1
|
Shao Z, Gu S, Zhang X, Xue J, Yan T, Guo S, Pommier T, Jousset A, Yang T, Xu Y, Shen Q, Wei Z. Siderophore interactions drive the ability of Pseudomonas spp . consortia to protect tomato against Ralstonia solanacearum. HORTICULTURE RESEARCH 2024; 11:uhae186. [PMID: 39247881 PMCID: PMC11377186 DOI: 10.1093/hr/uhae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
The soil-borne bacterial pathogen Ralstonia solanacearum causes significant losses in Solanaceae crop production worldwide, including tomato, potato, and eggplant. To efficiently prevent outbreaks, it is essential to understand the complex interactions between pathogens and the microbiome. One promising mechanism for enhancing microbiome functionality is siderophore-mediated competition, which is shaped by the low iron availability in the rhizosphere. This study explores the critical role of iron competition in determining microbiome functionality and its potential for designing high-performance microbiome engineering strategies. We investigated the impact of siderophore-mediated interactions on the efficacy of Pseudomonas spp. consortia in suppressing R. solanacearum , both in vitro and in vivo. Our findings show that siderophore production significantly enhances the inhibitory effects of Pseudomonas strains on pathogen growth, while other metabolites are less effective under iron-limited conditions. Moreover, siderophores play a crucial role in shaping interactions within the consortia, ultimately determining the level of protection against bacterial wilt disease. This study highlights the key role of siderophores in mediating consortium interactions and their impact on tomato health. Our results also emphasize the limited efficacy of other secondary metabolites in iron-limited environments, underscoring the importance of siderophore-mediated competition in maintaining tomato health and suppressing disease.
Collapse
Affiliation(s)
- Zhengying Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaohua Gu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoni Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Saisai Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Thomas Pommier
- Setec Energie Environnement, 97/101 bvd Vivier Merle, Lyon 69003, France
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Ben Ghorbal Salma K, Abdelwahed Inès M, Rim W, Chatti A. Damage of the swarmer Pseudomonas soil isolate cell by UVc as revealed by transmission electron microscopy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1047-1058. [PMID: 35475410 DOI: 10.1080/09603123.2022.2068511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The modeling of the response of living organisms to a change in environment is an important issue of current interest. An example is the effect of ultraviolet radiation on biological systems. In this paper, molecular and analytical identification of Pseudomonas isolate were reported. Then, swarmer Pseudomonas cells were exposed to UVc radiations. The spatiotemporal response of swarmer Pseudomonas, to UVc exposure, was followed. Observing alterations in bacterial membrane integrity by electron microscopy can help to clarify the detailed mechanisms of resistance to UVc. The most evident changes were related to membrane structures. In the cytoplasm, the main finding was the appearance of round mesosomes as intracellular bilayered membranes. Another impact of UVc on Pseudomonas was evident from the appearance of additional membrane structures. In accordance with the viability results, UVc-induced ultrastructural changes of Pseudomonas membrane structures were identified, resulting in cell death, through a multistage model of UVc inactivation.
Collapse
Affiliation(s)
- Kloula Ben Ghorbal Salma
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisie
| | - Mehri Abdelwahed Inès
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisie
| | - Werhani Rim
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisie
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisie
| |
Collapse
|
3
|
Volynchikova E, Kim KD. Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici. THE PLANT PATHOLOGY JOURNAL 2023; 39:123-135. [PMID: 36760054 PMCID: PMC9929162 DOI: 10.5423/ppj.oa.01.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.
Collapse
Affiliation(s)
| | - Ki Deok Kim
- Corresponding author: Phone) +82-2-3290-3065, FAX) +82-2-925-1970, E-mail)
| |
Collapse
|
4
|
Siderophore Synthesis Ability of the Nitrogen-Fixing Bacterium (NFB) GXGL-4A is Regulated at the Transcriptional Level by a Transcriptional Factor (trX) and an Aminomethyltransferase-Encoding Gene (amt). Curr Microbiol 2022; 79:369. [PMID: 36253498 DOI: 10.1007/s00284-022-03080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
Abstract
Kosakonia radicincitans GXGL-4A, a gram-negative nitrogen-fixing (NF) bacterial strain is coated with a thick capsulatus on the surface of cell wall, which becomes a physical barrier for exogenous DNA to enter the cell, so the operation of genetic transformation is difficult. In this study, an optimized Tn5 transposon mutagenesis system was established by using a high osmotic HO-1 medium combined with the electroporation transformation. Eventually, a mutant library containing a total of 1633 Tn5 insertional mutants were established. Of these mutants, the mutants M81 and M107 were found to have an enhanced capability to synthesize siderophore through the CAS agar plate assay and the spectrophotometric determination. The bacterial cells of two mutants were applied in cucumber growth-promoting experiment. Cucumber seedlings treated with M81 and M107 cells had a significant increase in biomass including seedling height, seedling fresh weight, root fresh weight, and root length. The whole genome sequencing of the mutants M81 and M107 showed that the integration sites of Tn5 transposon element were located in MmyB-like helix-turn-helix transcription regulator (locus tag: A3780_19720, trX) and aminomethyltransferase-encoding genes (locus tag: A3780_01680, amt) in the genome of GXGL-4A, respectively. The ability of siderophore synthesis of the target mutants was improved by Tn5 insertion mutagenesis, and the mutants obtained showed a good plant growth-promoting effect when applied to the cucumber seedlings. The results suggest that the identified functional genes regulates the biosynthesis of siderophore in azotobacter GXGL-4A, and the specific mechanism needs to be further investigated.
Collapse
|
5
|
Sorour AA, Khairy H, Zaghloul EH, Zaghloul HAH. Microbe- plant interaction as a sustainable tool for mopping up heavy metal contaminated sites. BMC Microbiol 2022; 22:174. [PMID: 35799112 PMCID: PMC9261045 DOI: 10.1186/s12866-022-02587-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.
Collapse
Affiliation(s)
- Ahmed A Sorour
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Eman H Zaghloul
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Heba A H Zaghloul
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt.
| |
Collapse
|
6
|
Mould DL, Hogan DA. Intraspecies heterogeneity in microbial interactions. Curr Opin Microbiol 2021; 62:14-20. [PMID: 34034081 DOI: 10.1016/j.mib.2021.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
Microbial interactions are increasingly recognized as an integral part of microbial physiology. Cell-cell communication mediated by quorum sensing and metabolite exchange is a formative element of microbial interactions. However, loss-of-function mutations in quorum-sensing components are common across diverse species. Furthermore, quorum sensing is modulated by small molecules and environmental conditions that may be altered in the presence of other microbial species. Recent evidence highlights how strain heterogeneity impacts microbial interactions. There is great potential for microbial interactions to act as selective pressures that influence the emergence of common mutations in quorum-sensing genes across the bacterial and fungal domains.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
7
|
Raio A, Puopolo G. Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. World J Microbiol Biotechnol 2021; 37:99. [PMID: 33978868 DOI: 10.1007/s11274-021-03063-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
The Pseudomonas fluorescens complex contains at least eight phylogenetic groups and each of these includes several bacterial species sharing ecological and physiological traits. Pseudomonas chlororaphis classified in a separate group is represented by three different subspecies that show distinctive traits exploitable for phytostimulation and biocontrol of phytopathogens. The high level of microbial competitiveness in soil as well as the effectiveness in controlling several plant pathogens and pests can be related to the P. chlororaphis ability to implement different stimulating and toxic mechanisms in its interaction with plants and the other micro- and macroorganisms. Pseudomonas chlororaphis strains produce antibiotics, such as phenazines, pyrrolnitrine, 2-hexyl, 5-propyl resorcinol and hydrogen cyanide, siderophores such as pyoverdine and achromobactine and a complex blend of volatile organic compounds (VOCs) that effectively contribute to the control of several plant pathogens, nematodes and insects. Phenazines and some VOCs are also involved in the induction of systemic resistance in plants. This complex set of beneficial strategies explains the high increasing interest in P. chlororaphis for commercial and biotechnological applications. The aim of this review is to highlight the role of the different mechanisms involved in the biocontrol activity of P. chlororaphis strains.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, FI, Italy.
