazil
| | - Mariana M S Moura
- Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Instituto de Biologia, Outeiro de São João Batista, s/n, Centro, 24020-971 Niterói, RJ, Brazil
| | - LuÍs Felipe Skinner
- Universidade do Estado do Rio de Janeiro, Faculdade de Formação de Professores, Departamento de Ciências, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - FÁbio V AraÚjo
- Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Instituto de Biologia, Outeiro de São João Batista, s/n, Centro, 24020-971 Niterói, RJ, Brazil.,Universidade do Estado do Rio de Janeiro, Faculdade de Formação de Professores, Departamento de Ciências, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| |
Collapse
|
11
|
Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes. mSystems 2020; 5:5/3/e00261-20. [PMID: 32606027 PMCID: PMC7329324 DOI: 10.1128/msystems.00261-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis. Shipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria harbor many gene cluster families (GCFs) for biosynthesis of bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts and to sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species and collectively constitute an immense resource for the discovery of new biosynthetic pathways corresponding to bioactive secondary metabolites. IMPORTANCE We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.
Collapse
|
12
|
Fowler CA, Sabbadin F, Ciano L, Hemsworth GR, Elias L, Bruce N, McQueen-Mason S, Davies GJ, Walton PH. Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:232. [PMID: 31583018 PMCID: PMC6767633 DOI: 10.1186/s13068-019-1573-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/21/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND The quest for novel enzymes for cellulosic biomass-degradation has recently been focussed on lytic polysaccharide monooxygenases (LPMOs/PMOs), Cu-containing proteins that catalyse the oxidative degradation of otherwise recalcitrant polysaccharides using O2 or H2O2 as a co-substrate. RESULTS Although classical saprotrophic fungi and bacteria have been a rich source of lytic polysaccharide monooxygenases (LPMOs), we were interested to see if LPMOs from less evident bio-environments could be discovered and assessed for their cellulolytic activity in a biofuel context. In this regard, the marine shipworm Lyrodus pedicellatus represents an interesting source of new enzymes, since it must digest wood particles ingested during its natural tunnel boring behaviour and plays host to a symbiotic bacterium, Teredinibacter turnerae, the genome of which has revealed a multitude of enzymes dedicated to biomass deconstruction. Here, we show that T. turnerae encodes a cellulose-active AA10 LPMO. The 3D structure, at 1.4 Å resolution, along with its EPR spectrum is distinct from other AA10 polysaccharide monooxygenases insofar as it displays a "histidine-brace" catalytic apparatus with changes to the surrounding coordination sphere of the copper. Furthermore, TtAA10A possesses a second, surface accessible, Cu site 14 Å from the classical catalytic centre. Activity measurements show that the LPMO oxidises cellulose and thereby significantly augments the rate of degradation of cellulosic biomass by classical glycoside hydrolases. CONCLUSION Shipworms are wood-boring marine molluscs that can live on a diet of lignocellulose. Bacterial symbionts of shipworms provide many of the enzymes needed for wood digestion. The shipworm symbiont T. turnerae produces one of the few LPMOs yet described from the marine environment, notably adding to the capability of shipworms to digest recalcitrant polysaccharides.
Collapse
Affiliation(s)
| | - Federico Sabbadin
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Luisa Ciano
- Department of Chemistry, University of York, York, YO10 5DD UK
- Present Address: School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL UK
| | - Glyn R. Hemsworth
- Department of Chemistry, University of York, York, YO10 5DD UK
- Present Address: Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Luisa Elias
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Neil Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Simon McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | | | - Paul H. Walton
- Department of Chemistry, University of York, York, YO10 5DD UK
| |
Collapse
|
13
|
Shipway JR, Altamia MA, Haga T, Velásquez M, Albano J, Dechavez R, Concepcion GP, Haygood MG, Distel DL. Observations on the Life History and Geographic Range of the Giant Chemosymbiotic Shipworm Kuphus polythalamius (Bivalvia: Teredinidae). THE BIOLOGICAL BULLETIN 2018; 235:167-177. [PMID: 30624120 DOI: 10.1086/700278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Kuphus polythalamius (Teredinidae) is one of the world's largest, most rarely observed, and least understood bivalves. Kuphus polythalamius is also among the few shallow-water marine species and the only teredinid species determined to harbor sulfur-oxidizing chemoautotrophic (thioautotrophic) symbionts. Until the recent discovery of living specimens in the Philippines, this species was known only from calcareous hard parts, fossils, and the preserved soft tissues of a single large specimen. As a result, the anatomy, biology, life history, and geographic range of K. polythalamius remain obscure. Here we report the collection and description of the smallest living specimens of K. polythalamius yet discovered and confirm the species identity of these individuals by using sequences of three genetic markers. Unlike previously collected specimens, all of which have been reported to occur in marine sediments, these specimens were observed burrowing in wood, the same substrate utilized by all other members of the family. These observations suggest that K. polythalamius initially settles on wood and subsequently transitions into sediment, where this species may grow to enormous sizes. This discovery led us to search for and find previously unidentified and misidentified wood-boring specimens of this species within museum collections, and it allowed us to show that the recent geographic range (since 1933) of this species extends across a 3000-mile span from the Philippines to Papua New Guinea and the Solomon Islands.
