1
|
Chinnadurai C, Wyatt NA, Weiland JJ, Neher OT, Hastings J, Bloomquist MW, Chu C, Chanda AK, Khan M, Bolton MD, Ramachandran V. Meta-transcriptomic analysis reveals the geographical expansion of known sugarbeet-infecting viruses and the occurrence of a novel virus in sugarbeet in the United States. FRONTIERS IN PLANT SCIENCE 2024; 15:1429402. [PMID: 39290724 PMCID: PMC11407286 DOI: 10.3389/fpls.2024.1429402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
In this study, meta-transcriptome sequencing was conducted on a total of 18 sugarbeet (Beta vulgaris L. subsp. vulgaris) sample libraries to profile the virome of field-grown sugarbeet to identify the occurrence and distribution of known and potentially new viruses from five different states in the United States. Sugarbeet roots with symptoms resembling rhizomania caused by beet necrotic yellow vein virus (BNYVV), or leaves exhibiting leaf-curling, yellowing to browning, or green mosaic were collected from the sugarbeet growing areas of California, Colorado, Idaho, Minnesota, and North Dakota. In silico analysis of de novo assembled contigs revealed the presence of nearly full-length genomes of BNYVV, beet soil-borne virus (BSBV), and beet soil-borne mosaic virus (BSBMV), which represent known sugarbeet-infecting viruses. Among those, BNYVV was widespread across the locations, whereas BSBV was prevalent in Minnesota and Idaho, and BSBMV was only detected in Minnesota. In addition, two recently reported Beta vulgaris satellite virus isoforms (BvSatV-1A and BvSatV-1B) were detected in new locations, indicating the geographical expansion of this known virus. Besides these known sugarbeet-infecting viruses, the bioinformatic analysis identified the widespread occurrence of a new uncharacterized Erysiphe necator-associated abispo virus (En_abispoV), a fungus-related virus that was identified in all 14 libraries. En_abispoV contains two RNA components, and nearly complete sequences of both RNA1 and RNA2 were obtained from RNASeq and were further confirmed by primer-walking RT-PCR and Sanger sequencing. Phylogenetic comparison of En_abispoV isolates obtained in this study showed varying levels of genetic diversity within RNA1 and RNA2 compared to previously reported isolates. The undertaken meta-transcriptomic approach revealed the widespread nature of coexisting viruses associated with field-grown sugarbeet exhibiting virus disease-like symptoms in the United States.
Collapse
Affiliation(s)
| | - Nathan A Wyatt
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - John J Weiland
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Oliver T Neher
- Sugarbeet Research, Amalgamated Sugar Company, Boise, ID, United States
| | - Joe Hastings
- Agriculture Department, American Crystal Sugar Company, Moorhead, MN, United States
| | - Mark W Bloomquist
- Agriculture Department, Southern Minnesota Beet Sugar Cooperative, Renville, MN, United States
| | - Chenggen Chu
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Ashok K Chanda
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- Northwest Research and Outreach Center, University of Minnesota, Crookston, MN, United States
| | - Mohamed Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Melvin D Bolton
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Vanitharani Ramachandran
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- United States Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
2
|
Decroës A, Mahillon M, Genard M, Lienard C, Lima-Mendez G, Gilmer D, Bragard C, Legrève A. Rhizomania: Hide and Seek of Polymyxa betae and the Beet Necrotic Yellow Vein Virus with Beta vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:989-1005. [PMID: 35816413 DOI: 10.1094/mpmi-03-22-0063-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | | | - Margaux Genard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Charlotte Lienard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
3
|
Decroës A, Li JM, Richardson L, Mutasa-Gottgens E, Lima-Mendez G, Mahillon M, Bragard C, Finn RD, Legrève A. Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics 2021; 114:9-22. [PMID: 34798282 DOI: 10.1016/j.ygeno.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Euphemia Mutasa-Gottgens
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mathieu Mahillon
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
5
|
Moradi Z, Maghdoori H, Nazifi E, Mehrvar M. Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences. THE PLANT PATHOLOGY JOURNAL 2021; 37:152-161. [PMID: 33866757 PMCID: PMC8053846 DOI: 10.5423/ppj.oa.12.2020.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Plant Pathology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari,