| | - Gerardo Puopolo
- Center Agriculture Food Environment C3A, University of Trento/Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| |
Collapse
|
8
|
Rhizospheric Phosphate Solubilizing Bacillus atrophaeus GQJK17 S8 Increases Quinoa Seedling, Withstands Heavy Metals, and Mitigates Salt Stress. SUSTAINABILITY 2021. [DOI: 10.3390/su13063307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction of quinoa (Chenopodium quinoa willd.), a gluten-free nutritious pseudo-cereal, outside its traditional growing areas exposed it to seedling damping-off. Here, we isolated eleven phosphate-solubilizing bacteria from the quinoa rhizosphere and assessed their effect on germination and seedlings growth. All isolates solubilized phosphate, produced indole3-acetic acid, hydrocyanic acid, siderophores, and ammonia. Genotypic analysis revealed that our strains are related to the genus of Bacillus, Pseudomonas, and Enterobacter. Strains Enterobacter asburiae (QD14, QE4, QE6, and QE16), Enterobacter sp. QE3, and Enterobacter hormaechei QE7 withstood 1.5 mg·L−1 of cadmium sulfate, 0.5 mg·mL−1 of nickel nitrate, and 1 mg·mL−1 of copper sulfate. Moreover, all strains solubilized zinc from ZnO; P. Stutzeri QD1 and E. asburiae QD14 did not solubilize Zn3(PO4)2 and CO3Zn, whereas CO3Zn was not solubilized by E. asburiae QE16. Bacillus atrophaeus S8 tolerated 11% NaCl. P. frederiksbergensis S6 and Pseudomonas sp. S7 induced biofilm formation. Anti-fusarium activity was demonstrated for E.asburiae QE16, P. stutzeri QD1, P. frederiksbergensis S6, Pseudomonas sp. S7, and B. atrophaeus S8. Lastly, inoculation of quinoa seeds with B. atrophaeus S8 and E. asburiae QB1 induced the best germination rate and seedling growth, suggesting their potential use as inoculants for salty and heavy metal or zinc contaminated soils.
Collapse
|
9
|
Fungal Siderophores: Prospects and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Application of Siderophore in Crop Productivity and Remediation of Heavy Metal-Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Liu H, Robinson DS, Wu ZY, Kuo R, Yoshikuni Y, Blaby IK, Cheng JF. Bacterial genome editing by coupling Cre-lox and CRISPR-Cas9 systems. PLoS One 2020; 15:e0241867. [PMID: 33147260 PMCID: PMC7641437 DOI: 10.1371/journal.pone.0241867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
The past decade has been a golden age for microbiology, marked by the discovery of an unprecedented increase in the number of novel bacterial species. Yet gaining biological knowledge of those organisms has not kept pace with sequencing efforts. To unlock this genetic potential there is an urgent need for generic (i.e. non-species specific) genetic toolboxes. Recently, we developed a method, termed chassis-independent recombinase-assisted genome engineering (CRAGE), enabling the integration and expression of large complex gene clusters directly into the chromosomes of diverse bacteria. Here we expand upon this technology by incorporating CRISPR-Cas9 allowing precise genome editing across multiple bacterial species. To do that we have developed a landing pad that carries one wild-type and two mutant lox sites to allow integration of foreign DNA at two locations through Cre-lox recombinase-mediated cassette exchange (RMCE). The first RMCE event is to integrate the Cas9 and the DNA repair protein genes RecET, and the second RMCE event enables the integration of customized sgRNA and a repair template. Following this workflow, we achieved precise genome editing in four different gammaproteobacterial species. We also show that the inserted landing pad and the entire editing machinery can be removed scarlessly after editing. We report here the construction of a single landing pad transposon and demonstrate its functionality across multiple species. The modular design of the landing pad and accessory vectors allows design and assembly of genome editing platforms for other organisms in a similar way. We believe this approach will greatly expand the list of bacteria amenable to genetic manipulation and provides the means to advance our understanding of the microbial world.
Collapse
Affiliation(s)
- Hualan Liu
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - David S. Robinson
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Zong-Yen Wu
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Rita Kuo
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ian K. Blaby
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chumpitaz-Segovia C, Alvarado D, Ogata-Gutiérrez K, Zúñiga-Dávila D. Bioprospection of native psychrotolerant plant-growth-promoting rhizobacteria from Peruvian Andean Plateau soils associated with Chenopodium quinoa. Can J Microbiol 2020; 66:641-652. [DOI: 10.1139/cjm-2020-0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Peruvian Andean Plateau, one of the main production areas of native varieties of Chenopodium quinoa, is exposed to abrupt decreases in environmental temperature, affecting crop production. Plant-growth-promoting rhizobacteria that tolerate low temperatures could be used as organic biofertilizers in this region. We aimed to bioprospect the native psychrotolerant bacteria of the quinoa rhizosphere in this region that show plant-growth-promoting traits. Fifty-one strains belonging to the quinoa rhizosphere were characterised; 73% of the total could grow at low temperatures (4, 6, and 15 °C), whose genetic diversity based on DNA amplification of interspersed repetitive elements (BOX) showed 12 different profiles. According to the 16S rRNA sequence, bacterial species belonging to the classes Beta- and Gammaproteobacteria were identified. Only three (6%) isolates identified as nonpathogenic bacteria exhibited plant-growth-promoting activities, like IAA production, phosphate solubilization, growth in a nitrogen-free medium, and ACC deaminase production at 6 and 15 °C. ILQ215 (Pseudomonas silesiensis) and JUQ307 (Pseudomonas plecoglossicida) strains showed significantly positive plant growth effects in aerial length (about 50%), radicular length (112% and 79%, respectively), and aerial and radicular mass (above 170% and 210%, respectively) of quinoa plants compared with the control without bacteria. These results indicate the potential of both psychrotolerant strains to be used as potential organic biofertilizers for quinoa in this region.