Collapse
|
14
|
Brito TL, Campos AB, Bastiaan von Meijenfeldt FA, Daniel JP, Ribeiro GB, Silva GGZ, Wilke DV, de Moraes DT, Dutilh BE, Meirelles PM, Trindade-Silva AE. The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei. PLoS One 2018; 13:e0200437. [PMID: 30427852 PMCID: PMC6235255 DOI: 10.1371/journal.pone.0200437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/08/2018] [Indexed: 12/02/2022] Open
Abstract
Teredinidae are a family of highly adapted wood-feeding and wood-boring bivalves, commonly known as shipworms, whose evolution is linked to the acquisition of cellulolytic gammaproteobacterial symbionts harbored in bacteriocytes within the gills. In the present work we applied metagenomics to characterize microbiomes of the gills and digestive tract of Neoteredo reynei, a mangrove-adapted shipworm species found over a large range of the Brazilian coast. Comparative metagenomics grouped the gill symbiont community of different N. reynei specimens, indicating closely related bacterial types are shared. Similarly, the intestine and digestive gland communities were related, yet were more diverse than and showed no overlap with the gill community. Annotation of assembled metagenomic contigs revealed that the gill symbiotic community of N. reynei encodes a plethora of plant cell wall polysaccharides degrading glycoside hydrolase encoding genes, and Biosynthetic Gene Clusters (BGCs). In contrast, the digestive tract microbiomes seem to play little role in wood digestion and secondary metabolites biosynthesis. Metagenome binning recovered the nearly complete genome sequences of two symbiotic Teredinibacter strains from the gills, a representative of Teredinibacter turnerae “clade I” strain, and a yet to be cultivated Teredinibacter sp. type. These Teredinibacter genomes, as well as un-binned gill-derived gammaproteobacteria contigs, also include an endo-β-1,4-xylanase/acetylxylan esterase multi-catalytic carbohydrate-active enzyme, and a trans-acyltransferase polyketide synthase (trans-AT PKS) gene cluster with the gene cassette for generating β-branching on complex polyketides. Finally, we use multivariate analyses to show that the secondary metabolome from the genomes of Teredinibacter representatives, including genomes binned from N. reynei gills’ metagenomes presented herein, stands out within the Cellvibrionaceae family by size, and enrichments for polyketide, nonribosomal peptide and hybrid BGCs. Results presented here add to the growing characterization of shipworm symbiotic microbiomes and indicate that the N. reynei gill gammaproteobacterial community is a prolific source of biotechnologically relevant enzymes for wood-digestion and bioactive compounds production.
Collapse
Affiliation(s)
- Thais L. Brito
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Amanda B. Campos
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Julio P. Daniel
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabriella B. Ribeiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Genivaldo G. Z. Silva
- Computational Science Research Center, San Diego State University, San Diego, California, United States of America
| | - Diego V. Wilke
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Pedro M. Meirelles
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Federal University of Bahia, Salvador, Brazil
| | - Amaro E. Trindade-Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
15
|
de Moraes Akamine DT, de Almeida Cozendey da Silva D, de Lima Câmara G, Carvalho TV, Brienzo M. Endoglucanase activity in Neoteredo reynei (Bivalvia, Teredinidae) digestive organs and its content. World J Microbiol Biotechnol 2018; 34:84. [DOI: 10.1007/s11274-018-2468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 05/31/2018] [Indexed: 11/25/2022]
|
16
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
17
|
Zhang CM, Li NX, Zhang TT, Qiu ZX, Li Y, Li LW, Liu JZ. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:429-438. [PMID: 29197022 DOI: 10.1007/s10493-017-0194-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 05/08/2023]
Abstract
Coxiella-like endosymbiont (CLS-Hl) is a primary endosymbiont of Haemaphysalis longicornis. CLS-Hl infects tick special tissues and its prevalence is 100% in ovaries and Malpighian tubules. Tetracycline was injected into females, which then fed on rabbits also treated with tetracycline. The densities of CLS-Hl were measured by semi-quantitative PCR. CLS-Hl densities in ovaries and Malpighian tubes of H. longicornis had significant effects on engorged weight, feeding time, number of eggs, oviposition period, and hatching period. These findings suggested that CLS-Hl plays a role in the reproduction and development of H. longicornis.
Collapse
Affiliation(s)
- Chun-Mian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ning-Xin Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tian-Tian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhao-Xi Qiu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuan Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Li-Wu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
18
|
Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiol Mol Biol Rev 2017; 81:81/3/e00015-17. [PMID: 28659491 DOI: 10.1128/mmbr.00015-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.
Collapse
|
19
|
Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol 2016; 2:16193. [PMID: 27775698 DOI: 10.1038/nmicrobiol.2016.193] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
The shallow water bivalve Codakia orbicularis lives in symbiotic association with a sulfur-oxidizing bacterium in its gills. The endosymbiont fixes CO2 and thus generates organic carbon compounds, which support the host's growth. To investigate the uncultured symbiont's metabolism and symbiont-host interactions in detail we conducted a proteogenomic analysis of purified bacteria. Unexpectedly, our results reveal a hitherto completely unrecognized feature of the C. orbicularis symbiont's physiology: the symbiont's genome encodes all proteins necessary for biological nitrogen fixation (diazotrophy). Expression of the respective genes under standard ambient conditions was confirmed by proteomics. Nitrogenase activity in the symbiont was also verified by enzyme activity assays. Phylogenetic analysis of the bacterial nitrogenase reductase NifH revealed the symbiont's close relationship to free-living nitrogen-fixing Proteobacteria from the seagrass sediment. The C. orbicularis symbiont, here tentatively named 'Candidatus Thiodiazotropha endolucinida', may thus not only sustain the bivalve's carbon demands. C. orbicularis may also benefit from a steady supply of fixed nitrogen from its symbiont-a scenario that is unprecedented in comparable chemoautotrophic symbioses.
Collapse
|
20
|
Liu L, Li L, Liu J, Yu Z, Yang X, Liu J. Population dynamics of multiple symbionts in the hard tick, Dermacentor silvarum Olenev (Acari: Ixodidae). Ticks Tick Borne Dis 2015; 7:188-192. [PMID: 26565930 DOI: 10.1016/j.ttbdis.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Previously, we reported that Coxiella-like, Rickettsia-like and Arsenophonus-like symbionts could simultaneously coexist in Dermacentor silvarum. In this study, we examined their burdens and population dynamics in a single host during the host life cycle using quantitative PCR. Our results showed that multiple symbionts exhibited different abundances and varying trends in the tick host. Coxiella-like and Rickettsia-like symbionts were found at high densities in large quantities that fluctuated with time. This may coincide with oogenesis and mating of the host. Our findings provide insight into symbiont-tick interactions that lay the foundation for future studies.
