1
|
Zhang B, Hu X, Zhao D, Wang Y, Qu J, Tao Y, Kang Z, Yu H, Zhang J, Zhang Y. Harnessing microbial biofilms in soil ecosystems: Enhancing nutrient cycling, stress resilience, and sustainable agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122973. [PMID: 39437688 DOI: 10.1016/j.jenvman.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Soil ecosystems are complex networks of microorganisms that play pivotal roles in nutrient cycling, stress resilience, and the provision of ecosystem services. Among these microbial communities, soil biofilms, and complex aggregations of microorganisms embedded within extracellular polymeric substances (EPS) exert significant influence on soil health and function. This review delves into the dynamics of soil biofilms, highlighting their structural intricacies and the mechanisms by which they facilitate nutrient cycling, and discusses how biofilms enhance the degradation of pollutants through the action of extracellular enzymes and horizontal gene transfer, contributing to soil detoxification and fertility. Furthermore, the role of soil biofilms in stress resilience is underscored, as they form symbiotic relationships with plants, bolstering their growth and resistance to environmental stressors. The review also explores the ecological functions of biofilms in enhancing soil structure stability by promoting aggregate formation, which is crucial for water retention and aeration. By integrating these insights, we aim to provide a comprehensive understanding of the multifaceted benefits of biofilms in soil ecosystems. This knowledge is essential for developing strategies to manipulate soil biofilms to improve agricultural productivity and ecological sustainability. This review also identifies research gaps and emphasizes the need for practical applications of biofilms in sustainable agriculture.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaoying Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Donglin Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin, 150050, PR China
| | - Hongqi Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Hirsch AM, Humm E, Rubbi M, del Vecchio G, Ha SM, Pellegrini M, Gunsalus RP. Complete genomes of two Variovorax endophytes isolated from surface-sterilized alfalfa nodules. Microbiol Resour Announc 2024; 13:e0033624. [PMID: 38967468 PMCID: PMC11320970 DOI: 10.1128/mra.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Variovorax species catabolize a wide range of natural and industrial products and have been shown to be integral rhizosphere inhabitants. Here, we report the complete genomes of V. paradoxus 2u118 and V. sp. SPNA7, which were isolated from alfalfa root nodules and possess plant growth-promoting properties.
Collapse
Affiliation(s)
- Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Ethan Humm
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Mila Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Giorgia del Vecchio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
- UCLA DOE Institute, University of California, Los Angeles, California, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- UCLA DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Sosnowska A, Hęclik KI, Kisała JB, Celuch M, Pogocki D. Perspectives for Photocatalytic Decomposition of Environmental Pollutants on Photoactive Particles of Soil Minerals. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3975. [PMID: 39203153 PMCID: PMC11356147 DOI: 10.3390/ma17163975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
The literature shows that both in laboratory and in industrial conditions, the photocatalytic oxidation method copes quite well with degradation of most environmental toxins and pathogenic microorganisms. However, the effective utilization of photocatalytic processes for environmental decontamination and disinfection requires significant technological advancement in both the area of semiconductor material synthesis and its application. Here, we focused on the presence and "photocatalytic capability" of photocatalysts among soil minerals and their potential contributions to the environmental decontamination in vitro and in vivo. Reactions caused by sunlight on the soil surface are involved in its normal redox activity, taking part also in the soil decontamination. However, their importance for decontamination in vivo cannot be overstated, due to the diversity of soils on the Earth, which is caused by the environmental conditions, such as climate, parent material, relief, vegetation, etc. The sunlight-induced reactions are just a part of complicated soil chemistry processes dependent on a plethora of environmental determinates. The multiplicity of affecting factors, which we tried to sketch from the perspective of chemists and environmental scientists, makes us rather skeptical about the effectiveness of the photocatalytic decontamination in vivo. On the other hand, there is a huge potential of the soils as the alternative and probably cheaper source of useful photocatalytic materials of unique properties. In our opinion, establishing collaboration between experts from different disciplines is the most crucial opportunity, as well as a challenge, for the advancement of photocatalysis.
Collapse
Affiliation(s)
- Agnieszka Sosnowska
- Department of Landscape Architecture, Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland;
| | - Kinga I. Hęclik
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland; (K.I.H.); (J.B.K.)
| | - Joanna B. Kisała
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland; (K.I.H.); (J.B.K.)
| | - Monika Celuch
- Łukasiewicz Research Network—Warsaw Institute of Technology, Duchnicka 3, 01-796 Warsaw, Poland;
| | - Dariusz Pogocki
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
4
|
Hu Z, Qian C, Wang H, Sun L, Wu C, Zhang G, Han X, Wang C, Ma T, Yang D. Comprehensive toxicological, metabolomic, and transcriptomic analysis of the biodegradation and adaptation mechanism by Achromobacter xylosoxidans SL-6 to diuron. Front Microbiol 2024; 15:1403279. [PMID: 38912345 PMCID: PMC11192067 DOI: 10.3389/fmicb.2024.1403279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradation was considered a promising and environmentally friendly method for treating environmental pollution caused by diuron. However, the mechanisms of biodegradation of diuron required further research. In this study, the degradation process of diuron by Achromobacter xylosoxidans SL-6 was systematically investigated. The results suggested that the antioxidant system of strain SL-6 was activated by adding diuron, thereby alleviating their oxidative stress response. In addition, degradation product analysis showed that diuron in strain SL-6 was mainly degraded by urea bridge cleavage, dehalogenation, deamination, and ring opening, and finally cis, cis-muconic acid was generated. The combined analysis of metabolomics and transcriptomics revealed the biodegradation and adaptation mechanism of strain SL-6 to diuron. Metabolomics analysis showed that after the strain SL-6 was exposed to diuron, metabolic pathways such as tricarboxylic acid cycle (cis, cis-muconic acid), glutathione metabolism (oxidized glutathione), and urea cycle (arginine) were reprogrammed in the cells. Furthermore, diuron could induce the production of membrane transport proteins in strain SL-6 cells and overexpress antioxidant enzyme genes, finally ultimately promoting the up-regulation of genes encoding amide hydrolases and dioxygenases, which was revealed by transcriptomics studies. This work enriched the biodegradation mechanism of phenylurea herbicides and provided guidance for the removal of diuron residues in the environment and promoting agriculture sustainable development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, China
| |
Collapse
|
5
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
6
|
Meyer C, Jeanbille M, Breuil MC, Bru D, Höfer K, Screpanti C, Philippot L. Soil microbial community fragmentation reveals indirect effects of fungicide exposure mediated by biotic interactions between microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134231. [PMID: 38598881 DOI: 10.1016/j.jhazmat.2024.134231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Fungicides are used worldwide to improve crop yields, but they can affect non-target soil microorganisms which are essential for ecosystem functioning. Microorganisms form complex communities characterized by a myriad of interspecies interactions, yet it remains unclear to what extent non-target microorganisms are indirectly affected by fungicides through biotic interactions with sensitive taxa. To quantify such indirect effects, we fragmented a soil microbial community by filtration to alter biotic interactions and compared the effect of the fungicide hymexazol between fractions in soil microcosms. We postulated that OTUs which are indirectly affected would exhibit a different response to the fungicide across the fragmented communities. We found that hymexazol primarily affected bacterial and fungal communities through indirect effects, which were responsible for more than 75% of the shifts in relative abundance of the dominant microbial OTUs after exposure to an agronomic dose of hymexazol. However, these indirect effects decreased for the bacterial community when hymexazol doses increased. Our results also suggest that N-cycling processes such as ammonia oxidation can be impacted indirectly by fungicide application. This work sheds light on the indirect impact of fungicide exposure on soil microorganisms through biotic interactions, which underscores the need for higher-tier risk assessment. ENVIRONMENTAL IMPLICATION: In this study, we used a novel approach based on the fragmentation of the soil microbial community to determine to which extent fungicide application could indirectly affect fungi and bacteria through biotic interactions. To assess off-target effects of fungicide on soil microorganisms, we selected hymexazol, which is used worldwide to control a variety of fungal plant pathogens, and exposed arable soil to the recommended field rate, as well as to higher rates. Our findings show that at least 75% of hymexazol-impacted microbial OTUs were indirectly affected, therefore emphasizing the importance of tiered risk assessment.
Collapse
Affiliation(s)
- Cara Meyer
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France; Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Mathilde Jeanbille
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - Marie-Christine Breuil
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - David Bru
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - Kristin Höfer
- Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France.
| |
Collapse
|
7
|
Vandermaesen J, Daly AJ, Mawarda PC, Baetens JM, De Baets B, Boon N, Springael D. Cooperative interactions between invader and resident microbial community members weaken the negative diversity-invasion relationship. Ecol Lett 2024; 27:e14433. [PMID: 38712704 DOI: 10.1111/ele.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The negative diversity-invasion relationship observed in microbial invasion studies is commonly explained by competition between the invader and resident populations. However, whether this relationship is affected by invader-resident cooperative interactions is unknown. Using ecological and mathematical approaches, we examined the survival and functionality of Aminobacter niigataensis MSH1 to mineralize 2,6-dichlorobenzamide (BAM), a groundwater micropollutant affecting drinking water production, in sand microcosms when inoculated together with synthetic assemblies of resident bacteria. The assemblies varied in richness and in strains that interacted pairwise with MSH1, including cooperative and competitive interactions. While overall, the negative diversity-invasion relationship was retained, residents engaging in cooperative interactions with the invader had a positive impact on MSH1 survival and functionality, highlighting the dependency of invasion success on community composition. No correlation existed between community richness and the delay in BAM mineralization by MSH1. The findings suggest that the presence of cooperative residents can alleviate the negative diversity-invasion relationship.