Iran
| | - Hossein Maghdoori
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91779-1163, Mashhad,
Iran
| | - Ehsan Nazifi
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-95447, Babolsar,
Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91779-1163, Mashhad,
Iran
| |
Collapse
|
6
|
Mahillon M, Decroës A, Peduzzi C, Romay G, Legrève A, Bragard C. RNA silencing machinery contributes to inability of BSBV to establish infection in Nicotiana benthamiana: evidence from characterization of agroinfectious clones of Beet soil-borne virus. J Gen Virol 2021; 102. [PMID: 33215984 DOI: 10.1099/jgv.0.001530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Beet soil-borne virus (BSBV) is a sugar beet pomovirus frequently associated with Beet necrotic yellow veins virus, the causal agent of the rhizomania disease. BSBV has been detected in most of the major beet-growing regions worldwide, yet its impact on this crop remains unclear. With the aim to understand the life cycle of this virus and clarify its putative pathogenicity, agroinfectious clones have been engineered for each segment of its tripartite genome. The biological properties of these clones were then studied on different plant species. Local infection was obtained on agroinfiltrated leaves of Beta macrocarpa. On leaves of Nicotiana benthamiana, similar results were obtained, but only when heterologous viral suppressors of RNA silencing were co-expressed or in a transgenic line down regulated for both dicer-like protein 2 and 4. On sugar beet, local infection following agroinoculation was obtained on cotyledons, but not on other tested plant parts. Nevertheless, leaf symptoms were observed on this host via sap inoculation. Likewise, roots were efficiently mechanically infected, highlighting low frequency of root necrosis and constriction, and enabling the demonstration of transmission by the vector Polymyxa betae. Altogether, the entire viral cycle was reproduced, validating the constructed agroclones as efficient inoculation tools, paving the way for further studies on BSBV and its related pathosystem.
Collapse
Affiliation(s)
- Mathieu Mahillon
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Alain Decroës
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Chloé Peduzzi
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Gustavo Romay
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Anne Legrève
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Claude Bragard
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Fejer Justesen A, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Maiorano A, Delbianco A, Bragard C. Pest categorisation of beet necrotic yellow vein virus. EFSA J 2020; 18:e06360. [PMID: 33363645 PMCID: PMC7754942 DOI: 10.2903/j.efsa.2020.6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health performed a categorisation of beet necrotic yellow vein virus (BNYVV), the causal agent of the sugar beet rhizomania disease. The virus is currently listed in Annex III as a protected zone (PZ) quarantine pest of the Commission Implementing Regulation (EU) 2019/2072. The identity of the BNYVV is well established. BNYVV is a soil-borne virus transmitted by the obligate root plasmodiophorid endoparasite Polymyxa betae. BNYVV is widely distributed in the EU, but is not reported in the following EU PZs: Ireland, France (Brittany), Portugal (Azores), Finland and Northern Ireland. The virus may enter, become established and spread in the PZs via P. betae resting spores with soil and growing media as such or attached to machinery and with roots and tubercles of species other than B. vulgaris and with plants for planting. Introduction of BNYVV would have a negative impact on sugar beet and other beet crops in PZs, because of yield and sugar content reduction. Phytosanitary measures are available to reduce the likelihood of entry and spread in the PZs. Once the virus and its plasmodiophorid vector have entered a PZ, their eradication would be difficult due to the persistence of viruliferous resting spores in the soil. The main knowledge gaps or uncertainties identified concerning the presence of BNYVV in the PZs and the incidence and distribution of BNYVV in Switzerland, a country to which a range of specific requirements do not apply. BNYVV meets all the criteria that are within the remit of EFSA to qualify as a potential protected zone union quarantine pest. Plants for planting are not considered as a main means of spread, and therefore BNYVV does not satisfy all the criteria evaluated by EFSA to qualify as potential Union regulated non-quarantine pest.