Collapse
Affiliation(s)
- Limeng Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei 050024, PR China
| | - Lingxia Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei 050024, PR China
| | - Jiannan Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei 050024, PR China
| | - Xiaohong Yang
- Department of Basic Medical Sciences, Hebei Medical University, No. 361 Zhongshan Eastern Road, Shijiazhuang, Hebei 050017, PR China
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, No. 20 Nanerhuan Eastern Road, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
21
|
Szafranski KM, Deschamps P, Cunha MR, Gaudron SM, Duperron S. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria. Front Microbiol 2015; 6:162. [PMID: 25774156 PMCID: PMC4343019 DOI: 10.3389/fmicb.2015.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps.
Collapse
Affiliation(s)
- Kamil M Szafranski
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 7208, Adaptation aux Milieux Extrêmes Paris, France ; UMR MNHN UPMC CNRS IRD UCBN 7208, Biologie des Organismes Aquatiques et Ecosystèmes Paris, France
| | - Philippe Deschamps
- UMR8079 Unité d'Ecologie, Systématique et Evolution, CNRS Université Paris-Sud 11 Orsay, France
| | - Marina R Cunha
- Departamento de Biologia and CESAM, Universidade de Aveiro Aveiro, Portugal
| | - Sylvie M Gaudron
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 7208, Adaptation aux Milieux Extrêmes Paris, France ; UMR MNHN UPMC CNRS IRD UCBN 7208, Biologie des Organismes Aquatiques et Ecosystèmes Paris, France
| | - Sébastien Duperron
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 7208, Adaptation aux Milieux Extrêmes Paris, France ; UMR MNHN UPMC CNRS IRD UCBN 7208, Biologie des Organismes Aquatiques et Ecosystèmes Paris, France ; Institut Universitaire de France Paris, France
| |
Collapse
|
22
|
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 2015; 32:904-36. [DOI: 10.1039/c5np00010f] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organisms team up with symbiotic microbes for defense against predators, parasites, parasitoids, or pathogens. Here we review the known defensive symbioses in animals and the microbial secondary metabolites responsible for providing protection to the host.
Collapse
Affiliation(s)
- Laura V. Flórez
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Peter H. W. Biedermann
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology
- Insect Symbiosis Research Group
- 07745 Jena
- Germany
| |
Collapse
|
23
|
Characterization of Bacterial Symbionts in Deep-Sea Fauna: Protocols for Sample Conditioning, Fluorescence In Situ Hybridization, and Image Analysis. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc Natl Acad Sci U S A 2014; 111:E5096-104. [PMID: 25385629 DOI: 10.1073/pnas.1413110111] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria play many important roles in animal digestive systems, including the provision of enzymes critical to digestion. Typically, complex communities of bacteria reside in the gut lumen in direct contact with the ingested materials they help to digest. Here, we demonstrate a previously undescribed digestive strategy in the wood-eating marine bivalve Bankia setacea, wherein digestive bacteria are housed in a location remote from the gut. These bivalves, commonly known as shipworms, lack a resident microbiota in the gut compartment where wood is digested but harbor endosymbiotic bacteria within specialized cells in their gills. We show that this comparatively simple bacterial community produces wood-degrading enzymes that are selectively translocated from gill to gut. These enzymes, which include just a small subset of the predicted wood-degrading enzymes encoded in the endosymbiont genomes, accumulate in the gut to the near exclusion of other endosymbiont-made proteins. This strategy of remote enzyme production provides the shipworm with a mechanism to capture liberated sugars from wood without competition from an endogenous gut microbiota. Because only those proteins required for wood digestion are translocated to the gut, this newly described system reveals which of many possible enzymes and enzyme combinations are minimally required for wood degradation. Thus, although it has historically had negative impacts on human welfare, the shipworm digestive process now has the potential to have a positive impact on industries that convert wood and other plant biomass to renewable fuels, fine chemicals, food, feeds, textiles, and paper products.
Collapse
|
25
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Altamia MA, Wood N, Fung JM, Dedrick S, Linton EW, Concepcion GP, Haygood MG, Distel DL. Genetic differentiation among isolates of Teredinibacter turnerae, a widely occurring intracellular endosymbiont of shipworms. Mol Ecol 2014; 23:1418-1432. [PMID: 24765662 DOI: 10.1111/mec.12667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts. The mode of symbiont transmission is unknown. Here, we examine sequence diversity in fragments of six genes (16S rRNA, gyrB, sseA, recA, rpoB and celAB) among 25 isolates of T. turnerae cultured from 13 shipworm species collected in 15 locations in the Atlantic, Pacific and Indian Oceans. While 16S rRNA sequences are nearly invariant between all examined isolates (maximum pairwise difference <0.26%), variation between examined protein-coding loci is greater (mean pairwise difference 2.2–5.9%). Phylogenetic analyses based on each protein-coding locus differentiate the 25 isolates into two distinct and well-supported clades. With five exceptions, clade assignments for each isolate were supported by analysis of alleles of each of the five protein-coding loci. These exceptions include (i) putative recombinant alleles of the celAB and gyrB loci in two isolates (PMS-535T.S.1b.3 and T8510), suggesting homologous recombination between members of the two clades; and (ii) evidence for a putative lateral gene transfer event affecting a second locus (recA) in three isolates (T8412, T8503 and T8513). These results demonstrate that T. turnerae isolates do not represent a homogeneous global population. Instead, they indicate the emergence of two lineages that, although distinct, likely experience some level of genetic exchange with each other and with other bacterial species.