Collapse
Affiliation(s)
| | - Aisling J Daly
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Panji Cahya Mawarda
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
- Research Center for Applied Microbiology, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, Indonesia
| | - Jan M Baetens
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Bernard De Baets
- Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| |
Collapse
|
8
|
Dong S, Yan PF, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Using Network Analysis and Predictive Functional Analysis to Explore the Fluorotelomer Biotransformation Potential of Soil Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7480-7492. [PMID: 38639388 DOI: 10.1021/acs.est.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Zouagui R, Zouagui H, Aurag J, Ibrahimi A, Sbabou L. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere. BMC Genomics 2024; 25:289. [PMID: 38500021 PMCID: PMC10946135 DOI: 10.1186/s12864-024-10088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.
Collapse
Affiliation(s)
- Rahma Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Jamal Aurag
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
10
|
Li M, Hu J, Wei Z, Jousset A, Pommier T, Yu X, Xu Y, Shen Q. Synthetic microbial communities: Sandbox and blueprint for soil health enhancement. IMETA 2024; 3:e172. [PMID: 38868511 PMCID: PMC10989119 DOI: 10.1002/imt2.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 06/14/2024]
Abstract
We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.
Collapse
Affiliation(s)
- Mei Li
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jie Hu
- Department of Microbial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Thomas Pommier
- UMR INRAE 1418 Ecologie MicrobienneUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and NutritionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
11
|
Karakurt-Fischer S, Johnson DR, Fenner K, Hafner J. Making waves: Enhancing pollutant biodegradation via rational engineering of microbial consortia. WATER RESEARCH 2023; 247:120756. [PMID: 37898004 DOI: 10.1016/j.watres.2023.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Biodegradation holds promise as an effective and sustainable process for the removal of synthetic chemical pollutants. Nevertheless, rational engineering of biodegradation for pollutant remediation remains an unfulfilled goal, while chemical pollution of waters and soils continues to advance. Efforts to (i) identify functional bacteria from aquatic and soil microbiomes, (ii) assemble them into biodegrading consortia, and (iii) identify maintenance and performance determinants, are challenged by large number of pollutants and the complexity in the enzymology and ecology of pollutant biodegradation. To overcome these challenges, approaches that leverage knowledge from environmental bio-chem-informatics and metabolic engineering are crucial. Here, we propose a novel high-throughput bio-chem-informatics pipeline, to link chemicals and their predicted biotransformation pathways with potential enzymes and bacterial strains. Our framework systematically selects the most promising candidates for the degradation of chemicals with unknown biotransformation pathways and associated enzymes from the vast array of aquatic and soil bacteria. We substantiated our perspective by validating the pipeline for two chemicals with known or predicted pathways and show that our predicted strains are consistent with strains known to biotransform those chemicals. Such pipelines can be integrated with metabolic network analysis built upon genome-scale models and ecological principles to rationally design fit-for-purpose bacterial communities for augmenting deficient biotransformation functions and study operational and design parameters that influence their structure and function. We believe that research in this direction can pave the way for achieving our long-term goal of enhancing pollutant biodegradation.
Collapse
Affiliation(s)
- Sema Karakurt-Fischer
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Zhou M, Guan X, Deng T, Hu R, Qian L, Yang X, Wu B, Li J, He Q, Shu L, Yan Q, He Z. Synthetic phylogenetically diverse communities promote denitrification and stability. ENVIRONMENTAL RESEARCH 2023; 231:116184. [PMID: 37207729 DOI: 10.1016/j.envres.2023.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Hessler T, Huddy RJ, Sachdeva R, Lei S, Harrison STL, Diamond S, Banfield JF. Vitamin interdependencies predicted by metagenomics-informed network analyses and validated in microbial community microcosms. Nat Commun 2023; 14:4768. [PMID: 37553333 PMCID: PMC10409787 DOI: 10.1038/s41467-023-40360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Metagenomic or metabarcoding data are often used to predict microbial interactions in complex communities, but these predictions are rarely explored experimentally. Here, we use an organism abundance correlation network to investigate factors that control community organization in mine tailings-derived laboratory microbial consortia grown under dozens of conditions. The network is overlaid with metagenomic information about functional capacities to generate testable hypotheses. We develop a metric to predict the importance of each node within its local network environments relative to correlated vitamin auxotrophs, and predict that a Variovorax species is a hub as an important source of thiamine. Quantification of thiamine during the growth of Variovorax in minimal media show high levels of thiamine production, up to 100 mg/L. A few of the correlated thiamine auxotrophs are predicted to produce pantothenate, which we show is required for growth of Variovorax, supporting that a subset of vitamin-dependent interactions are mutualistic. A Cryptococcus yeast produces the B-vitamin pantothenate, and co-culturing with Variovorax leads to a 90-130-fold fitness increase for both organisms. Our study demonstrates the predictive power of metagenome-informed, microbial consortia-based network analyses for identifying microbial interactions that underpin the structure and functioning of microbial communities.
Collapse
Affiliation(s)
- Tomas Hessler
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert J Huddy
- Reasearch Office, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rohan Sachdeva
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Shufei Lei
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Susan T L Harrison
- The Center for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
- The Future Water Institute, University of Cape Town, Cape Town, South Africa
- Department of Chemical Engineering, University of Cape Town, Cape Town, South Africa
| | - Spencer Diamond
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA.
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- The Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
14
|
Bonal M, Goetghebuer L, Joseph C, Gonze D, Faust K, George IF. Deciphering Interactions Within a 4-Strain Riverine Bacterial Community. Curr Microbiol 2023; 80:238. [PMID: 37294449 DOI: 10.1007/s00284-023-03342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
The dynamics of a community of four planktonic bacterial strains isolated from river water was followed in R2 broth for 72 h in batch experiments. These strains were identified as Janthinobacterium sp., Brevundimonas sp., Flavobacterium sp. and Variovorax sp. 16S rRNA gene sequencing and flow cytometry analyses were combined to monitor the change in abundance of each individual strain in bi-cultures and quadri-culture. Two interaction networks were constructed that summarize the impact of the strains on each other's growth rate in exponential phase and carrying capacity in stationary phase. The networks agree on the absence of positive interactions but also show differences, implying that ecological interactions can be specific to particular growth phases. Janthinobacterium sp. was the fastest growing strain and dominated the co-cultures. However, its growth rate was negatively affected by the presence of other strains 10 to 100 times less abundant than Janthinobacterium sp. In general, we saw a positive correlation between growth rate and carrying capacity in this system. In addition, growth rate in monoculture was predictive of carrying capacity in co-culture. Taken together, our results highlight the necessity to take growth phases into account when measuring interactions within a microbial community. In addition, evidence that a minor strain can greatly influence the dynamics of a dominant one underlines the necessity to choose population models that do not assume a linear dependency of interaction strength to abundance of other species for accurate parameterization from such empirical data.
Collapse
Affiliation(s)
- Mathias Bonal
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Lise Goetghebuer
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Clémence Joseph
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology, Faculty of Sciences, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium.
- Laboratory of Marine Biology, Department of Biology, Université Libre de Bruxelles, 1050, Brussels, Belgium.
| |
Collapse
|
15
|
Zhang L, Yao G, Mao Z, Song M, Zhao R, Zhang X, Chen C, Zhang H, Liu Y, Wang G, Li F, Wu X. Experimental and computational approaches to characterize a novel amidase that initiates the biodegradation of the herbicide propanil in Bosea sp. P5. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131155. [PMID: 36893600 DOI: 10.1016/j.jhazmat.2023.131155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The herbicide propanil and its major metabolite 3,4-dichloroaniline (3,4-DCA) are difficult to biodegrade and pose great health and environmental risks. However, studies on the sole or synergistic mineralization of propanil by pure cultured strains are limited. A two-strain consortium (Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34), obtained from a swep-mineralizing enrichment culture that can synergistically mineralize propanil, has been previously reported. Here, another propanil degradation strain, Bosea sp. P5, was successfully isolated from the same enrichment culture. A novel amidase, PsaA, responsible for initial propanil degradation, was identified from strain P5. PsaA shared low sequence identity (24.0-39.7 %) with other biochemically characterized amidases. PsaA exhibited optimal activity at 30 °C and pH 7.5 and had kcat and Km values of 5.7 s-1 and 125 μM, respectively. PsaA could convert the herbicide propanil to 3,4-DCA but exhibited no activity toward other herbicide structural analogs. This catalytic specificity was explained by using propanil and swep as substrates and then analyzed by molecular docking, molecular dynamics simulation and thermodynamic calculations, which revealed that Tyr138 is the key residue that affects the substrate spectrum of PsaA. This is the first propanil amidase with a narrow substrate spectrum identified, providing new insights into the catalytic mechanism of amidase in propanil hydrolysis.