Collapse
|
8
|
Yüksel Özmen C, Khabbazi SD, Khabbazi AD, Gürel S, Kaya R, Oğuz MÇ, Turan F, Rezaei F, Kibar U, Gürel E, Ergül A. Genome composition analysis of multipartite BNYVV reveals the occurrence of genetic re-assortment in the isolates of Asia Minor and Thrace. Sci Rep 2020; 10:4129. [PMID: 32139777 PMCID: PMC7058063 DOI: 10.1038/s41598-020-61091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) is the cause of rhizomania, an important disease of sugar beet around the world. The multipartite genome of the BNYVV contains four or five single-stranded RNA that has been used to characterize the virus. Understanding genome composition of the virus not only determines the degree of pathogenicity but also is required to development of resistant varieties of sugar beet. Resistance to rhizomania has been conferred to sugar beet varieties by conventional breeding methods or modern genome engineering tools. However, over time, viruses undergo genetic alterations and develop new variants to break crop resistance. Here, we report the occurrence of genetic reassortment and emergence of new variants of BNYVV among the isolates of Thrace and Asia Minor (modern-day Turkey). Our findings indicate that the isolates harbor European A-type RNA-2 and RNA-3, nevertheless, RNA-5 is closely related to East Asian J-type. Furthermore, RNA-1 and RNA-4 are either derived from A, B, and P-types or a mixture of them. The RNA-5 factor which enhance the pathogenicity, is rarely found in the isolates studied (20%). The creation of new variants of the virus emphasizes the necessity to develop new generation of resistant crops. We anticipate that these findings will be useful for future genetic characterization and evolutionary studies of BNYVV, as well as for developing sustainable strategies for the control of this destructive disease.
Collapse
Affiliation(s)
| | | | | | - Songül Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Rıza Kaya
- Sugar Institute, Department of Phytopathology, Etimesgut, 06930, Ankara, Turkey
| | | | - Ferzat Turan
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
| | - Fereshteh Rezaei
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
- Başkent University, Institute of Transplantation and Gene Sciences, 06980, Kahramankazan, Ankara, Turkey
| | - Umut Kibar
- Republic of Turkey Ministry of Agriculture and Forestry, Agriculture and Rural Development Support Institution, 06550, Ankara, Turkey
| | - Ekrem Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Ali Ergül
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey.
| |
Collapse
|
9
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
10
|
Pandey B, Mallik I, Gudmestad NC. Development and Application of a Real-Time Reverse-Transcription PCR and Droplet Digital PCR Assays for the Direct Detection of Potato mop top virus in Soil. PHYTOPATHOLOGY 2020; 110:58-67. [PMID: 31448996 DOI: 10.1094/phyto-05-19-0185-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Potato mop top virus (PMTV) is a continuing threat to potato production throughout the world. It has the potential to persist in the soil for long periods in the sporosori of its vector Spongospora subterranea f. sp. subterranea, which is as an important source for PMTV infection and dissemination. In this study, we used real-time quantitative reverse-transcription PCR (qRT-PCR) and reverse-transcription droplet digital PCR (RT-ddPCR) assays of the total RNA extracted directly from the soil to develop a simple, fast, and sensitive method to detect PMTV in soil samples using a specific primer with high efficiency despite a minimal amount of viral RNA. The designed primers are resilient in the presence of various PCR inhibitors in the soil when RNA is extracted. Both assays detected PMTV in all soil types used and supported the detection of <10 PMTV copies µl-1 in the RNA sample. With qRT-PCR, detection was linear, with amplification efficiencies ranging from 93.3 to 105.3% for silt loam, loamy sand, sand, and sandy loam in various experiments with R2 > 0.99. Furthermore, the RT-ddPCR assay also demonstrated a high degree of linearity (R2 > 0.99 and P < 0.0001) with the RNA extracted from the soil samples representing different textures and physiochemical characteristics that were artificially spiked with infested S. subterranea f. sp. subterranea sporosori. Additionally, both assays successfully detected PMTV in different types of naturally infested soil with PMTV carrying S. subterranea f. sp. subterranea sporosori levels ranging from 6.2 × 102 g-1 to 1.2 × 106 g-1 in soils with pH ranging from 4.9 to 7.5 and organic matter ranging from 0.9 to 5.1%, demonstrating the potential to detect PMTV in a wide variety of soils. To our knowledge, this is the first report of the development of real-time PCR and ddPCR methods for the direct detection of a soilborne virus in soil.