Collapse
Affiliation(s)
- Carolina Chumpitaz-Segovia
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina S/N, 15024 La Molina, Lima, Peru
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Calle Germán Amézaga No. 375 - Edificio Jorge Basadre, Ciudad Universitaria, 15081, Lima, Peru
| | - Débora Alvarado
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Calle Germán Amézaga No. 375 - Edificio Jorge Basadre, Ciudad Universitaria, 15081, Lima, Peru
| | - Katty Ogata-Gutiérrez
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina S/N, 15024 La Molina, Lima, Peru
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Av. La Molina S/N, 15024 La Molina, Lima, Peru
| |
Collapse
|
13
|
Jroundi F, Descostes M, Povedano-Priego C, Sánchez-Castro I, Suvannagan V, Grizard P, Merroun ML. Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: Insights regarding in situ recovery mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137758. [PMID: 32179349 DOI: 10.1016/j.scitotenv.2020.137758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 05/13/2023]
Abstract
A uranium-mineralized sandy aquifer, planned for mining by means of uranium in situ recovery (U ISR), harbors a reservoir of bacterial life that may influence the biogeochemical cycles surrounding uranium roll-front deposits. Since microorganisms play an important role at all stages of U ISR, a better knowledge of the resident bacteria before any ISR actuations is essential to face environmental quality assessment. The focus here was on the characterization of bacteria residing in an aquifer surrounding a uranium roll-front deposit that forms part of an ISR facility project at Zoovch Ovoo (Mongolia). Water samples were collected following the natural redox zonation inherited in the native aquifer, including the mineralized orebody, as well as compartments located both upstream (oxidized waters) and downstream (reduced waters) of this area. An imposed chemical zonation for all sensitive redox elements through the roll-front system was observed. In addition, high-throughput sequencing data showed that the bacterial community structure was shaped by the redox gradient and oxygen availability. Several interesting bacteria were identified, including sulphate-reducing (e.g. Desulfovibrio, Nitrospira), iron-reducing (e.g. Gallionella, Sideroxydans), iron-oxidizing (e.g. Rhodobacter, Albidiferax, Ferribacterium), and nitrate-reducing bacteria (e.g. Pseudomonas, Aquabacterium), which may also be involved in metal reduction (e.g. Desulfovibrio, Ferribacterium, Pseudomonas, Albidiferax, Caulobacter, Zooglea). Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the bacterial genera, suggesting either shared/preferred environmental conditions or the performance of similar/complementary functions. As a whole, the bacterial community residing in each aquifer compartment would appear to define an ecologically functional ecosystem, containing suitable microorganisms (e.g. acidophilic bacteria) prone to promote the remediation of the acidified aquifer by natural attenuation. Assessing the composition and structure of the aquifer's native bacteria is a prerequisite for understanding natural attenuation and predicting the role of bacterial input in improving ISR efficiency.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | | | - Cristina Povedano-Priego
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - Iván Sánchez-Castro
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | | | - Pierre Grizard
- ORANO Mining, 125 avenue de Paris, F-92330 Châtillon, France.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
14
|
Ricciardi EF, Pedros-Garrido S, Papoutsis K, Lyng JG, Conte A, Del Nobile MA. Novel Technologies for Preserving Ricotta Cheese: Effects of Ultraviolet and Near-Ultraviolet-Visible Light. Foods 2020; 9:E580. [PMID: 32380636 PMCID: PMC7278879 DOI: 10.3390/foods9050580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 12/01/2022] Open
Abstract
Ricotta cheese is a potential growth medium for a wide range of microorganisms. The aim of the current study was to investigate the efficacy of ultraviolet (UV-C) and near-ultraviolet-visible light (NUV-vis) in microbial decontamination of ricotta artificially inoculated with Pseudomonas fluorescens. Cheese samples were stored at 4 °C, and microbiological and sensory analyses were performed for 9 days. From the microbiological point of view, control samples became unacceptable after less than 5 days, whereas ricotta treated by both UV-C and NUV-vis light remained acceptable for more than 6 days. Similar effects of UV-C and NUV-vis light were also recorded in terms of sensory quality. The shelf life of the samples subjected to the treatments was thus extended by 50%, suggesting the potential application of UV-C and NUV-vis light for cheese decontamination.
Collapse
Affiliation(s)
- Emilio Francesco Ricciardi
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71122 Foggia, Italy; (E.F.R.); (M.A.D.N.)
| | - Selene Pedros-Garrido
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (S.P.-G.); (K.P.); (J.G.L.)
| | - Kostas Papoutsis
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (S.P.-G.); (K.P.); (J.G.L.)
| | - James G. Lyng
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland; (S.P.-G.); (K.P.); (J.G.L.)
| | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71122 Foggia, Italy; (E.F.R.); (M.A.D.N.)
| | - Matteo A. Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli, 25-71122 Foggia, Italy; (E.F.R.); (M.A.D.N.)
| |
Collapse
|
15
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
16
|
Ferreira CMH, Soares HMVM, Soares EV. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:779-799. [PMID: 31146074 DOI: 10.1016/j.scitotenv.2019.04.225] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 05/20/2023]
Abstract
In order to address the ever-increasing problem of the world's population food needs, the optimization of farming crops yield, the combat of iron deficiency in plants (chlorosis) and the elimination/reduction of crop pathogens are of key challenges to solve. Traditional ways of solving these problems are either unpractical on a large scale (e.g. use of manure) or are not environmental friendly (e.g. application of iron-synthetic fertilizers or indiscriminate use of pesticides). Therefore, the search for greener substitutes, such as the application of siderophores of bacterial source or the use of plant-growth promoting bacteria (PGPB), is presented as a very promising alternative to enhance yield of crops and performance. However, the use of microorganisms is not a risk-free solution and the potential biohazards associated with the utilization of bacteria in agriculture should be considered. The present work gives a current overview of the main mechanisms associated with the use of bacteria in the promotion of plant growth. The potentiality of several bacterial genera (Azotobacter, Azospirillum, Bacillus, Pantoea, Pseudomonas and Rhizobium) regarding to siderophore production capacity and other plant growth-promoting properties are presented. In addition, the field performance of these bacteria genera as well as the biosafety aspects related with their use for agricultural proposes are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos M H Ferreira
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
17
|
Quintieri L, Fanelli F, Caputo L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019; 8:E372. [PMID: 31480507 PMCID: PMC6769999 DOI: 10.3390/foods8090372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa. In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
18
|
Bergeau D, Mazurier S, Barbey C, Merieau A, Chane A, Goux D, Bernard S, Driouich A, Lemanceau P, Vicré M, Latour X. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS One 2019; 14:e0221025. [PMID: 31461454 PMCID: PMC6713353 DOI: 10.1371/journal.pone.0221025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacterium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizobacteria that promote plant growth by direct stimulation, by preventing the deleterious effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-competent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular mycorrhization. This strain has been studied in detail, but no visual evidence has ever been obtained for extracellular structures potentially involved in its remarkable fitness and biocontrol performances. On transmission electron microscopy of negatively stained C7R12 cells, we observed the following appendages: multiple polar flagella, an inducible putative type three secretion system typical of phytopathogenic Pseudomonas syringae strains and densely bundled fimbria-like appendages forming a broad fractal-like dendritic network around single cells and microcolonies. The deployment of one or other of these elements on the bacterial surface depends on the composition and affinity for the water of the microenvironment. The existence, within this single strain, of machineries known to be involved in motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may partly explain the strong interactions of strain C7R12 with plants and associated microflora in addition to the type three secretion system previously shown to be implied in mycorrhizae promotion.