Collapse
Affiliation(s)
- Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Zhenbo Mao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Man Song
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Ruiqi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaochun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Chun Chen
- Institute of Biomedicine, Jinan University, Guangzhou, 510632, PR China
| | - Huijun Zhang
- Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Yuan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Guangli Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
16
|
Ma Q, Tan H, Song J, Li M, Wang Z, Parales RE, Li L, Ruan Z. Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119477. [PMID: 35598816 DOI: 10.1016/j.envpol.2022.119477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This study aims to investigate the effects of long-term nicosulfuron residue on an herbicide factory ecosystem. High-throughput sequencing was used to investigate the environmental microbial community structure and interactions. The results showed that the main contributor to the differences in the microbial community structure was the sample type, followed by oxygen content, pH and nicosulfuron residue concentration. Regardless of the presence or absence of nicosulfuron, soil, sludge, and sewage were dominated by groups of Bacteroidetes, Actinobacteria, and Proteobacteria. Long-term exposure to nicosulfuron increased alpha diversity of bacteria and archaea but significantly decreased the abundance of Bacteroidetes and Acidobateria compared to soils without nicosulfuron residue. A total of 81 possible nicosulfuron-degrading bacterial genera, e.g., Rhodococcus, Chryseobacterium, Thermomonas, Stenotrophomonas, and Bacillus, were isolated from the nicosulfuron factory environmental samples through culturomics. The co-occurrence network analysis indicated that the keystone taxa were Rhodococcus, Stenotrophomonas, Nitrospira, Terrimonas, and Nitrosomonadaceae_MND1. The strong ecological relationship between microorganisms with the same network module was related to anaerobic respiration, the carbon and nitrogen cycle, and the degradation of environmental contaminants. Synthetic community (SynCom), which provides an effective top-down approach for the critical degradation strains obtained, enhanced the degradation efficiency of nicosulfuron. The results indicated that Rhodococcus sp. was the key genus in the environment of long-term nicosulfuron exposure.
Collapse
Affiliation(s)
- Qingyun Ma
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Hao Tan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jinlong Song
- Chinese Academy of Fishery Sciences, Beijing, 100141, PR China
| | - Miaomiao Li
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, PR China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, PR China
| | - Zhiyong Ruan
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
17
|
Li X, Lu C, Dai Y, Yu Z, Gu W, Li T, Li X, Li X, Wang X, Su Z, Xu M, Zhang H. Characterizing the Microbial Consortium L1 Capable of Efficiently Degrading Chlorimuron-Ethyl via Metagenome Combining 16S rDNA Sequencing. Front Microbiol 2022; 13:912312. [PMID: 35814706 PMCID: PMC9260513 DOI: 10.3389/fmicb.2022.912312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive application of the herbicide chlorimuron-ethyl (CE) severely harms subsequent crops and poses severe risks to environmental health. Therefore, methods for efficiently decreasing and eliminating CE residues are urgently needed. Microbial consortia show potential for bioremediation due to their strong metabolic complementarity and synthesis. In this study, a microbial consortium entitled L1 was enriched from soil contaminated with CE by a “top-down” synthetic biology strategy. The consortium could degrade 98.04% of 100 mg L−1 CE within 6 days. We characterized it from the samples at four time points during the degradation process and a sample without degradation activity via metagenome and 16S rDNA sequencing. The results revealed 39 genera in consortium L1, among which Methyloversatilis (34.31%), Starkeya (28.60%), and Pseudoxanthomonas (7.01%) showed relatively high abundances. Temporal succession and the loss of degradability did not alter the diversity and community composition of L1 but changed the community structure. Taxon-functional contribution analysis predicted that glutathione transferase [EC 2.5.1.18], urease [EC 3.5.1.5], and allophanate hydrolase [EC 3.5.1.54] are relevant for the degradation of CE and that Methyloversatilis, Pseudoxanthomonas, Methylopila, Hyphomicrobium, Stenotrophomonas, and Sphingomonas were the main degrading genera. The degradation pathway of CE by L1 may involve cleavage of the CE carbamide bridge to produce 2-amino-4-chloro-6-methoxypyrimidine and ethyl o-sulfonamide benzoate. The results of network analysis indicated close interactions, cross-feeding, and co-metabolic relationships between strains in the consortium, and most of the above six degrading genera were keystone taxa in the network. Additionally, the degradation of CE by L1 required not only “functional bacteria” with degradation capacity but also “auxiliary bacteria” without degradation capacity but that indirectly facilitate/inhibit the degradation process; however, the abundance of “auxiliary bacteria” should be controlled in an appropriate range. These findings improve the understanding of the synergistic effects of degrading bacterial consortia, which will provide insight for isolating degrading bacterial resources and constructing artificial efficient bacterial consortia. Furthermore, our results provide a new route for pollution control and biodegradation of sulfonylurea herbicides.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changming Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiujuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Mingkai Xu
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- *Correspondence: Huiwen Zhang
| |
Collapse
|
18
|
Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022; 13:829717. [PMID: 35283862 PMCID: PMC8905317 DOI: 10.3389/fmicb.2022.829717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
In synthetic biology, engineering principles are applied to system design. The development of synthetic microbial consortia represents the intersection of synthetic biology and microbiology. Synthetic community systems are constructed by co-cultivating two or more microorganisms under certain environmental conditions, with broad applications in many fields including ecological restoration and ecological theory. Synthetic microbial consortia tend to have high biological processing efficiencies, because the division of labor reduces the metabolic burden of individual members. In this review, we focus on the environmental applications of synthetic microbial consortia. Although there are many strategies for the construction of synthetic microbial consortia, we mainly introduce the most widely used construction principles based on cross-feeding. Additionally, we propose methods for constructing synthetic microbial consortia based on traits and spatial structure from the perspective of ecology to provide a basis for future work.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Szentgyörgyi F, Benedek T, Fekete D, Táncsics A, Harkai P, Kriszt B. Development of a bacterial consortium from Variovorax paradoxus and Pseudomonas veronii isolates applicable in the removal of BTEX. AMB Express 2022; 12:4. [PMID: 35075552 PMCID: PMC8787013 DOI: 10.1186/s13568-022-01349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.
Collapse
|
20
|
Vandermaesen J, Du S, Daly AJ, Baetens JM, Horemans B, De Baets B, Boon N, Springael D. Interspecies Interactions of the 2,6-Dichlorobenzamide Degrading Aminobacter sp. MSH1 with Resident Sand Filter Bacteria: Indications for Mutual Cooperative Interactions That Improve BAM Mineralization Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1352-1364. [PMID: 34982540 DOI: 10.1021/acs.est.1c06653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context. Aminobacter sp. MSH1 mineralizing the groundwater micropollutant 2,6-dichlorobenzamide (BAM), is proposed for bioaugmentation of sand filters used in drinking water production to avert BAM contamination. We examined the nature of the interactions between MSH1 and 13 sand filter resident bacteria in dual and triple species assemblies in sand microcosms. The residents affected MSH1-mediated BAM mineralization without always impacting MSH1 cell densities, indicating effects on cell physiology rather than on cell number. Exploitative competition explained most of the effects (70%), but indications of interference competition were also found. Two residents improved BAM mineralization in dual species assemblies, apparently in a mutual cooperation, and overruled negative effects by others in triple species systems. The results suggest that sand filter communities contain species that increase MSH1 fitness. This opens doors for assisting bioaugmentation through co-inoculation with "helper" bacteria originating from and adapted to the target environment.
Collapse
Affiliation(s)
- Johanna Vandermaesen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Siyao Du
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Aisling J Daly
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20 Bus 2459, B-3001 Heverlee, Belgium
| |
Collapse
|
21
|
Li J, Zhang W, Lin Z, Huang Y, Bhatt P, Chen S. Emerging Strategies for the Bioremediation of the Phenylurea Herbicide Diuron. Front Microbiol 2021; 12:686509. [PMID: 34475856 PMCID: PMC8406775 DOI: 10.3389/fmicb.2021.686509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/16/2021] [Indexed: 02/04/2023] Open
Abstract
Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can use DUR as their sole source of carbon. Some of them have been isolated, including organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A number of studies have investigated the toxicity and fate of DUR, its degradation pathways and metabolites, and DUR-degrading hydrolases and related genes. However, few reviews have focused on the microbial degradation and biochemical mechanisms of DUR. The common microbial degradation pathway for DUR is via transformation to 3,4-dichloroaniline, which is then metabolized through two different metabolic pathways: dehalogenation and hydroxylation, the products of which are further degraded via cooperative metabolism. Microbial degradation hydrolases, including PuhA, PuhB, LibA, HylA, Phh, Mhh, and LahB, provide new knowledge about the underlying pathways governing DUR metabolism. The present review summarizes the state-of-the-art knowledge regarding (1) the environmental occurrence and toxicity of DUR, (2) newly isolated and identified DUR-degrading microbes and their enzymes/genes, and (3) the bioremediation of DUR in soil and water environments. This review further updates the recent knowledge on bioremediation strategies with a focus on the metabolic pathways and molecular mechanisms involved in the bioremediation of DUR.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
22
|
Öztürk B, Werner J, Meier-Kolthoff JP, Bunk B, Spröer C, Springael D. Comparative Genomics Suggests Mechanisms of Genetic Adaptation toward the Catabolism of the Phenylurea Herbicide Linuron in Variovorax. Genome Biol Evol 2021; 12:827-841. [PMID: 32359160 PMCID: PMC7313664 DOI: 10.1093/gbe/evaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20–839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.