Collapse
Affiliation(s)
- Binod Pandey
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Ipsita Mallik
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Neil C Gudmestad
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|
11
|
Galein Y, Legrève A, Bragard C. Long Term Management of Rhizomania Disease-Insight Into the Changes of the Beet necrotic yellow vein virus RNA-3 Observed Under Resistant and Non-resistant Sugar Beet Fields. FRONTIERS IN PLANT SCIENCE 2018; 9:795. [PMID: 30013579 PMCID: PMC6036237 DOI: 10.3389/fpls.2018.00795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/24/2018] [Indexed: 05/09/2023]
Abstract
Rhizomania disease, caused by the Beet necrotic yellow vein virus (BNYVV), is considered as one of the major constraints for sugar beet production, worldwide. As a result of the introgression of major resistance genes (Holly, Rz2) in commercially available sugar beet varieties, the virus has endured strong selection pressure since the 90s'. Understanding the virus response and diversity to sugar beet resistance is a key factor for a sustainable management of only few resistance genes. Here we report rhizomania surveys conducted in a rhizomania hot spot, the Pithiviers area (France) during a 4-year period and complementary to the study of Schirmer et al. (2005). The study aimed at evaluating the intra- and inter-field BNYVV diversity in response to different sources of resistance and over the growing season. To follow rhizomania development over the sugar beet growing season, extensive field samplings combined with field assays were performed in this study. The evolution of the BNYVV diversity was assessed at intra- and inter-field levels, with sugar beet cultivars containing different resistance genes (Rz1, Rz1 + Heterodera schachtii resistance and Rz1Rz2). Intra-field diversity was analyzed at the beginning and the end of the growing season of each field. From more than one thousand field samples, the simultaneous presence of the different A, B and P types of BNYVV was confirmed, with 21 variants identified at positions 67-70 of the p25 tetrad. The first variant, AYHR, was found most commonly followed by SYHG. Numerous mixed infections (9.93% of the samples), mostly of B-type with P-type, have also been evidenced. Different tetrads associated with the A- or B-type were also found with a fifth RNA-genome component known to allow more aggressiveness to BNYVV on sugar beet roots. Cultivars with Rz1+Rz2 resistant genes showed few root symptoms even if the BNYVV titre was quite high according to the BNYVV type present. The virus infectious potential in the soil at the end of the growing season with such cultivars was also lower despite a wider diversity at the BNYVV RNA3 sequence level. Rz1+Rz2 cultivars also exhibited a lower presence of Beet soil-borne virus (BSBV), a P. betae-transmitted Pomovirus. Cultivars with Rz1 and nematode (N) resistance genes cultivated in field infected with nematodes showed lower BNYVV titre than those with Rz1 or Rz1+Rz2 cultivars. Overall, the population structure of BNYVV in France is shown to be different from that previously evidenced in different world areas. Implications for long-term management of the resistance to rhizomania is discussed.
Collapse
Affiliation(s)
| | - Anne Legrève
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Özkan-Kotiloğlu S, Coutts RHA. Multiplex Detection of Aspergillus fumigatus Mycoviruses. Viruses 2018; 10:E247. [PMID: 29738445 PMCID: PMC5977240 DOI: 10.3390/v10050247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoviruses are viruses that naturally infect and replicate in fungi. They are widespread in all major fungal groups including plant and animal pathogenic fungi. Several dsRNA mycoviruses have been reported in Aspergillus fumigatus. Multiplex polymerase chain reaction (PCR) amplification is a version of PCR that enables amplification of different targets simultaneously. This technique has been widely used for detection and differentiation of viruses especially plant viruses such as those which infect tobacco, potato and garlic. For rapid detection, multiplex RT-PCR was developed to screen new isolates for the presence of A. fumigatus mycoviruses. Aspergillus fumigatus chrysovirus (AfuCV), Aspergillus fumigatus partitivirus (AfuPV-1), and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1) dsRNAs were amplified in separate reactions using a mixture of multiplex primer pairs. It was demonstrated that in the presence of a single infection, primer pair mixtures only amplify the corresponding single virus infection. Mixed infections using dual or triple combinations of dsRNA viruses were also amplified simultaneously using multiplex RT-PCR. Up until now, methods for the rapid detection of Aspergillus mycoviruses have been restricted to small scale dsRNA extraction approaches which are laborious and for large numbers of samples not as sensitive as RT-PCR. The multiplex RT-PCR assay developed here will be useful for studies on determining the incidence of A. fumigatus mycoviruses. This is the first report on multiplex detection of A. fumigatus mycoviruses.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Ahi Evran University, Kırşehir 40100, Turkey.