Collapse
Affiliation(s)
- Dorian Bergeau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Sylvie Mazurier
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
| | - Didier Goux
- Centre de Microscopie Appliquée à la biologie, SFR 4206 ICORE Université de Caen Normandie (CMAbio3), Caen, France
| | - Sophie Bernard
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Azeddine Driouich
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Maïté Vicré
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale—Normandie Université - EA 4358 Université de Rouen, Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312)—Normandie Université - LMSM, Evreux, France
- Structure Fédérative de Recherche Normandie Végétale 4277 (NORVEGE), Normandie, France
- * E-mail:
| |
Collapse
|
19
|
Batrich M, Maskeri L, Schubert R, Ho B, Kohout M, Abdeljaber M, Abuhasna A, Kholoki M, Psihogios P, Razzaq T, Sawhney S, Siddiqui S, Xoubi E, Cooper A, Hatzopoulos T, Putonti C. Pseudomonas Diversity Within Urban Freshwaters. Front Microbiol 2019; 10:195. [PMID: 30828321 PMCID: PMC6384249 DOI: 10.3389/fmicb.2019.00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/23/2019] [Indexed: 11/23/2022] Open
Abstract
Freshwater lakes are home to bacterial communities with 1000s of interdependent species. Numerous high-throughput 16S rRNA gene sequence surveys have provided insight into the microbial taxa found within these waters. Prior surveys of Lake Michigan waters have identified bacterial species common to freshwater lakes as well as species likely introduced from the urban environment. We cultured bacterial isolates from samples taken from the Chicago nearshore waters of Lake Michigan in an effort to look more closely at the genetic diversity of species found there within. The most abundant genus detected was Pseudomonas, whose presence in freshwaters is often attributed to storm water or runoff. Whole genome sequencing was conducted for 15 Lake Michigan Pseudomonas strains, representative of eight species and three isolates that could not be resolved with named species. These genomes were examined specifically for genes encoding functionality which may be advantageous in their urban environment. Antibiotic resistance, amidst other known virulence factors and defense mechanisms, were identified in the genome annotations and verified in the lab. We also tested the Lake Michigan Pseudomonas strains for siderophore production and resistance to the heavy metals mercury and copper. As the study presented here shows, a variety of pseudomonads have inhabited the urban coastal waters of Lake Michigan.
Collapse
Affiliation(s)
- Mary Batrich
- Niehoff School of Nursing, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Ryan Schubert
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Brian Ho
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Melanie Kohout
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Malik Abdeljaber
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Ahmed Abuhasna
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Mutah Kholoki
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Penelope Psihogios
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Tahir Razzaq
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Samrita Sawhney
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Salah Siddiqui
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Eyad Xoubi
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Alexandria Cooper
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Thomas Hatzopoulos
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States.,Department of Biology, Loyola University Chicago, Chicago, IL, United States.,Department of Computer Science, Loyola University Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
20
|
Kirienko DR, Kang D, Kirienko NV. Novel Pyoverdine Inhibitors Mitigate Pseudomonas aeruginosa Pathogenesis. Front Microbiol 2019; 9:3317. [PMID: 30687293 PMCID: PMC6333909 DOI: 10.3389/fmicb.2018.03317] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a clinically important pathogen that causes a variety of infections, including urinary, respiratory, and other soft-tissue infections, particularly in hospitalized patients with immune defects, cystic fibrosis, or significant burns. Antimicrobial resistance is a substantial problem in P. aeruginosa treatment due to the inherent insensitivity of the pathogen to a wide variety of antimicrobial drugs and its rapid acquisition of additional resistance mechanisms. One strategy to circumvent this problem is the use of anti-virulent compounds to disrupt pathogenesis without directly compromising bacterial growth. One of the principle regulatory mechanisms for P. aeruginosa’s virulence is the iron-scavenging siderophore pyoverdine, as it governs in-host acquisition of iron, promotes expression of multiple virulence factors, and is directly toxic. Some combination of these activities renders pyoverdine indispensable for pathogenesis in mammalian models. Here we report identification of a panel of novel small molecules that disrupt pyoverdine function. These molecules directly act on pyoverdine, rather than affecting its biosynthesis. The compounds reduce the pathogenic effect of pyoverdine and improve the survival of Caenorhabditis elegans when challenged with P. aeruginosa by disrupting only this single virulence factor. Finally, these compounds can synergize with conventional antimicrobials, forming a more effective treatment. These compounds may help to identify, or be modified to become, viable drug leads in their own right. Finally, they also serve as useful tool compounds to probe pyoverdine activity.
Collapse
Affiliation(s)
- Daniel R Kirienko
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, United States
| | | |
Collapse
|
21
|
Albelda-Berenguer M, Monachon M, Joseph E. Siderophores: From natural roles to potential applications. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:193-225. [PMID: 30798803 DOI: 10.1016/bs.aambs.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Siderophores are secondary metabolites produced by different organisms in order to scavenge iron from their surrounding environment making this essential element available to the cell. Presenting high affinity for ferric iron, siderophores are secreted out to form soluble ferric complexes that can be taken up by the organisms. Siderophores present complex chemistry that allows them to form the strongest iron-chelating complexes. Interest in this field is always up to date and new siderophores are found with new roles and applications. For example, siderophores participate to the mobilization of iron and other elements and are involved in virulence processes. Recently, a strong relation between siderophores and oxidative stress tolerance has been also highlighted. Their application in medicine has been widely studied as well as in agriculture. However, new fields are paying attention to the use of siderophores as green-iron chelators. In particular, siderophores have been proposed for the preservation of cultural heritage.
Collapse
Affiliation(s)
- Magdalena Albelda-Berenguer
- Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Mathilde Monachon
- Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Edith Joseph
- Laboratory of Technologies for Heritage Materials, Institute of Chemistry, University of Neuchâtel, Neuchâtel, Switzerland; Haute Ecole Arc Conservation-Restauration, Neuchâtel, Switzerland.
| |
Collapse
|
22
|
Müller T, Ruppel S, Behrendt U, Lentzsch P, Müller MEH. Antagonistic Potential of Fluorescent Pseudomonads Colonizing Wheat Heads Against Mycotoxin Producing Alternaria and Fusaria. Front Microbiol 2018; 9:2124. [PMID: 30250459 PMCID: PMC6139315 DOI: 10.3389/fmicb.2018.02124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Natural control of phytopathogenic microorganisms is assumed as a priority function of the commensal plant microbiota. In this study, the suitability of fluorescent pseudomonads in the phyllosphere of crop plants as natural control agents was evaluated. Under field conditions, ears of winter wheat were found to be colonized with high consistency and at a high density by pseudomonads at the late milk dough stage. Isolates of these bacteria were evaluated for their potential to protect the plants from phytopathogenic Alternaria and Fusarium fungi. More Pseudomonas isolates were antagonistically active against alternaria than against fusaria in the dual culture test. The alternaria responded species-specifically and more sensitively to bacterial antagonism than the strain-specific reacting fusaria. A total of 110 randomly selected Pseudomonas isolates were screened for genes involved in the biosynthesis of the antibiotics 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid, pyoluteorin, and pyrrolnitrin. The key gene for production of the phloroglucinol was found in none of these isolates. At least one of the genes, encoding the biosynthesis of the other antibiotics was detected in 81% of the isolates tested. However, the antagonistic effect found in the dual culture assay was not necessarily associated with the presence of these antibiotic genes. Wheat grains as natural substrate were inoculated with selected antagonistic Pseudomonas isolates and Alternaria and Fusarium strains, respectively. The fungal growth was only slightly delayed, but the mycotoxin production was significantly reduced in most of these approaches. In conclusion, the distribution of phytopathogenic fungi of the genera Alternaria and Fusarium in the field is unlikely to be inhibited by naturally occurring pseudomonads, also because the bacterial antagonists were not evenly distributed in the field. However, pseudomonads can reduce the production of Alternaria and Fusarium mycotoxins in wheat grains and thus have the potential to improve the crop quality.