Collapse
Affiliation(s)
- Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Division of Soil and Water Management, KU Leuven, Belgium
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Jan P Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Belgium
| |
Collapse
|
23
|
Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, De Mot R, Dehaen W, Tebbe CC, Springael D. DNA-SIP and repeated isolation corroborate Variovorax as a key organism in maintaining the genetic memory for linuron biodegradation in an agricultural soil. FEMS Microbiol Ecol 2021; 97:6204700. [PMID: 33784375 DOI: 10.1093/femsec/fiab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 11/14/2022] Open
Abstract
The frequent exposure of agricultural soils to pesticides can lead to microbial adaptation, including the development of dedicated microbial populations that utilize the pesticide compound as a carbon and energy source. Soil from an agricultural field in Halen (Belgium) with a history of linuron exposure has been studied for its linuron-degrading bacterial populations at two time points over the past decade and Variovorax was appointed as a key linuron degrader. Like most studies on pesticide degradation, these studies relied on isolates that were retrieved through bias-prone enrichment procedures and therefore might not represent the in situ active pesticide-degrading populations. In this study, we revisited the Halen field and applied, in addition to enrichment-based isolation, DNA stable isotope probing (DNA-SIP), to identify in situ linuron-degrading bacteria in linuron-exposed soil microcosms. Linuron dissipation was unambiguously linked to Variovorax and its linuron catabolic genes and might involve the synergistic cooperation between two species. Additionally, two novel linuron-mineralizing Variovorax isolates were obtained with high 16S rRNA gene sequence similarity to strains isolated from the same field a decade earlier. The results confirm Variovorax as a prime in situ degrader of linuron in the studied agricultural field soil and corroborate the genus as key for maintaining the genetic memory of linuron degradation functionality in that field.
Collapse
Affiliation(s)
- Harry Lerner
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Anja B Dohrmann
- Thünen Institute of Biodiversity, Bundesallee 65, 388116 Braunschweig, Germany
| | - Joice Thomas
- Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics & Department of Information Technology, University of Ghent, iGent Toren, Technologiepark 126, B-9052 Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, B-3001 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Bundesallee 65, 388116 Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
24
|
Dhakar K, Zarecki R, van Bommel D, Knossow N, Medina S, Öztürk B, Aly R, Eizenberg H, Ronen Z, Freilich S. Strategies for Enhancing in vitro Degradation of Linuron by Variovorax sp. Strain SRS 16 Under the Guidance of Metabolic Modeling. Front Bioeng Biotechnol 2021; 9:602464. [PMID: 33937210 PMCID: PMC8084104 DOI: 10.3389/fbioe.2021.602464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
Phenyl urea herbicides are being extensively used for weed control in both agricultural and non-agricultural applications. Linuron is one of the key herbicides in this family and is in wide use. Like other phenyl urea herbicides, it is known to have toxic effects as a result of its persistence in the environment. The natural removal of linuron from the environment is mainly carried through microbial biodegradation. Some microorganisms have been reported to mineralize linuron completely and utilize it as a carbon and nitrogen source. Variovorax sp. strain SRS 16 is one of the known efficient degraders with a recently sequenced genome. The genomic data provide an opportunity to use a genome-scale model for improving biodegradation. The aim of our study is the construction of a genome-scale metabolic model following automatic and manual protocols and its application for improving its metabolic potential through iterative simulations. Applying flux balance analysis (FBA), growth and degradation performances of SRS 16 in different media considering the influence of selected supplements (potential carbon and nitrogen sources) were simulated. Outcomes are predictions for the suitable media modification, allowing faster degradation of linuron by SRS 16. Seven metabolites were selected for in vitro validation of the predictions through laboratory experiments confirming the degradation-promoting effect of specific amino acids (glutamine and asparagine) on linuron degradation and SRS 16 growth. Overall, simulations are shown to be efficient in predicting the degradation potential of SRS 16 in the presence of specific supplements. The generated information contributes to the understanding of the biochemistry of linuron degradation and can be further utilized for the development of new cleanup solutions without any genetic manipulation.
Collapse
Affiliation(s)
- Kusum Dhakar
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishai, Israel.,Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishai, Israel.,Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Daniella van Bommel
- lbert Katz School for Desert Studies Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Nadav Knossow
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishai, Israel
| | - Basak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Radi Aly
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishai, Israel
| | - Hanan Eizenberg
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishai, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishai, Israel
| |
Collapse
|
25
|
Exploring microbial consortia from various environments for plastic degradation. Methods Enzymol 2020; 648:47-69. [PMID: 33579417 DOI: 10.1016/bs.mie.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many complex natural and synthetic compounds are degraded by microbial assemblages rather than single strains, due to usually limited metabolic capacities of single organisms. It can therefore be assumed that plastics can be more efficiently degraded by microbial consortia, although this field has not been as widely explored as plastic degradation by individual strains. In this chapter, we present some of the current studies on this topic and methods to enrich and cultivate plastic-degrading microbial consortia from aquatic and terrestrial ecosystems, including substrate preparation and biodegradation assessment. We focus on both conventional and biodegradable plastics as potential growth substrates. Cultivation methods for both aerobic and anaerobic microorganisms are presented.
Collapse
|
26
|
Yang S, Wu Y, Qu C, Fein JB, He Y, Huang Q, Cai P. Quantitative analysis of the surficial and adhesion properties of the Gram-negative bacterial species Comamonas testosteroni modulated by c-di-GMP. Colloids Surf B Biointerfaces 2020; 198:111497. [PMID: 33296824 DOI: 10.1016/j.colsurfb.2020.111497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a ubiquitous intracellular secondary messenger which governs the transition from a bacterial cell's planktonic state to biofilm formation by stimulating the production of a variety of exopolysaccharide material by the bacterial cell. A range of genes involved in c-di-GMP signaling in the Gram-negative species Comamonas testosteroni have been identified previously, yet the physical-chemical properties of the produced extracellular polymeric substances (EPS) and the bacterial adhesion characteristics regulated by c-di-GMP are not well understood. Here, we modulated the in vivo c-di-GMP levels of Comamonas testosteroni WDL7 through diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) gene editing. The strains and their adhesion properties were characterized by Fourier-transform infrared and two-dimensional correlation spectroscopy analysis (FTIR-2D CoS), contact angle and zeta potential measurements, atomic force microscopy (AFM) and extended-Derjaguin-Landau-Verwey-Overbeek (ExDLVO) analysis. Our results show that high c-di-GMP levels promoted the secretion of long-chain hydrophobic and electroneutral extracellular polysaccharides and proteins. The protein molecules on WDL7/pYedQ2 promoted the bacterial self-aggregation and adhesion onto negatively charged surfaces. In contrast, the reduction of intracellular c-di-GMP concentrations resulted in a nearly 80 % decrease in the adhesion of bacterial cells, although little change in the surface hydrophobicity or surface charge properties were observed for these cells relative to the wild type. These results indicate that the reduced adsorption of WDL7/YhjH that we observed may be caused by the flagellum-accelerated mobility at low c-di-GMP concentrations. Taken together, these results improve our mechanistic understanding of the effects of c-di-GMP in controlling bacterial physical-chemical properties and initial biofilm development.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jeremy B Fein
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, Notre Dame, IN 46556, USA
| | - Yizhuang He
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Lerner H, Öztürk B, Dohrmann AB, Thomas J, Marchal K, De Mot R, Dehaen W, Tebbe CC, Springael D. Culture-Independent Analysis of Linuron-Mineralizing Microbiota and Functions in on-Farm Biopurification Systems via DNA-Stable Isotope Probing: Comparison with Enrichment Culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9387-9397. [PMID: 32569463 DOI: 10.1021/acs.est.0c02124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Our understanding of the microorganisms involved in in situ biodegradation of xenobiotics, like pesticides, in natural and engineered environments is poor. On-farm biopurification systems (BPSs) treat farm-produced pesticide-contaminated wastewater to reduce surface water pollution. BPSs are a labor and cost-efficient technology but are still mainly operated as black box systems. We used DNA-stable isotope probing (DNA-SIP) and classical enrichment to be informed about the organisms responsible for in situ degradation of the phenylurea herbicide linuron in a BPS matrix. DNA-SIP identified Ramlibacter, Variovorax, and an unknown Comamonadaceae genus as the dominant linuron assimilators. While linuron-degrading Variovorax strains have been isolated repeatedly, Ramlibacter has never been associated before with linuron degradation. Genes and mobile genetic elements (MGEs) previously linked to linuron catabolism were enriched in the heavy DNA-SIP fractions, suggesting their involvement in in situ linuron assimilation. BPS material free cultivation of linuron degraders from the same BPS matrix resulted in a community dominated by Variovorax, while Ramlibacter was not observed. Our study provides evidence for the role of Variovorax in in situ linuron biodegradation in a BPS, alongside other organisms like Ramlibacter, and further shows that cultivation results in a biased representation of the in situ linuron-assimilating bacterial populations.