Collapse
Affiliation(s)
- Marvin A Altamia
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, 1101, Philippines
| | - Nicole Wood
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Jennifer M Fung
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Sandra Dedrick
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Eric W Linton
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, 1101, Philippines
| | - Margo G Haygood
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| |
Collapse
|
27
|
Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CAG, Distel DL, Butler A, Haygood MG. Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901. PLoS One 2013; 8:e76151. [PMID: 24146831 PMCID: PMC3795760 DOI: 10.1371/journal.pone.0076151] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/19/2013] [Indexed: 12/29/2022] Open
Abstract
Shipworms are marine bivalve mollusks (Family Teredinidae) that use wood for shelter and food. They harbor a group of closely related, yet phylogenetically distinct, bacterial endosymbionts in bacteriocytes located in the gills. This endosymbiotic community is believed to support the host's nutrition in multiple ways, through the production of cellulolytic enzymes and the fixation of nitrogen. The genome of the shipworm endosymbiont Teredinibacter turnerae T7901 was recently sequenced and in addition to the potential for cellulolytic enzymes and diazotrophy, the genome also revealed a rich potential for secondary metabolites. With nine distinct biosynthetic gene clusters, nearly 7% of the genome is dedicated to secondary metabolites. Bioinformatic analyses predict that one of the gene clusters is responsible for the production of a catecholate siderophore. Here we describe this gene cluster in detail and present the siderophore product from this cluster. Genes similar to the entCEBA genes of enterobactin biosynthesis involved in the production and activation of dihydroxybenzoic acid (DHB) are present in this cluster, as well as a two-module non-ribosomal peptide synthetase (NRPS). A novel triscatecholate siderophore, turnerbactin, was isolated from the supernatant of iron-limited T. turnerae T7901 cultures. Turnerbactin is a trimer of N-(2,3-DHB)-L-Orn-L-Ser with the three monomeric units linked by Ser ester linkages. A monomer, dimer, dehydrated dimer, and dehydrated trimer of 2,3-DHB-L-Orn-L-Ser were also found in the supernatant. A link between the gene cluster and siderophore product was made by constructing a NRPS mutant, TtAH03. Siderophores could not be detected in cultures of TtAH03 by HPLC analysis and Fe-binding activity of culture supernatant was significantly reduced. Regulation of the pathway by iron is supported by identification of putative Fur box sequences and observation of increased Fe-binding activity under iron restriction. Evidence of a turnerbactin fragment was found in shipworm extracts, suggesting the production of turnerbactin in the symbiosis.
Collapse
Affiliation(s)
- Andrew W. Han
- Institute of Environmental Health, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Moriah Sandy
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Brian Fishman
- Institute of Environmental Health, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amaro E. Trindade-Silva
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Ilha do Fundão, CCS, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos A. G. Soares
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Ilha do Fundão, CCS, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Daniel L. Distel
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Alison Butler
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Margo G. Haygood
- Institute of Environmental Health, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
28
|
Examination of a Culturable Microbial Population from the Gastrointestinal Tract of the Wood-Eating Loricariid Catfish Panaque nigrolineatus. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5030641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Coinfection of Dermacentor silvarum olenev (acari: ixodidae) by Coxiella-Like, Arsenophonus-like, and Rickettsia-like symbionts. Appl Environ Microbiol 2013; 79:2450-4. [PMID: 23354701 DOI: 10.1128/aem.03575-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that multiple symbionts coexist in Dermacentor silvarum. Based on 16S rRNA gene sequence analyses, we prove that Coxiella-like and Arsenophonus-like symbionts, with 95.6% and 96.7% sequence similarity to symbionts in the closest taxon, respectively, are novel. Moreover, we also provide evidence that the Coxiella-like symbiont appears to be the primary symbiont.
Collapse
|
30
|
Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proc Natl Acad Sci U S A 2013; 110:E295-304. [PMID: 23288898 DOI: 10.1073/pnas.1213892110] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shipworms are marine wood-boring bivalve mollusks (family Teredinidae) that harbor a community of closely related Gammaproteobacteria as intracellular endosymbionts in their gills. These symbionts have been proposed to assist the shipworm host in cellulose digestion and have been shown to play a role in nitrogen fixation. The genome of one strain of Teredinibacter turnerae, the first shipworm symbiont to be cultivated, was sequenced, revealing potential as a rich source of polyketides and nonribosomal peptides. Bioassay-guided fractionation led to the isolation and identification of two macrodioloide polyketides belonging to the tartrolon class. Both compounds were found to possess antibacterial properties, and the major compound was found to inhibit other shipworm symbiont strains and various pathogenic bacteria. The gene cluster responsible for the synthesis of these compounds was identified and characterized, and the ketosynthase domains were analyzed phylogenetically. Reverse-transcription PCR in addition to liquid chromatography and high-resolution mass spectrometry and tandem mass spectrometry revealed the transcription of these genes and the presence of the compounds in the shipworm, suggesting that the gene cluster is expressed in vivo and that the compounds may fulfill a specific function for the shipworm host. This study reports tartrolon polyketides from a shipworm symbiont and unveils the biosynthetic gene cluster of a member of this class of compounds, which might reveal the mechanism by which these bioactive metabolites are biosynthesized.
Collapse
|
31
|
Duperron S, Pottier MA, Léger N, Gaudron SM, Puillandre N, Le Prieur S, Sigwart JD, Ravaux J, Zbinden M. A tale of two chitons: is habitat specialisation linked to distinct associated bacterial communities? FEMS Microbiol Ecol 2012; 83:552-67. [PMID: 22988940 DOI: 10.1111/1574-6941.12014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 11/29/2022] Open
Abstract
Although most chitons (Mollusca: Polyplacophora) are shallow-water molluscs, diverse species also occur in deep-sea habitats. We investigated the feeding strategies of two species, Leptochiton boucheti and Nierstraszella lineata, recovered on sunken wood sampled in the western Pacific, close to the Vanuatu Islands. The two species display distinctly different associations with bacterial partners. Leptochiton boucheti harbours Mollicutes in regions of its gut epithelium and has no abundant bacterium associated with its gill. Nierstraszella lineata displays no dense gut-associated bacteria, but harbours bacterial filaments attached to its gill epithelium, related to the Deltaproteobacteria symbionts found in gills of the wood-eating limpet Pectinodonta sp. Stable carbon and nitrogen isotope signatures and an absence of cellulolytic activity give evidence against a direct wood-feeding diet; both species are secondary consumers within the wood food web. We suggest that the distinct associations with bacterial partners are linked to niche specialisations of the two species. Nierstraszella lineata is in a taxonomic family restricted to sunken wood and is possibly adapted to more anoxic conditions thanks to its gill-associated bacteria. Leptochiton boucheti is phylogenetically more proximate to an ancestral form not specialised on wood and may itself be more of a generalist; this observation is congruent with its association with Mollicutes, a bacterial clade comprising gut-associated bacteria occurring in several metazoan phyla.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR 7138 Systématique, Adaptation, Evolution (UPMC CNRS MNHN IRD), Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Betcher MA, Fung JM, Han AW, O’Connor R, Seronay R, Concepcion GP, Distel DL, Haygood MG. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae). PLoS One 2012; 7:e45309. [PMID: 23028923 PMCID: PMC3447940 DOI: 10.1371/journal.pone.0045309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022] Open
Abstract
Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.