Collapse
Affiliation(s)
- Thomas Müller
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Peter Lentzsch
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
23
|
Chemical characterization and ligand behaviour of Pseudomonas veronii 2E siderophores. World J Microbiol Biotechnol 2018; 34:134. [PMID: 30120613 DOI: 10.1007/s11274-018-2519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Siderophores are low-molecular weight ligands secreted by bacteria as a survival strategy in Fe(III)-lacking environments. They bind not only Fe(III), but Co(II), Zn(II), Mn(II), Ni(II), Ga(III) as a detoxification alternative. The synthesis, purification and characterization of siderophores produced by Pseudomonas veronii 2E were evaluated to be applied in future environmental technologies. Optimal production was obtained in Fe(III)-free M9-succinate at 25 °C, 40 h and pH 6.9. Siderophores were chemically characterized as hydroxamate and catechol mixed-type. Spectroscopic analysis indicated their belonging to the pyoverdine family, behaving as ligand to Cd(II), Zn(II), Cu(II), Ni(II) and Cr(III), which promoted siderophoregenesis during growth. Siderophore-Cd(II) complexation was studied by electrochemical monitored titration revealing one family of moderate-strength binding sites. Mass spectral analysis evidenced the secretion of a variety of molecules (molecular mass ca.1200 u). Non pathogenic Pseudomonas veronii 2E siderophores represent a safe alternative for the concrete application of environmental technologies and clinical procedures.
Collapse
|
24
|
Spanu C, Piras F, Mocci AM, Nieddu G, De Santis EPL, Scarano C. Use of Carnobacterium spp protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol 2018; 74:50-56. [PMID: 29706337 DOI: 10.1016/j.fm.2018.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/15/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Ricotta fresca is a whey cheese susceptible of secondary contamination, mainly from Pseudomonas spp. The extension of the shelf life of refrigerated ricotta fresca could be obtained using protective cultures inhibiting the growth of this spoilage microorganism. A commercial biopreservative, Lyofast CNBAL, comprising Carnobacterium spp was tested against Pseudomonas spp. The surface of ricotta fresca samples were inoculated either with Pseudomonas spp or Pseudomonas and Carnobacterium spp. Samples were MAP packed, stored at 4 °C and analyzed the day of the inoculum and 7, 14 and 21 days after the contamination. Microbiological analyses included total bacterial count, mesophilic lactic acid bacteria, Enterobacteriaceae, Pseudomonas spp, Listeria monocytogenes, moulds and yeasts. Pseudomonas mean initial contamination level was comparable in blank and artificially inoculated samples, respectively with values of 2.15 ± 0.21 and 2.34 ± 0.26 log cfu g-1. Carnobacterium spp. significantly reduced the growth of Pseudomonas spp respectively of 1.28 log and 0.83 log after 14 and 21 days of refrigerated storage. Intrinsic properties and physico-chemical composition were also investigated. Limited variation of pH was observed in samples inoculated with the protective cultures, indicating low acidification properties of Carnobacterium spp. Instead, no significant differences were observed for aW, moisture, fat and proteins during storage and between inoculated and control samples.
Collapse
Affiliation(s)
- C Spanu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - F Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - A M Mocci
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - G Nieddu
- Cooperativa Allevatori Ovini Formaggi Soc. Coop. Agricola, Loc. "Perda Lada" Fenosu, 09170, Oristano, Italy
| | - E P L De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - C Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
25
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
26
|
Ely CS, Smets BF. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:877-883. [PMID: 28318300 DOI: 10.1080/15226514.2017.1303805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) have been isolated from the rhizospheres of plant species with varied biological traits; however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds-morin, caffeic acid, and protocatechuic acid-appear to be linked to bacterial degradation of 3- and 4-ring PAHs in the rhizosphere.
Collapse
Affiliation(s)
- Cairn S Ely
- a Department of Engineering , Central Connecticut State University , New Britain , CT , USA
| | - Barth F Smets
- b Department of Environmental Engineering , Technical University of Denmark , Lyngby , Denmark
| |
Collapse
|
27
|
Bruce JB, Cooper GA, Chabas H, West SA, Griffin AS. Cheating and resistance to cheating in natural populations of the bacteriumPseudomonas fluorescens. Evolution 2017; 71:2484-2495. [DOI: 10.1111/evo.13328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Affiliation(s)
- John B. Bruce
- Department of Zoology; University of Oxford; Oxford UK
| | - Guy A. Cooper
- Department of Zoology; University of Oxford; Oxford UK
| | - Hélène Chabas
- CEFE UMR 5175, CNRS-Université de Montpellier; Université Paul-Valéry Montpellier; Montpellier Cedex 5 France
| | | | | |
Collapse
|
28
|
Sexton DJ, Glover RC, Loper JE, Schuster M. Pseudomonas protegens
Pf‐5 favours self‐produced siderophore over free‐loading in interspecies competition for iron. Environ Microbiol 2017. [DOI: 10.1111/1462-2920.13836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Joseph Sexton
- Department of MicrobiologyOregon State UniversityCorvallis, OR 97331 USA
| | - Rochelle C. Glover
- Department of MicrobiologyOregon State UniversityCorvallis, OR 97331 USA
| | - Joyce E. Loper
- US Department of AgricultureAgricultural Research Service, 3420 N.W. Orchard AveCorvallis, OR 97330 USA
- Department of Botany and Plant PathologyOregon State UniversityCorvallis, OR 97331 USA
| | - Martin Schuster
- Department of MicrobiologyOregon State UniversityCorvallis, OR 97331 USA
| |
Collapse
|
29
|
Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major). PLoS One 2017; 12:e0179945. [PMID: 28662106 PMCID: PMC5491070 DOI: 10.1371/journal.pone.0179945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract of vertebrates is inhabited by diverse bacterial communities that induce marked effects on the host physiology and health status. The composition of the gastrointestinal microbiota is characterized by pronounced taxonomic and functional variability among different regions of the vertebrate gastrointestinal tract. Despite the relatively solid knowledge on the among-region variations of the gastrointestinal microbiota in model mammalian species, there are only a few studies concerning among-region variations of the gastrointestinal microbiota in free-living non-mammalian vertebrate taxa. We used Illumina MiSeq sequencing of bacterial 16S rRNA amplicons to compare the diversity as well as taxonomic composition of bacterial communities in proximal vs. distal parts of the gastrointestinal tract (represented by oral swabs and faecal samples, respectively) in a wild passerine bird, the great tit (Parus major). The diversity of the oral microbiota was significantly higher compared to the faecal microbiota, whereas interindividual variation was higher in faecal than in oral samples. We also observed a pronounced difference in taxonomic content between the oral and faecal microbiota. Bacteria belonging to the phyla Proteobacteria, Firmicutes and Actinobacteria typically dominated in both oral and faecal samples. A high abundance of bacteria belonging to Tenericutes was observed only in faecal samples. Surprisingly, we found only a slight correlation between the faecal and oral microbiota at the within-individual level, suggesting that the microbial composition in these body sites is shaped by independent regulatory processes. Given the independence of these two communities at the individual level, we propose that simultaneous sampling of the faecal and oral microbiota will extend our understanding of host vs. microbiota interactions in wild populations.