Collapse
Affiliation(s)
- Harry Lerner
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Anja B Dohrmann
- Thünen Institut für Biodiversität, 38116 Braunschweig, Germany
| | - Joice Thomas
- Molecular Design and Synthesis, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9000 Gent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| | | | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, B-3001 Heverlee-Leuven, Belgium
| |
Collapse
|
28
|
Zhang L, Hu Q, Liu B, Li F, Jiang JD. Characterization of a Linuron-Specific Amidohydrolase from the Newly Isolated Bacterium Sphingobium sp. Strain SMB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4335-4345. [PMID: 32207940 DOI: 10.1021/acs.jafc.0c00597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The phenylurea herbicide linuron is globally used and has caused considerable concern because it leads to environmental pollution. In this study, a highly efficient linuron-transforming strain Sphingobium sp. SMB was isolated, and a gene (lahB) responsible for the hydrolysis of linuron to 3,4-dichloroaniline and N,O-dimethylhydroxylamine was cloned from the genome of strain SMB. The lahB gene encodes an amidohydrolase, which shares 20-53% identity with other biochemically characterized amidohydrolases, except for the newly reported linuron hydrolase Phh (75%). The optimal conditions for the hydrolysis of linuron by LahB were determined to be pH 7.0 and 30 °C, and the Km value of LahB for linuron was 37.3 ± 1.2 μM. Although LahB and Phh shared relatively high identity, LahB exhibited a narrow substrate spectrum (specific for linuron) compared to Phh (active for linuron, diuron, chlortoluron, etc.). Sequence analysis and site-directed mutagenesis revealed that Ala261 of Phh was the key amino acid residue affecting the substrate specificity. Our study provides a new amidohydrolase for the specific hydrolysis of linuron.
Collapse
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Bin Liu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Werner J, Nour E, Bunk B, Spröer C, Smalla K, Springael D, Öztürk B. PromA Plasmids Are Instrumental in the Dissemination of Linuron Catabolic Genes Between Different Genera. Front Microbiol 2020; 11:149. [PMID: 32132980 PMCID: PMC7039861 DOI: 10.3389/fmicb.2020.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/22/2020] [Indexed: 01/31/2023] Open
Abstract
PromA plasmids are broad host range (BHR) plasmids, which are often cryptic and hence have an uncertain ecological role. We present three novel PromA γ plasmids which carry genes associated with degradation of the phenylurea herbicide linuron, two of which originated from unrelated Hydrogenophaga hosts isolated from different environments (pPBL-H3-2 and pBPS33-2), and one (pEN1) which was exogenously captured from an on-farm biopurification system (BPS). Hydrogenophaga sp. plasmid pBPS33-2 carries all three necessary gene clusters (hylA, dca, ccd) determining the three main steps for conversion of linuron to Krebs cycle intermediates, while pEN1 only determines the initial linuron hydrolysis step. Hydrogenophaga sp. plasmid pPBL-H3-2 exists as two variants, both containing ccd but with the hylA and dca gene modules interchanged between each other at exactly the same location. Linuron catabolic gene clusters that determine the same step were identical on all plasmids, encompassed in differently arranged constellations and characterized by the presence of multiple IS1071 elements. In all plasmids except pEN1, the insertion spot of the catabolic genes in the PromA γ plasmids was the same. Highly similar PromA plasmids carrying the linuron degrading gene cargo at the same insertion spot were previously identified in linuron degrading Variovorax sp. Interestingly, in both Hydrogenophaga populations not every PromA plasmid copy carries catabolic genes. The results indicate that PromA plasmids are important vehicles of linuron catabolic gene dissemination, rather than being cryptic and only important for the mobilization of other plasmids.
Collapse
Affiliation(s)
- Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Eman Nour
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Boyke Bunk
- Bioinformatics Department, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Central Services, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium
| | - Başak Öztürk
- Division of Soil and Water Management, KU Leuven, Leuven, Belgium
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
30
|
Mineralization of the herbicide swep by a two-strain consortium and characterization of a new amidase for hydrolyzing swep. Microb Cell Fact 2020; 19:4. [PMID: 31910844 PMCID: PMC6945715 DOI: 10.1186/s12934-020-1276-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swep is an excellent carbamate herbicide that kills weeds by interfering with metabolic processes and inhibiting cell division at the growth point. Due to the large amount of use, swep residues in soil and water not only cause environmental pollution but also accumulate through the food chain, ultimately pose a threat to human health. This herbicide is degraded in soil mainly by microbial activity, but no studies on the biotransformation of swep have been reported. RESULTS In this study, a consortium consisting of two bacterial strains, Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34, was enriched from a contaminated soil sample and shown to be capable of mineralizing swep. Swep was first transformed by Comamonas sp. SWP-3 to the intermediate 3,4-dichloroaniline (3,4-DCA), after which 3,4-DCA was mineralized by Alicycliphilus sp. PH-34. An amidase gene, designated as ppa, responsible for the transformation of swep into 3,4-DCA was cloned from strain SWP-3. The expressed Ppa protein efficiently hydrolyzed swep and a number of other structural analogues, such as propanil, chlorpropham and propham. Ppa shared less than 50% identity with previously reported arylamidases and displayed maximal activity at 30 °C and pH 8.6. Gly449 and Val266 were confirmed by sequential error prone PCR to be the key catalytic sites for Ppa in the conversion of swep. CONCLUSIONS These results provide additional microbial resources for the potential remediation of swep-contaminated sites and add new insights into the catalytic mechanism of amidase in the hydrolysis of swep.
Collapse
|
31
|
Wang M, Phillips TD. Potential Applications of Clay-Based Therapy for the Reduction of Pesticide Exposures in Humans and Animals. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:5325. [PMID: 32944385 PMCID: PMC7494192 DOI: 10.3390/app9245325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The risk of pesticide exposure in humans and animals may be magnified following natural and man-made disasters such as hurricanes and floods that can result in mobilization and redistribution of contaminated sediments. To develop broad-acting sorbents for mixtures of diverse toxins, we have processed calcium and sodium montmorillonite clays with high concentrations of sulfuric acid. These acid-processed montmorillonite clays (APMs) have shown limited hydration and swelling in water, higher surface areas, and lower trace metal levels than the parent clays, prior to processing. Isothermal analyses have indicated that newly developed APMs are highly active sorbents, with significantly increased binding capacities for a wide range of pesticides, including pentachlorophenol (PCP), 2,4,6-trichlorophenol (2,4,6-TCP), lindane, diazinon, linuron, trifluralin and paraquat. The safety and protective effects of APMs, against pesticide design mixtures, were confirmed in a living organism (Hydra vulgaris). Further work is planned to confirm the safety of the APMs in long-term rodent studies. This is the first report of a sorbent material (other than carbon) with high binding efficacy for mixtures of these pesticides. Based on our results, APMs (and similar clays), may be able to decrease human and animal pesticide exposures during disasters and emergencies.
Collapse
Affiliation(s)
- Meichen Wang
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
32
|
Duc HD. Anaerobic degradation of 2-chloro-4-nitroaniline by Geobacter sp. KT7 and Thauera aromatica KT9. FEMS Microbiol Lett 2019; 366:5548772. [DOI: 10.1093/femsle/fnz174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
2-chloro-4-nitroaniline is a nitroaromatic compound widely used in industrial and agricultural sectors, causing serious environmental problems. This compound and some of its analogs were utilized by two Fe3+-reducing microbial strains Geobacter sp. KT7 and Thauera aromatica KT9 isolated from contaminated sediment as sole carbon and nitrogen sources under anaerobic conditions. The anaerobic degradation of 2-chloro-4-nitroaniline by the mixed species was increased approximately by 45% compared to that of individual strains. The two isolates’ crossfeeding, nutrient sharing and cooperation in the mixed culture accounted for the increase in degradation rates. The determination of degradation pathways showed that Geobacter sp. KT7 transformed the nitro group in 2-chloro-4-nitroaniline to the amino group following by the dechlorination process, while T. aromatica KT9 dechlorinated the compound before removing the nitro group and further transformed it to aniline. This study provided an intricate network of 2-chloro-4-nitroaniline degradation in the bacterial mixture and revealed two parallel routes for the substrate catabolism.