Collapse
Affiliation(s)
- Meghan A. Betcher
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jennifer M. Fung
- Ocean Genome Legacy, Ipswich, Massachusetts, United States of America
| | - Andrew W. Han
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Roberta O’Connor
- Ocean Genome Legacy, Ipswich, Massachusetts, United States of America
| | - Romell Seronay
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Gisela P. Concepcion
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Daniel L. Distel
- Ocean Genome Legacy, Ipswich, Massachusetts, United States of America
| | - Margo G. Haygood
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
33
|
Rosenblueth M, Sayavedra L, Sámano-Sánchez H, Roth A, Martínez-Romero E. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J Evol Biol 2012; 25:2357-68. [PMID: 22994649 DOI: 10.1111/j.1420-9101.2012.02611.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 01/03/2023]
Abstract
Flavobacteria and Enterobacteriaceae have been previously reported as scale insect endosymbionts. The purpose of this work was twofold: first, to screen different scale insect families for the presence of these endosymbionts by PCR analyses and second, to elucidate the history of cophylogeny between these bacteria and the insects by analysing a portion of 16S rRNA and 18S rRNA gene sequences by two reconciliation tools, CoRe-PA and Jane. From a survey of 27 scale insects within seven families, we identified Flavobacteria and Enterobacteriaceae as coexisting in ten species that belong to the Ortheziidae, Monophlebidae, Diaspididae and Coccidae families, and we frequently found two closely related enterobacteria harboured in the same individual. Analyses performed with CoRe-PA and Jane suggest that Flavobacteria from the scale insects analysed have a unique origin, except for Candidatus Brownia rhizoecola (Flavobacteria of Pseudococcidae, Phenacoccinae), which seems to come from a nonscale insect. Nevertheless, cospeciation between Flavobacteria and scale insects is suggested only within the families Monophlebidae, Ortheziidae and Diaspididae, and host switches seem to have occurred from the ancestors of Monophlebidae and Ortheziidae to insects from families Coccidae, Lecanodiaspididae, Eriococcidae and Pseudococcidae. Our analyses suggest that Enterobacteriaceae underwent more evolutionary events (losses, duplications and host switches), and their phylogenies showed a lower proportion of congruent nodes between host and bacteria, indicating a more relaxed relationship with scale insects compared with Flavobacteria.
Collapse
Affiliation(s)
- Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo, Cuernavaca, Morelos, Mexico.
| | | | | | | | | |
Collapse
|
34
|
Characterisation of microbial floras and functional gene levels in an anaerobic/aerobic bio-reactor for the degradation of carboxymethyl cellulose. Appl Microbiol Biotechnol 2012; 97:3195-206. [PMID: 22576945 DOI: 10.1007/s00253-012-4134-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
The current study determined the carboxymethyl cellulose (CMC) degradation efficiency, dominant microbial flora, eubacteria and archaebacteria characteristics, and expression levels of genes cel5A, cel6B, and bglC in an anaerobic/aerobic bio-reactor consisting of two-stage UASB (U1 and U2) and two-stage BAF (B1 and B2). The results showed that under three CMC loads, the CMC degradation efficiency of the UASB-BAF system was 91.25%, 80.44%, and 78.73%, respectively. At higher CMC loads, the degradation of cellulose and transformation to cellobiose in U1 was higher, while the transformation to glucose was lower. The results of DGGE and real-time PCR indicated that cellulose degradation bacteria are dominant in U1, cellulose degradation bacteria and cellulose degradation symbiosis bacteria are dominant in B1, and non-cellulose degradation symbiosis bacteria are dominant in both U2 and B2. The rate-limiting enzyme gene of cellulose degradation in U1, B1, and B2 is cel6B, but it is cel5A in U2.
Collapse
|
35
|
Distel DL, Amin M, Burgoyne A, Linton E, Mamangkey G, Morrill W, Nove J, Wood N, Yang J. Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Mol Phylogenet Evol 2011; 61:245-54. [DOI: 10.1016/j.ympev.2011.05.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/17/2011] [Accepted: 05/30/2011] [Indexed: 11/28/2022]
|
36
|
Wilson DB. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 2011; 14:259-63. [PMID: 21531609 DOI: 10.1016/j.mib.2011.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 01/10/2023]
Abstract
Enzymatic hydrolysis of cellulose by microorganisms is a key step in the global carbon cycle. Despite its abundance only a small percentage of microorganisms can degrade cellulose, probably because it is present in recalcitrant cell walls. There are at least five distinct mechanisms used by different microorganisms to degrade cellulose all of which involve cellulases. Cellulolytic organisms and cellulases are extremely diverse possibly because their natural substrates, plant cell walls, are very diverse. At this time the microbial ecology of cellulose degradation in any environment is still not clearly understood even though there is a great deal of information available about the bovine rumen. Two major problems that limit our understanding of this area are the vast diversity of organisms present in most cellulose degrading environments and the inability to culture most of them.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology & Genetics, 458 Biotechnology Building, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
37
|
Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 2010; 18:455-63. [PMID: 20674366 DOI: 10.1016/j.tim.2010.07.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Many marine organisms have coevolved symbiotic relationships with nitrogen-fixing bacteria in nitrogen limited environments such as coral reefs. In addition, some of these organisms also harbor microbes that carry out nitrification and denitrification. Prokaryotes involved in nitrogen fixation and other nitrogen transformations are symbionts in a range of eukaryotic hosts in the marine environment including shipworms, diatoms, corals and sponges. Molecular genetic approaches, and other analytical techniques, have provided exciting new insights into symbiont diversity and the relationship between host and symbiont. We review the current state of knowledge of these symbioses and highlight important avenues for future studies.