Collapse
|
30
|
A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence. mSphere 2016; 1:mSphere00217-16. [PMID: 27579370 PMCID: PMC4999921 DOI: 10.1128/msphere.00217-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent. Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent.
Collapse
|
31
|
Pala C, Scarano C, Venusti M, Sardo D, Casti D, Cossu F, Lamon S, Spanu V, Ibba M, Marras M, Paba A, Spanu C, De Santis EPL. Shelf Life Evaluation of Ricotta Fresca Sheep Cheese in Modified Atmosphere Packaging. Ital J Food Saf 2016; 5:5502. [PMID: 27853705 PMCID: PMC5090109 DOI: 10.4081/ijfs.2016.5502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022] Open
Abstract
Ricotta fresca cheese is the product of Sardinian dairy industry most exposed to microbial post-process contamination. Due to its technological characteristics, intrinsic parameters, pH (6.10-6.80) and water activity (0.974-0.991), it represents an excellent substrate for the growth of spoilage and pathogenic microorganisms, which are usually resident in cheese-making plants environments. Generally, ricotta fresca has a shelf life of 5-7 days. For this reason, at industrial level, modified atmosphere packaging (MAP) is used to extend the durability of the product. However, few investigations have been conducted to validate the use of MAP in ricotta fresca. The aim of this work is to evaluate the shelf life of ricotta fresca under MAP. A total of 108 samples were collected from three Sardinian industrial cheese-making plants and analysed within 24 h after packaging and after 7, 14 and 21 days of refrigerated storage. Aerobic mesophilic bacteria, mesophilic and thermophilic cocci and lactobacilli, Enterobacteriaceae and E. coli, L. monocytogenes, Pseudomonas spp, Bacillus cereus, yeasts and moulds, and the chemical-physical parameters and composition of the product were determined. At the end of the shelf life, Pseudomonas spp. and Enterobacteriaceae reached high concentrations, 5 to 7 and 3 to 6 log10 colony forming unit g-1, respectively. The presence of environmental contaminants indicates that the use of MAP without the appropriate implementation of prerequisite programmes is not sufficient to extend the durability of ricotta fresca. Gas mixture and packaging material should be selected only on the basis of scientific evidence of their effectiveness.
Collapse
Affiliation(s)
- Carlo Pala
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | | | - Daniela Sardo
- LAORE Sardinia Agency , Zootechnical Production Department, Sassari, Italy
| | - Daniele Casti
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Francesca Cossu
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Sonia Lamon
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Vincenzo Spanu
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Michela Ibba
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Michela Marras
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | - Antonio Paba
- AGRIS Sardinia Agency , Department of Research on Animal Production, Sassari, Italy
| | - Carlo Spanu
- Department of Veterinary Medicine, University of Sassari , Sassari, Italy
| | | |
Collapse
|
32
|
Avellan A, Auffan M, Masion A, Levard C, Bertrand M, Rose J, Santaella C, Achouak W. Remote Biodegradation of Ge-Imogolite Nanotubes Controlled by the Iron Homeostasis of Pseudomonas brassicacearum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7791-7798. [PMID: 27347687 DOI: 10.1021/acs.est.6b01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The toxicity of high-aspect-ratio nanomaterials (HARNs) is often associated with oxidative stress. The essential nutrient Fe may also be responsible of oxidative stress through the production of reactive oxygen species. In the present study, it has been examined to what extent adding Fenton reaction promoting Fe impacted the toxicity of an alumino-germanate model HARN. Structural addition of only 0.95% wt Fe to Ge-imogolite not only alleviated the toxicity observed in the case of Fe-free nanotubes but also stimulated bacterial growth. This was attributed to the metabolization of siderophore-mobilized Fe from the nanotube structure. This was evidenced by the regulation of the homeostasis-monitoring intracellular Fe levels. This was accompanied by a biodegradation of the nanotubes approaching 40%, whereas the Fe-free nanomaterial remained nearly untouched.
Collapse
Affiliation(s)
- Astrid Avellan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Melanie Auffan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Armand Masion
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Clément Levard
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Marie Bertrand
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Jérôme Rose
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Wafa Achouak
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| |
Collapse
|
33
|
Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration. J Colloid Interface Sci 2016; 467:17-27. [DOI: 10.1016/j.jcis.2015.12.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
|
34
|
Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis. Biometals 2016; 29:467-85. [DOI: 10.1007/s10534-016-9929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/19/2016] [Indexed: 12/17/2022]
|
35
|
Embaby AM, Heshmat Y, Hussein A. Unusual non-fluorescent broad spectrum siderophore activity (SID EGYII) by Pseudomonas aeruginosa strain EGYII DSM 101801 and a new insight towards simple siderophore bioassay. AMB Express 2016; 6:26. [PMID: 27015845 PMCID: PMC4808072 DOI: 10.1186/s13568-016-0192-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/08/2016] [Indexed: 01/12/2023] Open
Abstract
Present study highlights an unusual non-fluorescent hydroxamate broad spectrum siderophore (SID EGYII) activity from Pseudomonas aeruginosa strain EGYII DSM 101801, a soil bacterial isolate, along with simple low cost effective siderophore bioassay. Detection of SID EGYII activity qualitatively was proved by masking this activity against Erwinia amylovora strain EGY1 DSM 101800, an indicator strain, in well-cut diffusion assay containing 100 µM FeCl3. SID EGYII activity was expressed quantitatively as arbitrary units [Siderophore arbitrary units (SAU)] 380 SAU/mL against E. amylovora strain EGY1 DSM 101800. Maximal SID EGYII activity was achieved upon growing P. aeruginosa strain EGYII DSM 101801 in PYB broth at 180 rpm for 24 h. SID EGYII displayed a broad spectrum antimicrobial activity against some human pathogens (i.e., Gram-positive bacteria, Gram-negative bacteria and yeasts) and a fireblight plant pathogen. Interestingly, transformants of Escherichia coli JM109 (DE3)pSID/EGYII harboring P. aeruginosa strain EGYII DSM 101801 plasmid demonstrated a perceivable antimicrobial activity against E. amylovora strain EGY1 DSM 101800. The broad spectrum antimicrobial activity of the unusual non-fluorescent SID EGYII would underpin its high potential in targeting bacterial pathogens posing probable threats to human health and agricultural economy. The present simple low cost effective bioassay is a new insight towards an alternative to the expensive cumbersome siderophore Chrome Azurol S assay.
Collapse
Affiliation(s)
- Amira M. Embaby
- />Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, 163 Horreya Avenue, Chatby, P.O. Box 832, Alexandria, 21526 Egypt
| | - Yasmin Heshmat
- />Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, 163 Horreya Avenue, Chatby, P.O. Box 832, Alexandria, 21526 Egypt
| | - Ahmed Hussein
- />Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, 163 Horreya Avenue, Chatby, P.O. Box 832, Alexandria, 21526 Egypt
- />Department of Chemistry and Biochemistry, Texas Tech University, TX Lubbock, USA
| |
Collapse
|
36
|
Dane PR, Pawar SP, Kankariya RA, Chaudhari BL. Pyoverdin mediated sunlight induced green synthesis of silver nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra20856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this work was to check the ability of a siderophore, pyoverdin, a natural iron chelating compound of bacterial origin to produce silver nanoparticles (AgNps) under sunlight.