Collapse
Affiliation(s)
- Ha Danh Duc
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
33
|
Goetghebuer L, Bonal M, Faust K, Servais P, George IF. The Dynamic of a River Model Bacterial Community in Two Different Media Reveals a Divergent Succession and an Enhanced Growth of Most Strains Compared to Monocultures. MICROBIAL ECOLOGY 2019; 78:313-323. [PMID: 30680433 DOI: 10.1007/s00248-019-01322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The dynamic of a community of 20 bacterial strains isolated from river water was followed in R2 broth and in autoclaved river water medium for 27 days in batch experiments. At an early stage of incubation, a fast-growing specialist strain, Acinetobater sp., dominated the community in both media. Later on, the community composition in both media diverged but was highly reproducible across replicates. In R2, several strains previously reported to degrade multiple simple carbon sources prevailed. In autoclaved river water, the community was more even and became dominated by several strains growing faster or exclusively in that medium. Those strains have been reported in the literature to degrade complex compounds. Their growth rate in the community was 1.5- to 7-fold greater than that observed in monoculture. Furthermore, those strains developed simultaneously in the community. Together, our results suggest the existence of cooperative interactions within the community incubated in autoclaved river water.
Collapse
Affiliation(s)
- Lise Goetghebuer
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Mathias Bonal
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pierre Servais
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium.
| |
Collapse
|
34
|
Escoto DF, Gayer MC, Bianchini MC, da Cruz Pereira G, Roehrs R, Denardin ELG. Use of Pistia stratiotes for phytoremediation of water resources contaminated by clomazone. CHEMOSPHERE 2019; 227:299-304. [PMID: 30999171 DOI: 10.1016/j.chemosphere.2019.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/17/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The Pistia stratiotes L. was tested for phytoremediation potential of the compound clomazone in water. Clomazone is a post-emergent herbicide marketed as Gamit®. Five groups with four samples each were evaluated, a low concentration control (LCC: 37.86 mg L-1), low concentration treatment (LCT: 38.16 mg L-1), high concentration control (HCC: 54.71 mg L-1), high concentration treatment (HCT: 54.33 mg L-1), and a plant control group (PCG). Plant resistance to clomazone at determined concentrations and their ability to remove the herbicide from water by HPLC over 24 days were evaluated. The results demonstrate that P. stratiotes has high resistance to clomazone exposure and was able to eliminate up to 90% of the herbicide residues during the experimental period. Under dissipation by P. stratiotes in water, clomazone had a halflife of 19.6 days for in the control treatments, LCC and HCC, and 8.0 days in the treatment groups, LCT and HCT. This study indicates that Pistia stratiotes is an effective phytoremediation agent for the herbicide clomazone in water.
Collapse
Affiliation(s)
- Dandara Fidélis Escoto
- Laboratório de Estudos Físico-Químicos e de Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal do Pampa, CEP 97508-000, Uruguaiana, RS, Brazil; Grupo de Pesquisas em Prática de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, 97508-000, RS, Brazil
| | - Mateus Cristofary Gayer
- Grupo de Pesquisas em Prática de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, 97508-000, RS, Brazil
| | | | - Geovana da Cruz Pereira
- Grupo de Pesquisas em Prática de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, 97508-000, RS, Brazil
| | - Rafael Roehrs
- Grupo de Pesquisas em Prática de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, 97508-000, RS, Brazil
| | - Elton L G Denardin
- Laboratório de Estudos Físico-Químicos e de Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal do Pampa, CEP 97508-000, Uruguaiana, RS, Brazil.
| |
Collapse
|
35
|
Okai M, Ohki Y, Yamamoto S, Takashio M, Ishida M, Urano N. Comamonas
sp. 3ah48 is a dibenz[
a,h
]anthracene‐degrading bacterium that is tolerant to heavy metals. Lett Appl Microbiol 2019; 68:589-596. [DOI: 10.1111/lam.13158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/23/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
Affiliation(s)
- M. Okai
- Department of Ocean Sciences Tokyo University of Marine Science and Technology Minato‐ku Tokyo Japan
| | - Y. Ohki
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology Minato‐ku Tokyo Japan
| | - S. Yamamoto
- Graduate School of Marine Science and Technology Tokyo University of Marine Science and Technology Minato‐ku Tokyo Japan
| | - M. Takashio
- Zensho Laboratories of Food Technology Zensho Holdings Co. Ltd Minato‐ku Tokyo Japan
| | - M. Ishida
- Department of Ocean Sciences Tokyo University of Marine Science and Technology Minato‐ku Tokyo Japan
| | - N. Urano
- Department of Marine Resources and Energy Tokyo University of Marine Science and Technology Minato‐ku Tokyo Japan
| |
Collapse
|
36
|
Crampon M, Joulian C, Ollivier P, Charron M, Hellal J. Shift in Natural Groundwater Bacterial Community Structure Due to Zero-Valent Iron Nanoparticles (nZVI). Front Microbiol 2019; 10:533. [PMID: 30949146 PMCID: PMC6436198 DOI: 10.3389/fmicb.2019.00533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Toxic and persistent contaminants in groundwater are technologically difficult to remediate. Remediation techniques using nanoparticles (NPs) such as nZVI (Zero-Valent Iron) are applicable as in situ reduction or oxidation agents and give promising results for groundwater treatment. However, these NP may also represent an additional contamination in groundwater. The aims of this study are to assess the impact of nZVI on the nitrate-reducing potential, the abundance and the structure of a planktonic nitrate-reducing bacterial community sampled in groundwater from a multicontaminated site. An active nitrate-reducing bacterial community was obtained from groundwater samples, and inoculated into batch reactors containing a carbon substrate, nitrate and a range of nZVI concentrations (from 0 to 70.1 mg Fe.L-1). Physical (pH, redox potential), chemical (NO 3 - concentrations) and biological (DNA, RNA) parameters were monitored during 1 week, as well as nZVI size distribution and mortality of bacteria. Nitrate-reducing activity was temporally stopped in the presence of nZVI at concentrations higher than 30 mg L-1, and bacterial molecular parameters all decreased before resuming to initial values 48 h after nZVI addition. Bacterial community composition was also modified in all cultures exposed to nZVI as shown by CE-SSCP fingerprints. Surprisingly, it appeared overall that bacteria viability was lower for lower nZVI concentrations. This is possibly due to the presence of larger, less reactive NP aggregates for higher nZVI concentrations, which inhibit bacterial activity but could limit cell mortality. After 1 week, the bacterial cultures were transplanted into fresh media without nZVI, to assess their resilience in terms of activity. A lag-phase, corresponding to an adaptation phase of the community, was observed during this step before nitrate reduction reiterated, demonstrating the community's resilience. The induction by nZVI of modifications in the bacterial community composition and thus in its metabolic potentials, if also occurring on site, could affect groundwater functioning on the long term following nZVI application. Further work dedicated to the study of nZVI impact on bacterial community directly on site is needed to assess a potential impact on groundwater functioning following nZVI application.
Collapse
Affiliation(s)
- Marc Crampon
- Bureau de Recherches Géologiques et Minières, Orléans, France
| | | | | | | | | |
Collapse
|
37
|
Sun Z, Koffel T, Stump SM, Grimaud GM, Klausmeier CA. Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters. J Theor Biol 2019; 465:63-77. [DOI: 10.1016/j.jtbi.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023]
|
38
|
Yu K, Yi S, Li B, Guo F, Peng X, Wang Z, Wu Y, Alvarez-Cohen L, Zhang T. An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community. MICROBIOME 2019; 7:16. [PMID: 30728080 PMCID: PMC6366072 DOI: 10.1186/s40168-019-0634-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Understanding microbial interactions in engineering bioprocesses is important to enhance and optimize performance outcomes and requires dissection of the multi-layer complexities of microbial communities. However, unraveling microbial interactions as well as substrates involved in complex microbial communities is a challenging task. Here, we demonstrate an integrated approach of metagenomics, metatranscriptomics, and targeted metabolite analysis to identify the substrates involved in interspecies interactions from a potential cross-feeding model community-bisphenol A (BPA)-biodegrading community, aiming to establish an identification method of microbial interactions in engineering or environmental bioprocesses. RESULTS The community-level BPA-metabolic pathway was constructed using integrated metagenomics and targeted metabolite analyses. The dynamics of active functions and metabolism of major community members were identified using metagenomic and metatranscriptomic analyses in concert. Correlating the community BPA biodegradation performance to the individual bacterial activities enabled the discovery of substrates involved in a synergistic interaction of cross-feeding between BPA-degrading Sphingonomas species and intermediate users, Pseudomonas sp. and Pusillimonas sp. This proposed synergistic interaction was confirmed by the co-culture of a Sphingonomas sp. and Pseudomonas sp. isolates, which demonstrated enhanced BPA biodegradation compared to the isolate of Sphingonomas sp. alone. CONCLUSION The three types of integrated meta-omics analyses effectively revealed the metabolic capability at both community-wide and individual bacterial levels. The correlation between these two levels revealed the hidden connection between apparent overall community performance and the contributions of individual community members and their interactions in a BPA-degrading microbial community. In addition, we demonstrated that using integrated multi-omics in conjunction with culture-based confirmation approach is effective to elucidate the microbial interactions affecting the performance outcome. We foresee this approach would contribute the future application and operation of environmental bioprocesses on a knowledge-based control.
Collapse
Affiliation(s)
- Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China.
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA.