Collapse
Affiliation(s)
- Cara L Fiore
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | | | | |
Collapse
|
38
|
Davidson SK, Powell RJ, Stahl DA. Transmission of a bacterial consortium in Eisenia fetida egg capsules. Environ Microbiol 2010; 12:2277-88. [PMID: 21966919 DOI: 10.1111/j.1462-2920.2010.02231.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The earthworm Eisenia fetida harbours Verminephrobacter eiseniae within their excretory nephridia. This symbiont is transferred from the parent into the egg capsules where the cells are acquired by the developing earthworm in a series of recruitment steps. Previous studies defined V. eiseniae as the most abundant cell type in the egg capsules, leaving approximately 30% of the bacteria unidentified and of unknown origin. The study presented here used terminal restriction fragment length polymorphism analysis together with cloning and sequencing of 16S rRNA genes to define the composition of the bacterial consortium in E. fetida egg capsules from early to late development. Newly formed capsules of E. fetida contained three bacterial types, a novel Microbacteriaceae member, a Flexibacteriaceae member and the previously described V. eiseniae. Fluorescent in situ hybridization (FISH) using specific and general rRNA probes demonstrated that the bacteria are abundant during early development, colonize the embryo and appear in the adult nephridia. As the capsules mature, Herbaspirillum spp. become abundant although they were not detected within the adult worm. These divergent taxa could serve distinct functions in both the adult earthworm and in the egg capsule to influence the competitive ability of earthworms within the soil community.
Collapse
Affiliation(s)
- Seana K Davidson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-5014, USA.
| | | | | |
Collapse
|
39
|
Trindade-Silva AE, Machado-Ferreira E, Senra MVX, Vizzoni VF, Yparraguirre LA, Leoncini O, Soares CAG. Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei. Genet Mol Biol 2009; 32:572-81. [PMID: 21637522 PMCID: PMC3036054 DOI: 10.1590/s1415-47572009005000061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 03/23/2009] [Indexed: 11/22/2022] Open
Abstract
Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the host's gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium.
Collapse
Affiliation(s)
- Amaro E Trindade-Silva
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, Schwarz S, Field L, Trindade-Silva AE, Soares CAG, Elshahawi S, Hanora A, Schmidt EW, Haygood MG, Posfai J, Benner J, Madinger C, Nove J, Anton B, Chaudhary K, Foster J, Holman A, Kumar S, Lessard PA, Luyten YA, Slatko B, Wood N, Wu B, Teplitski M, Mougous JD, Ward N, Eisen JA, Badger JH, Distel DL. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One 2009; 4:e6085. [PMID: 19568419 PMCID: PMC2699552 DOI: 10.1371/journal.pone.0006085] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/06/2009] [Indexed: 12/02/2022] Open
Abstract
Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.
Collapse
Affiliation(s)
- Joyce C. Yang
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Ramana Madupu
- J. Craig Venter Institute, San Diego, California, United States of America
| | - A. Scott Durkin
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Nathan A. Ekborg
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | | | | | - Diana Radune
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Bradley S. Toms
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Case 932, Marseille, France
| | - Pedro M. Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, Case 932, Marseille, France
| | - Sandra Schwarz
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Lauren Field
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Amaro E. Trindade-Silva
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Ilha do Fundao, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. G. Soares
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Ilha do Fundao, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sherif Elshahawi
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eric W. Schmidt
- College of Pharmacy, University of Utah, Salt Lake City, Utah, United States of America
| | - Margo G. Haygood
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Janos Posfai
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jack Benner
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | | | - John Nove
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Brian Anton
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Kshitiz Chaudhary
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jeremy Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Alex Holman
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sanjay Kumar
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Philip A. Lessard
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yvette A. Luyten
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Barton Slatko
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Nicole Wood
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
| | - Bo Wu
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Max Teplitski
- University of Florida, Gainesville, Florida, United States of America
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Naomi Ward
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jonathan A. Eisen
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, San Diego, California, United States of America
| | - Daniel L. Distel
- Ocean Genome Legacy, Inc., Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lechene CP, Luyten Y, McMahon G, Distel DL. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 2007; 317:1563-6. [PMID: 17872448 DOI: 10.1126/science.1145557] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biological nitrogen fixation, the conversion of atmospheric nitrogen to ammonia for biosynthesis, is exclusively performed by a few bacteria and archaea. Despite the essential importance of biological nitrogen fixation, it has been impossible to quantify the incorporation of nitrogen by individual bacteria or to map the fate of fixed nitrogen in host cells. In this study, with multi-isotope imaging mass spectrometry we directly imaged and measured nitrogen fixation by individual bacteria within eukaryotic host cells and demonstrated that fixed nitrogen is used for host metabolism. This approach introduces a powerful way to study microbes and global nutrient cycles.