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| |
Collapse
|
13
|
Almasi MA, Almasi G. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus. Arch Virol 2016; 162:495-500. [PMID: 27738843 DOI: 10.1007/s00705-016-3116-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.
Collapse
Affiliation(s)
- Mohammad Amin Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Galavizh Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
The complete genome sequences of two naturally occurring recombinant isolates of Sugarcane mosaic virus from Iran. Virus Genes 2016; 52:270-80. [PMID: 26905544 DOI: 10.1007/s11262-016-1302-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023]
Abstract
Sugarcane mosaic virus (SCMV) is the most prevalent virus causing sugarcane mosaic and maize dwarf mosaic diseases. Here, we presented the first two complete genomic sequences of Iranian SCMV isolates, NRA and ZRA from sugarcane and maize. The complete genome sequences of NRA and ZRA were, respectively, 9571 and 9572 nucleotides (nt) in length, excluding the 3'-terminal poly(A) tail. Both isolates contained a 5'-untranslated region (UTR) of 149 nt, an open reading frame of 9192 nt encoding a polyprotein of 3063 amino acids (aa), and 3'-UTR of 230 nt for NRA and 231 nt for ZRA. SCMV-NRA and -ZRA genome nucleotide sequences were 97.3 % identical and shared nt identities of 79.1-92 % with those of other 21 SCMV isolates available in the GenBank, highest with the isolate Bris-A (AJ278405) (92 and 91.7 %) from Australia. When compared for separate genes, most of their genes shared the highest identities with Australian and Argentinean isolates. Phylogenetic analysis of the complete genomic sequences reveals that SCMV can be clustered to three groups. Both NRA and ZRA were clustered with sugarcane isolates from Australia and Argentina in group III but formed a separate sublineage. Recombination analysis showed that both isolates were intraspecific recombinants, and represented two novel recombination patterns of SCMV (in the P1 coding region). NRA had six recombination sites within the P1, HC-Pro, CI, NIa-Vpg, and NIa-pro coding regions, while ZRA had four within the P1, HC-Pro, NIa-Pro, and NIb coding regions.
Collapse
|
15
|
D'Alonzo M, Delbianco A, Lanzoni C, Autonell CR, Gilmer D, Ratti C. Beet soil-borne mosaic virus RNA-4 encodes a 32 kDa protein involved in symptom expression and in virus transmission through Polymyxa betae. Virology 2011; 423:187-94. [PMID: 22209119 DOI: 10.1016/j.virol.2011.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/20/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
Beet soil-borne mosaic virus (BSBMV), like Beet necrotic yellow vein virus (BNYVV), is a member of the Benyvirus genus and both are transmitted by Polymyxa betae. Both viruses possess a similar genomic organization: RNA-1 and -2 are essential for infection and replication while RNA-3 and -4 play important roles in disease development and vector-mediated infection in sugar beet roots. We characterized a new species of BSBMV RNA-4 that encodes a 32 kDa protein and a chimeric form of BSBMV RNA-3 and -4. We demonstrated that BSBMV RNA-4 can be amplified by BNYVV RNA-1 and -2 in planta, is involved in symptoms expression on Chenopodium quinoa plants and can also complement BNYVV RNA-4 for virus transmission through its vector P. betae in Beta vulgaris plants. Using replicon-mediated expression, we demonstrate for the first time that a correct expression of RNAs-4 encoded proteins is essential for benyvirus transmission.