Collapse
Affiliation(s)
- Prashant R. Dane
- Department of Microbiology
- School of Life Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| | - Shraddha P. Pawar
- Department of Microbiology
- School of Life Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| | - Raksha A. Kankariya
- Department of Microbiology
- School of Life Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| | - Bhushan L. Chaudhari
- Department of Microbiology
- School of Life Sciences
- North Maharashtra University
- Jalgaon-425001
- India
| |
Collapse
|
37
|
Jayamohan NS, Manohar SH, Kumudini BS. Genomic and outer membrane protein diversity fingerprints of siderophore producing fluorescent Pseudomonas spp. using RAPD, Rep-PCR and SDS-PAGE profiling. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Müller T, Behrendt U, Ruppel S, von der Waydbrink G, Müller MEH. Fluorescent Pseudomonads in the Phyllosphere of Wheat: Potential Antagonists Against Fungal Phytopathogens. Curr Microbiol 2015; 72:383-9. [PMID: 26687461 DOI: 10.1007/s00284-015-0966-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Fluorescent pseudomonads isolated from wheat leaves were characterized regarding their antagonistic potential and taxonomy in relation to protect crop plants from infestation by Fusarium and Alternaria fungi causing diseases in wheat. Using a dual culture assay, inhibition of fungal growth was found for 40 isolates of 175 fluorescent pseudomonads. Twenty-two of the antagonists were able to suppress strains of Fusarium as well as Alternaria. By means of real-time qPCR, the phlD gene encoding the antibiotic 2,4-diacetylphloroglucinol was detected in 20 isolates. On the basis of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectral patterns, the isolates with antagonistic activity were assigned to the phylogenetic subgroup Pseudomonas fluorescens and the closely related Pseudomonas gessardii subgroup. The results of the study suggest that pseudomonads in the phyllosphere of crop plants may possibly contribute to natural plant protection.
Collapse
Affiliation(s)
- Thomas Müller
- Institute of Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Undine Behrendt
- Institute of Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren/Erfurt, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Grit von der Waydbrink
- Institute of Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Marina E H Müller
- Institute of Landscape Biogeochemistry, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
39
|
Carrascosa C, Millán R, Jaber JR, Lupiola P, del Rosario-Quintana C, Mauricio C, Sanjuán E. Blue pigment in fresh cheese produced by Pseudomonas fluorescens. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Van Der Voort M, Meijer HJG, Schmidt Y, Watrous J, Dekkers E, Mendes R, Dorrestein PC, Gross H, Raaijmakers JM. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front Microbiol 2015. [PMID: 26217324 PMCID: PMC4493835 DOI: 10.3389/fmicb.2015.00693] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The plant microbiome represents an enormous untapped resource for discovering novel genes and bioactive compounds. Previously, we isolated Pseudomonas sp. SH-C52 from the rhizosphere of sugar beet plants grown in a soil suppressive to the fungal pathogen Rhizoctonia solani and showed that its antifungal activity is, in part, attributed to the production of the chlorinated 9-amino-acid lipopeptide thanamycin (Mendes et al., 2011). To get more insight into its biosynthetic repertoire, the genome of Pseudomonas sp. SH-C52 was sequenced and subjected to in silico, mutational and functional analyses. The sequencing revealed a genome size of 6.3 Mb and 5579 predicted ORFs. Phylogenetic analysis placed strain SH-C52 within the Pseudomonas corrugata clade. In silico analysis for secondary metabolites revealed a total of six non-ribosomal peptide synthetase (NRPS) gene clusters, including the two previously described NRPS clusters for thanamycin and the 2-amino acid antibacterial lipopeptide brabantamide. Here we show that thanamycin also has activity against an array of other fungi and that brabantamide A exhibits anti-oomycete activity and affects phospholipases of the late blight pathogen Phytophthora infestans. Most notably, mass spectrometry led to the discovery of a third lipopeptide, designated thanapeptin, with a 22-amino-acid peptide moiety. Seven structural variants of thanapeptin were found with varying degrees of activity against P. infestans. Of the remaining four NRPS clusters, one was predicted to encode for yet another and unknown lipopeptide with a predicted peptide moiety of 8-amino acids. Collectively, these results show an enormous metabolic potential for Pseudomonas sp. SH-C52, with at least three structurally diverse lipopeptides, each with a different antimicrobial activity spectrum.
Collapse
Affiliation(s)
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Yvonne Schmidt
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Jeramie Watrous
- Departments of Pharmacology and Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego San Diego, CA, USA
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Rodrigo Mendes
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands ; Brazilian Agricultural Research Corporation, Embrapa Environment Jaguariuna, Brazil
| | - Pieter C Dorrestein
- Departments of Pharmacology and Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego San Diego, CA, USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen Tübingen, Germany
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands ; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| |
Collapse
|
41
|
Wei H, Aristilde L. Structural characterization of multiple pyoverdines secreted by two Pseudomonas strains using liquid chromatography-high resolution tandem mass spectrometry with varying dissociation energies. Anal Bioanal Chem 2015; 407:4629-38. [DOI: 10.1007/s00216-015-8659-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
|
42
|
Ferret C, Cornu JY, Elhabiri M, Sterckeman T, Braud A, Jezequel K, Lollier M, Lebeau T, Schalk IJ, Geoffroy VA. Effect of pyoverdine supply on cadmium and nickel complexation and phytoavailability in hydroponics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2106-2116. [PMID: 25167822 DOI: 10.1007/s11356-014-3487-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
Siderophores are chelators with a high selectivity for Fe(III) and a good affinity for divalent metals, including Cd(II) and Ni(II). Inoculation with siderophore-producing bacteria (SPB) has thus been proposed as an alternative to chelator supply in phytoremediation. Accurate assessments of the potential of this association require a dissection of the interaction of siderophores with metals at the soil-root interface. This study focuses on pyoverdine (Pvd), the main siderophore produced by Pseudomonas aeruginosa. We first assessed the ability of Pvd to coordinate Ni(II). The stability constant of Pvd-Ni(II) (log K (L'Ni) = 10.9) was found to be higher than that of Pvd-Cd(II) (log K (L'Cd) = 8.2). We then investigated the effect of a direct supply of Pvd on the mobilization, speciation, and phytoavailability of Cd and Ni in hydroponics. When supplied at a concentration of 50 μM, Pvd selectively promoted Ni mobilization from smectite. It decreased plant Ni and Cd contents and the free ionic fractions of these two metals, consistent with the free ion activity model. Pvd had a more pronounced effect for Ni than for Cd, as predicted from its coordination properties. Inoculation with P. aeruginosa had a similar effect on Ni phytoavailability to the direct supply of Pvd.