Collapse
Affiliation(s)
- Claude P Lechene
- National Resource for Imaging Mass Spectrometry, Harvard Medical School, and Brigham and Women's Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
42
|
Duperron S, Sibuet M, MacGregor BJ, Kuypers MMM, Fisher CR, Dubilier N. Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environ Microbiol 2007; 9:1423-38. [PMID: 17504480 DOI: 10.1111/j.1462-2920.2007.01259.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cold seeps in the Gulf of Mexico are often dominated by mussels of the genus Bathymodiolus that harbour symbiotic bacteria in their gills. In this study, we analysed symbiont diversity, abundance and metabolic potential in three mussel species from the northern Gulf of Mexico: Bathymodiolus heckerae from the West Florida Escarpment, Bathymodiolus brooksi from Atwater Valley and Alaminos Canyon, and 'Bathymodiolus' childressi, which co-occurs with B. brooksi in Alaminos Canyon. Comparative 16S rRNA sequence analysis confirmed a single methanotroph-related symbiont in 'B.' childressi and a dual symbiosis with a methanotroph- and thiotroph-related symbiont in B. brooksi. A previously unknown diversity of four co-occurring symbionts was discovered in B. heckerae: a methanotroph, two phylogenetically distinct thiotrophs and a methylotroph-related phylotype not previously described from any marine invertebrate symbiosis. A gene characteristic of methane-oxidzing bacteria, pmoA, was identified in all three mussel species confirming the methanotrophic potential of their symbionts. Stable isotope analyses of lipids and whole tissue also confirmed the importance of methanotrophy in the carbon nutrition of all of the mussels. Analyses of absolute and relative symbiont abundance in B. heckerae and B. brooksi using fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization indicated a clear dominance of methanotrophic over thiotrophic symbionts in their gill tissues. A site-dependent variability in total symbiont abundance was observed in B. brooksi, with specimens from Alaminos Canyon harbouring much lower densities than those from Atwater Valley. This shows that symbiont abundance is not species-specific but can vary considerably between populations.
Collapse
|
43
|
Sharp KH, Eam B, Faulkner DJ, Haygood MG. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 2006; 73:622-9. [PMID: 17122394 PMCID: PMC1796987 DOI: 10.1128/aem.01493-06] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sponges are host to extremely diverse bacterial communities, some of which appear to be spatiotemporally stable, though how these consistent associations are assembled and maintained from one sponge generation to the next is not well understood. Here we report that a diverse group of microbes, including both bacteria and archaea, is consistently present in aggregates within embryos of the tropical sponge Corticium sp. The major taxonomic groups represented in bacterial 16S rRNA sequences amplified from the embryos are similar to those previously described in a variety of marine sponges. Three selected bacterial taxa, representing proteobacteria, actinobacteria, and a clade including recently described sponge-associated bacteria, were tested and found to be present in all adult samples tested over a 3-year period and in the embryos throughout development. Specific probes were used in fluorescence in situ hybridization to localize cells of the three types in the embryos and mesohyl. This study confirms the vertical transmission of multiple, phylogenetically diverse microorganisms in a marine sponge, and our findings lay the foundation for future work on exploring vertical transmission of specific, yet diverse, microbial assemblages in marine sponges.
Collapse
Affiliation(s)
- Koty H Sharp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
44
|
Elsaied HE, Kaneko R, Naganuma T. Molecular characterization of a deep-sea methanotrophic mussel symbiont that carries a RuBisCO gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:511-20. [PMID: 16761196 DOI: 10.1007/s10126-005-6135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 03/15/2006] [Indexed: 05/10/2023]
Abstract
In our previous investigation on the genes of 1,5-ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39) in deep-sea chemoautotrophic and methanotrophic endosymbioses, the gene encoding the large subunit of RuBisCO form I (cbbL) had been detected in the gill of a mussel belonging to the genus Bathymodiolus from a western Pacific back-arc hydrothermal vent. This study further examined the symbiont source of the RuBisCO cbbL gene along with the genes of 16S ribosomal RNA (16S rDNA) and particulate methane monooxygenase (EC 1.14.13.25; pmoA) and probed for the presence of the ATP sulfurylase gene (EC 2.7.7.4; sopT). The 16S rDNA sequence analysis indicated that the mussel harbors a monospecific methanotrophic Gammaproteobacterium. This was confirmed by amplification and sequencing of the methanotrophic pmoA, while thiotrophic sopT was not amplified from the same symbiotic genome DNA. Fluorescence in situ hybridization demonstrated simultaneous occurrence of the symbiont-specific 16S rDNA, cbbL and pmoA, but not sopT, in the mussel gill. This is the first molecular and visual evidence for a methanotrophic bacterial endosymbiont that bears the RuBisCO cbbL gene relevant to autotrophic CO(2) fixation.
Collapse
Affiliation(s)
- Hosam Easa Elsaied
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
45
|
Oliver KM, Moran NA, Hunter MS. Costs and benefits of a superinfection of facultative symbionts in aphids. Proc Biol Sci 2006; 273:1273-80. [PMID: 16720402 PMCID: PMC1560284 DOI: 10.1098/rspb.2005.3436] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Symbiotic associations between animals and inherited micro-organisms are widespread in nature. In many cases, hosts may be superinfected with multiple inherited symbionts. Acyrthosiphon pisum (the pea aphid) may harbour more than one facultative symbiont (called secondary symbionts) in addition to the obligate primary symbiont, Buchnera aphidicola. Previously we demonstrated that, in a controlled genetic background, A. pisum infected with either Serratia symbiotica or Hamiltonella defensa (called R- and T-type in that study) were more resistant to attack by the parasitoid Aphidius ervi. Here, we examined the consequences of A. pisum superinfected with both resistance-conferring symbionts. We found that an A. pisum line co-infected with both S. symbiotica and H. defensa symbionts exhibits even greater resistance to parasitism by A. ervi than either of the singly infected lines. Despite this added benefit to resistance, superinfections of S. symbiotica and H. defensa symbionts appeared rare in our survey of Utah A. pisum symbionts, which is probably attributable to severe fecundity costs. Quantitative polymerase chain reaction estimates indicate that while the density of H. defensa is similar in singly and superinfected hosts, S. symbiotica densities increased dramatically in superinfected hosts. Over-proliferation of symbionts or antagonistic interactions between symbionts may be harmful to the aphid host. Our results indicate that in addition to host-symbiont interactions, interactions among the symbionts themselves probably play a critical role in determining the distributions of symbionts in natural populations.