- Environmental microbiology and bioinformatics Laboratory, Shenzhen Graduate School, Peking University, Nanshan district, Shenzhen, Guangdong, China.
| | - Shan Yi
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA
| | - Bing Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Feng Guo
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xingxing Peng
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhiping Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, USA
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam road, Hong Kong, China.
| |
Collapse
|
39
|
Liu X, Chen K, Chuang S, Xu X, Jiang J. Shift in Bacterial Community Structure Drives Different Atrazine-Degrading Efficiencies. Front Microbiol 2019; 10:88. [PMID: 30761118 PMCID: PMC6363660 DOI: 10.3389/fmicb.2019.00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 02/01/2023] Open
Abstract
Compositions of pollutant-catabolic consortia and interactions between community members greatly affect the efficiency of pollutant catabolism. However, the relationships between community structure and efficiency of catabolic function in pollutant-catabolic consortia remain largely unknown. In this study, an original enrichment (AT) capable of degrading atrazine was obtained. And two enrichments - with a better/worse atrazine-degrading efficiency (ATB/ATW) - were derived from the original enrichment AT by continuous sub-enrichment with or without atrazine. Subsequently, an Arthrobacter sp. strain, AT5, that was capable of degrading atrazine was isolated from enrichment AT. The bacterial community structures of these three enrichments were investigated using high-throughput sequencing analysis of the 16S rRNA gene. The atrazine-degrading efficiency improved as the abundance of Arthrobacter species increased in enrichment ATB. The relative abundance of Arthrobacter was positively correlated with those of Hyphomicrobium and Methylophilus, which enhanced atrazine degradation via promoting the growth of Arthrobacter. Furthermore, six genera/families such as Azospirillum and Halomonas showed a significantly negative correlation with atrazine-degrading efficiency, as they suppressed atrazine degradation directly. These results suggested that atrazine-degrading efficiency was affected by not only the degrader but also some non-degraders in the community. The promotion and suppression of atrazine degradation by Methylophilus and Azospirillum/Halomonas, respectively, were experimentally validated in vitro, showing that shifts in both the composition and abundance in consortia can drive the change in the efficiency of catabolic function. This study provides valuable information for designing enhanced bioremediation strategies.
Collapse
Affiliation(s)
| | | | | | - Xihui Xu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Lagos S, Perruchon C, Katsoula A, Karpouzas DG. Isolation and characterization of soil bacteria able to rapidly degrade the organophosphorus nematicide fosthiazate. Lett Appl Microbiol 2019; 68:149-155. [PMID: 30444532 DOI: 10.1111/lam.13098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 12/01/2022]
Abstract
Foshtiazate is an organophosphorus nematicide commonly used in protected crops and potato plantations. It is toxic to mammals, birds and honeybees, it is persistent in certain soils and can be transported to water resources. Recent studies by our group demonstrated, for the first time, the development of enhanced biodegradation of fosthiazate in agricultural soils. However, the micro-organisms driving this process are still unknown. We aimed to isolate soil bacteria responsible for the enhanced biodegradation of fosthiazate and assess their degradation potential against high concentrations of the nematicide. Enrichment cultures led to the isolation of two bacterial cultures actively degrading fosthiazate. Denaturating Gradient Gel Electrophoresis analysis revealed that they were composed of a single phylotype, identified via 16S rRNA cloning and phylogenetic analysis as Variovorax boronicumulans. This strain showed high degradation potential against fosthiazate. It degraded up to 100 mg l-1 in liquid cultures (DT50 = 11·2 days), whereas its degrading capacity was reduced at higher concentration levels (500 mg l-1 , DT50 = 20 days). This is the first report for the isolation of a fosthiazate-degrading bacterium, which showed high potential for use in future biodepuration and bioremediation applications. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reported for the first time the isolation and molecular identification of bacteria able to rapidly degrade the organophosphorus nematicide fosthiazate; one of the few synthetic nematicides still available on the global market. Further tests demonstrated the high capacity of the isolated strain to degrade high concentrations of fosthiazate suggesting its high potential for future bioremediation applications in contaminated environmental sites, considering high acute toxicity and high persistence and mobility of fosthiazate in acidic and low in organic matter content soils.
Collapse
Affiliation(s)
- S Lagos
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa, Greece
| | - C Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa, Greece
| | - A Katsoula
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa, Greece
| | - D G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larissa, Greece
| |
Collapse
|
41
|
Wu Y, Zaiden N, Cao B. The Core- and Pan-Genomic Analyses of the Genus Comamonas: From Environmental Adaptation to Potential Virulence. Front Microbiol 2018; 9:3096. [PMID: 30619175 PMCID: PMC6299040 DOI: 10.3389/fmicb.2018.03096] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/29/2018] [Indexed: 01/30/2023] Open
Abstract
Comamonas is often reported to be one of the major members of microbial communities in various natural and engineered environments. Versatile catabolic capabilities of Comamonas have been studied extensively in the last decade. In contrast, little is known about the ecological roles and adaptation of Comamonas to different environments as well as the virulence of potentially pathogenic Comamonas strains. In this study, we provide genomic insights into the potential ecological roles and virulence of Comamonas by analysing the entire gene set (pangenome) and the genes present in all genomes (core genome) using 34 genomes of 11 different Comamonas species. The analyses revealed that the metabolic pathways enabling Comamonas to acquire energy from various nutrient sources are well conserved. Genes for denitrification and ammonification are abundant in Comamonas, suggesting that Comamonas plays an important role in the nitrogen biogeochemical cycle. They also encode sophisticated redox sensory systems and diverse c-di-GMP controlling systems, allowing them to be able to effectively adjust their biofilm lifestyle to changing environments. The virulence factors in Comamonas were found to be highly species-specific. The conserved strategies used by potentially pathogenic Comamonas for surface adherence, motility control, nutrient acquisition and stress tolerance were also revealed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Norazean Zaiden
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Phandanouvong-Lozano V, Sun W, Sanders JM, Hay AG. Biochar does not attenuate triclosan's impact on soil bacterial communities. CHEMOSPHERE 2018; 213:215-225. [PMID: 30223126 DOI: 10.1016/j.chemosphere.2018.08.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Triclosan, a broad-spectrum antimicrobial, has been widely used in pharmaceutical and personal care products. It undergoes limited degradation during wastewater treatment and is present in biosolids, most of which are land applied in the United States. This study assessed the impact of triclosan (0-100 mg kg-1) with and without biochar on soil bacterial communities. Very little 14C-triclosan was mineralized to 14CO2 (<7%) over the course of the study (42 days). While biochar (1%) significantly lowered mineralization of triclosan, analysis of 16S rRNA gene sequences revealed that biochar impacted very few OTUs and did not alter the overall structure of the community. Triclosan, on the other hand, significantly affected bacterial diversity and community structure (alpha diversity, ANOVA, p < 0.001; beta diversity, AMOVA, p < 0.01). Dirichlet multinomial mixtures (DMM) modeling and complete linkage clustering (CLC) revealed a dose-dependent impact of triclosan. Non-Parametric Metastats (NPM) analysis showed that 150 of 734 OTUs from seven main phyla were significantly impacted by triclosan (adjusted p < 0.05). Genera harboring opportunistic pathogens such as Flavobacterium were enriched in the presence of triclosan, as was Stenotrophomonas. The latter has previously been implicated in triclosan degradation via stable isotope probing. Surprisingly, Sphingomonads, which include well-characterized triclosan degraders were negatively impacted by even low doses of triclosan. Analyses of published genomes showed that triclosan resistance determinants were rare in Sphingomonads which may explain why they were negatively impacted by triclosan in our soil.
Collapse
Affiliation(s)
| | - Wen Sun
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie M Sanders
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
43
|
Zhang L, Hang P, Hu Q, Chen XL, Zhou XY, Chen K, Jiang JD. Degradation of Phenylurea Herbicides by a Novel Bacterial Consortium Containing Synergistically Catabolic Species and Functionally Complementary Hydrolases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12479-12489. [PMID: 30407808 DOI: 10.1021/acs.jafc.8b03703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phenylurea herbicides (PHs) are frequently detected as major water contaminants in areas where there is extensive use. In this study, Diaphorobacter sp. strain LR2014-1, which initially hydrolyzes linuron to 3,4-dichloroanaline, and Achromobacter sp. strain ANB-1, which further mineralizes the produced aniline derivatives, were isolated from a linuron-mineralizing consortium despite being present at low abundance in the community. The synergistic catabolism of linuron by the consortium containing these two strains resulted in more efficient catabolism of linuron and growth of both strains. Strain LR2014-1 harbors two evolutionary divergent hydrolases from the amidohydrolase superfamily Phh and the amidase superfamily TccA2, which functioned complementarily in the hydrolysis of various types of PHs, including linuron ( N-methoxy- N-methyl-substituted), diuron, chlorotoluron, fluomethuron ( N, N-dimethyl-substituted), and siduron. These findings show that a bacterial consortium can contain catabolically synergistic species for PH mineralization, and one strain could harbor functionally complementary hydrolases for a broadened substrate range.