Collapse
Affiliation(s)
- C Ferret
- UMR 7242 CNRS-Université de Strasbourg, ESBS, 300 Boulevard Sébastien Brant, F-67412, Illkirch cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Type III secretion system and virulence markers highlight similarities and differences between human- and plant-associated pseudomonads related to Pseudomonas fluorescens and P. putida. Appl Environ Microbiol 2015; 81:2579-90. [PMID: 25636837 DOI: 10.1128/aem.04160-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this secretion system in plant-associated P. fluorescens raise the question of whether clinical isolates may also harbor T3SSs. In this study, isolates associated with clinical infections and identified in hospitals as belonging to P. fluorescens were compared with fluorescent pseudomonads harboring T3SSs isolated from plants. Bacterial isolates were tested for (i) their genetic relationships based on their 16S rRNA phylogeny, (ii) the presence of T3SS genes by PCR, and (iii) their infectious potential on animals and plants under environmental or physiological temperature conditions. Two groups of bacteria were delineated among the clinical isolates. The first group encompassed thermotolerant (41°C) isolates from patients suffering from blood infections; these isolates were finally found to not belong to P. fluorescens but were closely related and harbored highly conserved T3SS genes belonging to the Ysc-T3SS family, like the T3SSs from P. aeruginosa. The second group encompassed isolates from patients suffering from cystic fibrosis; these isolates belonged to P. fluorescens and harbored T3SS genes belonging to the Hrp1-T3SS family found commonly in plant-associated P. fluorescens.
Collapse
|
44
|
Lee SW, Parker DL, Geszvain K, Tebo BM. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1. Front Microbiol 2014; 5:301. [PMID: 25009534 PMCID: PMC4070179 DOI: 10.3389/fmicb.2014.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB-1 and confirmed its function by in-frame mutagenesis. Growth and other physiological responses of these two mutants and of wild type were compared during cultivation in the presence of three chemically distinct sets of PVDs (siderotypes n°1, n°2, and n°4) derived from various pseudomonads. Under iron-limiting conditions, Fe(III) complexes of various siderotype n°1 PVDs (including PVDGB-1) allowed growth of wild type and the synthetase mutant, but not the receptor mutant, confirming that iron uptake with any tested siderotype n°1 PVD depended on PputGB1_4082. Fe(III) complexes of a siderotype n°2 PVD were not utilized by any strain and strongly induced PVD synthesis. In contrast, Fe(III) complexes of siderotype n°4 PVDs promoted the growth of all three strains and did not induce PVD synthesis by the wild type, implying these complexes were utilized for iron uptake independent of PputGB1_4082. These differing properties of the three PVD types provided a way to differentiate between effects on MnO2 formation that resulted from iron limitation and others that required participation of the PVDGB-1 receptor. Specifically, MnO2 production was inhibited by siderotype n°1 but not n°4 PVDs indicating PVD synthesis or PputGB1_4082 involvement rather than iron-limitation caused the inhibition. In contrast, iron limitation was sufficient to explain the inhibition of Mn(II) oxidation by siderotype n°2 PVDs. Collectively, our results provide insight into how competition for iron via siderophores influences growth, iron nutrition and MnO2 formation in more complex environmental systems.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| | - Dorothy L Parker
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego San Diego, CA, USA
| | - Kati Geszvain
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
45
|
PvdP is a tyrosinase that drives maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. J Bacteriol 2014; 196:2681-90. [PMID: 24816606 DOI: 10.1128/jb.01376-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron binding siderophore pyoverdine constitutes a major adaptive factor contributing to both virulence and survival in fluorescent pseudomonads. For decades, pyoverdine production has allowed the identification and classification of fluorescent and nonfluorescent pseudomonads. Here, we demonstrate that PvdP, a periplasmic enzyme of previously unknown function, is a tyrosinase required for the maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. PvdP converts the nonfluorescent ferribactin, containing two iron binding groups, into a fluorescent pyoverdine, forming a strong hexadentate complex with ferrous iron, by three consecutive oxidation steps. PvdP represents the first characterized member of a small family of tyrosinases present in fluorescent pseudomonads that are required for siderophore maturation and are capable of acting on large peptidic substrates.
Collapse
|
46
|
Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7:196-208. [PMID: 24576157 PMCID: PMC3992016 DOI: 10.1111/1751-7915.12117] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022] Open
Abstract
Siderophores are organic compounds with low molecular masses that are produced by microorganisms and plants growing under low iron conditions. The primary function of these compounds is to chelate the ferric iron [Fe(III)] from different terrestrial and aquatic habitats and thereby make it available for microbial and plant cells. Siderophores have received much attention in recent years because of their potential roles and applications in various areas of environmental research. Their significance in these applications is because siderophores have the ability to bind a variety of metals in addition to iron, and they have a wide range of chemical structures and specific properties. For instance, siderophores function as biocontrols, biosensors, and bioremediation and chelation agents, in addition to their important role in weathering soil minerals and enhancing plant growth. The aim of this literature review is to outline and discuss the important roles and functions of siderophores in different environmental habitats and emphasize the significant roles that these small organic molecules could play in applied environmental processes.
Collapse
Affiliation(s)
- E Ahmed
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
47
|
Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. Human gut microbes use multiple transporters to distinguish vitamin B₁₂ analogs and compete in the gut. Cell Host Microbe 2014; 15:47-57. [PMID: 24439897 PMCID: PMC3923405 DOI: 10.1016/j.chom.2013.12.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/13/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
Genomic and metagenomic sequencing efforts, including human microbiome projects, reveal that microbes often encode multiple systems that appear to accomplish the same task. Whether these predictions reflect actual functional redundancies is unclear. We report that the prominent human gut symbiont Bacteroides thetaiotaomicron employs three functional, homologous vitamin B₁₂ transporters that in at least two cases confer a competitive advantage in the presence of distinct B₁₂ analogs (corrinoids). In the mammalian gut, microbial fitness can be determined by the presence or absence of a single transporter. The total number of distinct corrinoid transporter families in the human gut microbiome likely exceeds those observed in B. thetaiotaomicron by an order of magnitude. These results demonstrate that human gut microbes use elaborate mechanisms to capture and differentiate corrinoids in vivo and that apparent redundancies observed in these genomes can instead reflect hidden specificities that determine whether a microbe will colonize its host.
Collapse
Affiliation(s)
- Patrick H Degnan
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University, New Haven, CT 06536, USA
| | - Natasha A Barry
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University, New Haven, CT 06536, USA
| | - Kenny C Mok
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michiko E Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Diversity Institute, Yale University, New Haven, CT 06536, USA.
| |
Collapse
|
48
|
Abstract
Iron is an important element for almost all forms of life. In order to get access to this essential nutriment, Pseudomonads produce two major siderophores, pyoverdine PVD and pyochelin (PCH). Uptake of iron in bacterial cells can be monitored accurately using (55)Fe. Bacteria cells are incubated in the presence of either PVD or PCH loaded with (55)Fe. After incubation, extracellular iron ions are separated from those accumulated in the bacteria cells by either centrifugation or filtration on glass microfiber filters, for the PCH and PVD assays, respectively. (55)Fe contained in the harvested cells on the filter or in the cell pellet is counted in scintillation cocktail. The number of moles of (55)Fe transported can be determined using the specific activity of the radionuclide.
Collapse
Affiliation(s)
- Françoise Hoegy
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, Illkirch, Strasbourg, F-67413, France
| | | |
Collapse
|
49
|
Unni KN, Priji P, Geoffroy VA, Doble M, Benjamin S. <i>Pseudomonas aeruginosa</i> BUP2—A Novel Strain Isolated from Malabari Goat Produces Type 2 Pyoverdine. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.511102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|