Collapse
Affiliation(s)
- Kerry M Oliver
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
46
|
Luyten YA, Thompson JR, Morrill W, Polz MF, Distel DL. Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2006; 72:412-7. [PMID: 16391072 PMCID: PMC1352252 DOI: 10.1128/aem.72.1.412-417.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shipworms (wood-boring bivalves of the family Teredinidae) harbor in their gills intracellular bacterial symbionts thought to produce enzymes that enable the host to consume cellulose as its primary carbon source. Recently, it was demonstrated that multiple genetically distinct symbiont populations coexist within one shipworm species, Lyrodus pedicellatus. Here we explore the extent to which symbiont communities vary among individuals of this species by quantitatively examining the diversity, abundance, and pattern of occurrence of symbiont ribotypes (unique 16S rRNA sequence types) among specimens drawn from a single laboratory-reared population. A total of 18 ribotypes were identified in two clone libraries generated from gill tissue of (i) a single specimen and (ii) four pooled specimens. Phylogenetic analysis assigned all of the ribotypes to a unique clade within the gamma subgroup of proteobacteria which contained at least five well-supported internal clades (phylotypes). By competitive quantitative PCR and constant denaturant capillary electrophoresis, we estimated the number and abundance of symbiont phylotypes in gill samples of 13 individual shipworm specimens. Phylotype composition varied greatly; however, in all specimens the numerically dominant symbiont belonged to one of two nearly mutually exclusive phylotypes, each of which was detected with similar frequencies among specimens. A third phylotype, containing the culturable symbiont Teredinibacter turnerae, was identified in nearly all specimens, and two additional phylotypes were observed more sporadically. Such extensive variation in ribotype and phylotype composition among host specimens adds to a growing body of evidence that microbial endosymbiont populations may be both complex and dynamic and suggests that such genetic variation should be evaluated with regard to physiological and ecological differentiation.
Collapse
Affiliation(s)
- Yvette A Luyten
- Ocean Genome Legacy Foundation, Center for Marine Genomic Research and Conservation, 240 County Rd., Ipswich, MA 01938, USA
| | | | | | | | | |
Collapse
|
47
|
Naganuma T, Elsaied HE, Hoshii D, Kimura H. Bacterial endosymbioses of gutless tube-dwelling worms in nonhydrothermal vent habitats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:416-28. [PMID: 16088356 DOI: 10.1007/s10126-004-5089-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 04/28/2005] [Indexed: 05/03/2023]
Abstract
Gutless tube-dwelling worms of pogonophorans (also known as frenulates) and vestimentiferans depend on primary production of endosymbiotic bacteria. The endosymbionts include thiotrophs that oxidize sulfur for autotrophic production and methanotrophs that oxidize and assimilate methane. Although most of the pogonophoran and vestimentiferan tube worms possess single thiotrophic 16S rRNA genes (16S rDNA) related to gamma-proteobacteria, some pogonohorans are known to bear single methanotroph species or even dual symbionts of thiotrophs and methanotrophs. The vestimentiferan Lamellibrachia sp. L1 shows symbiotic 16S rDNA sequences of alpha-, beta-, gamma-, and epsilon-proteobacteria, varying among specimens, with RuBisCO form II gene (cbbM) sequences related to beta-proteobacteria. An unidentified pogonophoran from the world's deepest cold seep, 7326-m deep in the Japan Trench, hosts a symbiotic thiotroph based on 16S rDNA with the RuBisCO form I gene (cbbL). In contrast, a shallow-water pogonophoran (Oligobrachia mashikoi) in coastal Japan Sea has a methanotrophic 16S rDNA and thiotrophic cbbL, which may suggest the feature of type X methanotrophs. These observations demonstrate that pogonophoran and vestimentiferan worms have higher plasticity in bacterial symbioses than previously suspected.
Collapse
Affiliation(s)
- Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, 739-8528, Japan.
| | | | | | | |
Collapse
|
48
|
Blazejak A, Erséus C, Amann R, Dubilier N. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Microbiol 2005; 71:1553-61. [PMID: 15746360 PMCID: PMC1065125 DOI: 10.1128/aem.71.3.1553-1561.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Olavius crassitunicatus is a small symbiont-bearing worm that occurs at high abundance in oxygen-deficient sediments in the East Pacific Ocean. Using comparative 16S rRNA sequence analysis and fluorescence in situ hybridization, we examined the diversity and phylogeny of bacterial symbionts in two geographically distant O. crassitunicatus populations (separated by 385 km) on the Peru margin (water depth, approximately 300 m). Five distinct bacterial phylotypes co-occurred in all specimens from both sites: two members of the gamma-Proteobacteria (Gamma 1 and 2 symbionts), two members of the delta-Proteobacteria (Delta 1 and 2 symbionts), and one spirochete. A sixth phylotype belonging to the delta-Proteobacteria (Delta 3 symbiont) was found in only one of the two host populations. Three of the O. crassitunicatus bacterial phylotypes are closely related to symbionts of other gutless oligochaete species; the Gamma 1 phylotype is closely related to sulfide-oxidizing symbionts of Olavius algarvensis, Olavius loisae, and Inanidrilus leukodermatus, the Delta 1 phylotype is closely related to sulfate-reducing symbionts of O. algarvensis, and the spirochete is closely related to spirochetal symbionts of O. loisae. In contrast, the Gamma 2 phylotype and the Delta 2 and 3 phylotypes belong to novel lineages that are not related to other bacterial symbionts. Such a phylogenetically diverse yet highly specific and stable association in which multiple bacterial phylotypes coexist within a single host has not been described previously for marine invertebrates.
Collapse
Affiliation(s)
- Anna Blazejak
- Max Planck Institute of Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | |
Collapse
|
49
|
Lim GE, Haygood MG. "Candidatus Endobugula glebosa," a specific bacterial symbiont of the marine bryozoan Bugula simplex. Appl Environ Microbiol 2004; 70:4921-9. [PMID: 15294832 PMCID: PMC492373 DOI: 10.1128/aem.70.8.4921-4929.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, "Candidatus Endobugula sertula." "Candidatus E. sertula" has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with "Candidatus E. sertula." In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status "Candidatus Endobugula glebosa" is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.
Collapse
Affiliation(s)
- Grace E Lim
- Scripps Institution of Oceanography, Marine Biology Research Division, 0202, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | |
Collapse
|