Collapse
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Ping Hang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Xiao-Long Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Xi-Yi Zhou
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
44
|
Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and Characterization of Synthetic Bacterial Community for Experimental Ecology and Evolution. Front Genet 2018; 9:312. [PMID: 30154827 PMCID: PMC6102323 DOI: 10.3389/fgene.2018.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
Experimental microbial ecology and evolution have yielded foundational insights into ecological and evolutionary processes using simple microcosm setups and phenotypic assays with one- or two-species model systems. The fields are now increasingly incorporating more complex systems and exploration of the molecular basis of observations. For this purpose, simplified, manageable and well-defined multispecies model systems are required that can be easily investigated using culturing and high-throughput sequencing approaches, bridging the gap between simpler and more complex synthetic or natural systems. Here we address this need by constructing a completely synthetic 33 bacterial strain community that can be cultured in simple laboratory conditions. We provide whole-genome data for all the strains as well as metadata about genomic features and phenotypic traits that allow resolving individual strains by amplicon sequencing and facilitate a variety of envisioned mechanistic studies. We further show that a large proportion of the strains exhibit coexistence in co-culture over serial transfer for 48 days in the absence of any experimental manipulation to maintain diversity. The constructed bacterial community can be a valuable resource in future experimental work.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Roosa Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
45
|
De Vrieze J, Boon N, Verstraete W. Taking the technical microbiome into the next decade. Environ Microbiol 2018; 20:1991-2000. [PMID: 29745026 DOI: 10.1111/1462-2920.14269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
The 'microbiome' has become a buzzword. Multiple new technologies allow to gather information about microbial communities as they evolve under stable and variable environmental conditions. The challenge of the next decade will be to develop strategies to compose and manage microbiomes. Here, key aspects are considered that will be of crucial importance for future microbial technological developments. First, the need to deal not only with genotypes but also particularly with phenotypes is addressed. Microbial technologies are often highly dependent on specific core organisms to obtain the desired process outcome. Hence, it is essential to combine omics data with phenotypic information to invoke and control specific phenotypes in the microbiome. Second, the development and application of synthetic microbiomes is evaluated. The central importance of the core species is a no-brainer, but the implementation of proper satellite species is an important route to explore. Overall, for the next decade, microbiome research should no longer almost exclusively focus on its capacity to degrade and dissipate but rather on its remarkable capability to capture disordered components and upgrade them into high-value microbial products. These products can become valuable commodities in the cyclic economy, as reflected in the case of 'reversed sanitation', which is introduced here.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium.,Avecom NV, Industrieweg 122P, Wondelgem 9032, Belgium
| |
Collapse
|
46
|
Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Appl Microbiol Biotechnol 2018; 102:7963-7979. [PMID: 29984394 DOI: 10.1007/s00253-018-9189-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1β plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.
Collapse
|
47
|
Ahmad F, Anwar S, Firdous S, Da-Chuan Y, Iqbal S. Biodegradation of bispyribac sodium by a novel bacterial consortium BDAM: Optimization of degradation conditions using response surface methodology. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:272-281. [PMID: 29438823 DOI: 10.1016/j.jhazmat.2017.12.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Bispyribac sodium (BS), is a selective, systemic and post emergent herbicide used to eradicate grasses and broad leaf weeds. Extensive use of this herbicide has engendered serious environmental concerns. Hence it is important to develop strategies for bioremediation of BS in a cost effective and environment friendly way. In this study a bacterial consortium named BDAM, comprising three novel isolates Achromobacter xylosoxidans (BD1), Achromobacter pulmonis (BA2), and Ochrobactrum intermedium (BM2), was developed by virtue of its potential for degradation of BS. Different culture conditions (temperature, pH and inoculum size) were optimized for degradation of BS by the consortium BDAM and the mutual interactions of these parameters were analysed using a 23 full factorial central composite design (CCD) based on Response Surface Methodology (RSM). The optimal values for temperature, pH and inoculum size were found to be 40 °C, 8 and 0.4 g/L respectively to achieve maximum degradation of BS (85.6%). Moreover, the interactive effects of these parameters were investigated using three dimensional surface plots in terms of maximum fitness function. Importantly, it was concluded that the newly developed consortium is a potential candidate for biodegradation of BS in a safe, cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Sadiqa Firdous
- Department of Microbiology, Women University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yin Da-Chuan
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad 38000, Pakistan.
| |
Collapse
|
48
|
Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A. Isolation, characterization, and identification of potential Diuron-degrading bacteria from surface sediments of Port Klang, Malaysia. MARINE POLLUTION BULLETIN 2018; 127:453-457. [PMID: 29475685 DOI: 10.1016/j.marpolbul.2017.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Diuron is an alternative biocide suggested to replace organotin in formulating antifouling paints to be applied on water-going vessels hull. However, it is potentially harmful to various non-targeted marine organisms due to its toxic properties. Present study aimed to isolate, screen and identify the potential of Diuron-degrading bacteria collected from the marine sediments of Port Klang, Malaysia. Preliminary screening was conducted by exposing isolated bacteria to 430ng/L (background level), followed by 600ng/L and 1000ng/L of Diuron concentrations. Nine bacteria colonies survived the exposure of the above concentrations. However, only two strains can tolerate to survive up to 1000μg/L, which were then characterised and identified using phenotypic tests and the standard 16S rRNA molecular identification. The strains were identified as Comamonas jiangduensis SZZ 10 and Bacillus aerius SZZ 19 (GenBank accession numbers: KU942479 and KU942480, respectively). Both strains have the potential of Diuron biodegradation for future use.
Collapse
Affiliation(s)
- Munirah Hanapiah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syaizwan Zahmir Zulkifli
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Muskhazli Mustafa
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ferdaus Mohamat-Yusuff
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
49
|
Ehsani E, Hernandez-Sanabria E, Kerckhof FM, Props R, Vilchez-Vargas R, Vital M, Pieper DH, Boon N. Initial evenness determines diversity and cell density dynamics in synthetic microbial ecosystems. Sci Rep 2018; 8:340. [PMID: 29321640 PMCID: PMC5762898 DOI: 10.1038/s41598-017-18668-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 12/15/2017] [Indexed: 12/30/2022] Open
Abstract
The effect of initial evenness on the temporal trajectory of synthetic communities in comprehensive, low-volume microcosm studies remains unknown. We used flow cytometric fingerprinting and 16S rRNA gene amplicon sequencing to assess the impact of time on community structure in one hundred synthetic ecosystems of fixed richness but varying initial evenness. Both methodologies uncovered a similar reduction in diversity within synthetic communities of medium and high initial evenness classes. However, the results of amplicon sequencing showed that there were no significant differences between and within the communities in all evenness groups at the end of the experiment. Nevertheless, initial evenness significantly impacted the cell density of the community after five medium transfers. Highly even communities retained the highest cell densities at the end of the experiment. The relative abundances of individual species could be associated to particular evenness groups, suggesting that their presence was dependent on the initial evenness of the synthetic community. Our results reveal that using synthetic communities for testing ecological hypotheses requires prior assessment of initial evenness, as it impacts temporal dynamics.
Collapse
Affiliation(s)
- Elham Ehsani
- Center for Microbial Ecology and Technology (CMET), Coupure Links 653, 9000, Ghent, Belgium
| | | | | | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Coupure Links 653, 9000, Ghent, Belgium
| | - Ramiro Vilchez-Vargas
- Center for Microbial Ecology and Technology (CMET), Coupure Links 653, 9000, Ghent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
50
|
Albers P, Weytjens B, De Mot R, Marchal K, Springael D. Molecular processes underlying synergistic linuron mineralization in a triple-species bacterial consortium biofilm revealed by differential transcriptomics. Microbiologyopen 2018; 7:e00559. [PMID: 29314727 PMCID: PMC5911999 DOI: 10.1002/mbo3.559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/16/2017] [Indexed: 01/28/2023] Open
Abstract
The proteobacteria Variovorax sp. WDL1, Comamonas testosteroni WDL7, and Hyphomicrobium sulfonivorans WDL6 compose a triple‐species consortium that synergistically degrades and grows on the phenylurea herbicide linuron. To acquire a better insight into the interactions between the consortium members and the underlying molecular mechanisms, we compared the transcriptomes of the key biodegrading strains WDL7 and WDL1 grown as biofilms in either isolation or consortium conditions by differential RNAseq analysis. Differentially expressed pathways and cellular systems were inferred using the network‐based algorithm PheNetic. Coculturing affected mainly metabolism in WDL1. Significantly enhanced expression of hylA encoding linuron hydrolase was observed. Moreover, differential expression of several pathways involved in carbohydrate, amino acid, nitrogen, and sulfur metabolism was observed indicating that WDL1 gains carbon and energy from linuron indirectly by consuming excretion products from WDL7 and/or WDL6. Moreover, in consortium conditions, WDL1 showed a pronounced stress response and overexpression of cell to cell interaction systems such as quorum sensing, contact‐dependent inhibition, and Type VI secretion. Since the latter two systems can mediate interference competition, it prompts the question if synergistic linuron degradation is the result of true adaptive cooperation or rather a facultative interaction between bacteria that coincidentally occupy complementary metabolic niches.
Collapse
Affiliation(s)
- Pieter Albers
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Bram Weytjens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium
| | - René De Mot
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|