Collapse
Affiliation(s)
- Massimiliano D'Alonzo
- DiSTA - Plant Pathology, University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Bornemann K, Varrelmann M. Analysis of the resistance-breaking ability of different beet necrotic yellow vein virus isolates loaded into a single Polymyxa betae population in soil. PHYTOPATHOLOGY 2011; 101:718-24. [PMID: 21303211 DOI: 10.1094/phyto-06-10-0157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The genome of most Beet necrotic yellow vein virus (BNYVV) isolates is comprised of four RNAs. The ability of certain isolates to overcome Rz1-mediated resistance in sugar beet grown in the United States and Europe is associated with point mutations in the pathogenicity factor P25. When the virus is inoculated mechanically into sugar beet roots at high density, the ability depends on an alanine to valine substitution at P25 position 67. Increased aggressiveness is shown by BNYVV P type isolates, which carry an additional RNA species that encodes a second pathogenicity factor, P26. Direct comparison of aggressive isolates transmitted by the vector, Polymyxa betae, has been impossible due to varying population densities of the vector and other soilborne pathogens that interfere with BNYVV infection. Mechanical root inoculation and subsequent cultivation in soil that carried a virus-free P. betae population was used to load P. betae with three BNYVV isolates: a European A type isolate, an American A type isolate, and a P type isolate. Resistance tests demonstrated that changes in viral aggressiveness towards Rz1 cultivars were independent of the vector population. This method can be applied to the study of the synergism of BNYVV with other P. betae-transmitted viruses.
Collapse
Affiliation(s)
- Kathrin Bornemann
- Institute of Sugar Beet Research, Holtenser Landstr. 77, D-37079 Goettingen, Germany
| | | |
Collapse
|
17
|
Dieryck B, Delfosse P, Reddy AS, Bragard C. Targeting highly conserved 3'-untranslated region of pecluviruses for sensitive broad-spectrum detection and quantitation by RT-PCR and assessment of phylogenetic relationships. J Virol Methods 2010; 169:385-90. [PMID: 20723565 DOI: 10.1016/j.jviromet.2010.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 11/30/2022]
Abstract
The 3'-end region of many virus isolates has been shown to possess conserved sequences in addition to the presence of numerous genomic and subgenomic RNAs. Utilizing these sequences, a broad-spectrum reverse transcription-polymerase chain reaction protocol has been developed to detect all the known Indian peanut clump virus and Peanut clump virus isolates, that cause peanut clump diseases in West Africa and India. The primers were targeted at the highly conserved 3'-untranslated regions of the PCV RNA-1 and RNA-2. The conservation was confirmed by sequencing these untranslated regions of RNA-1 for six isolates and RNA-2 for one isolate. The conserved structure of the RNA-1 and RNA-2 was observed and the importance of this region for the virus survival was confirmed. The primers were also designed for virus quantitation using a Taqman(®)-based real-time RT-PCR. The use of RT-PCR and real-time quantitative RT-PCR improved the sensitivity of PCV detection compared to ELISA. RT-PCR also led to the detection of IPCV and PCV on two new natural hosts: Oldenlandia aspera and Vigna subterranea. Real-time RT-PCR is considered to be an ideal tool for identifying resistant sources to both IPCV and PCV.
Collapse
Affiliation(s)
- B Dieryck
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology - Phytopathology, Croix du Sud, 2/3, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
18
|
Lennefors BL, Savenkov EI, Mukasa SB, Valkonen JPT. Sequence divergence of four soilborne sugarbeet-infecting viruses. Virus Genes 2009; 31:57-64. [PMID: 15965609 DOI: 10.1007/s11262-004-2199-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Accepted: 12/28/2004] [Indexed: 11/30/2022]
Abstract
Soilborne viruses are among the most harmful pathogens of sugarbeet (Beta vulgaris L.ssp. vulgaris) but most of them lack information on genetic variability due to paucity of sequence data. Only one isolate of Beet soil borne virus (BSBV; genus Pomovirus), Beet virus Q (BVQ; genus Pomovirus) and Beet soil borne mosaic virus (BSBMV; genus Benyvirus) has been characterised for the coat protein (CP) gene. In this study, the CP gene sequences of three isolates each of BSBV and Beet necrotic yellow vein virus (BNYVV; genus Benyvirus) (France, Germany and USA), two isolates of BVQ (France and Germany), and one isolate of BSBMV (USA) were determined. Phylogenetic analyses including sequences from databanks indicated that the French BNYVV isolate of this study belongs to so-called P-type, the American isolate to A-type and the German isolate to B-type. The CP genes of the three BSBV isolates characterised in this study and the one available from databank were highly identical (98.4-99.0% at nucleotide level; one variable amino acid). The BSBMV isolate studied here differed from the previously characterised isolate for five nucleotides and four amino acids in the CP region. The two BVQ isolates characterised in this study contained three additional nucleotides resulting in an additional amino acid residue (arginine) at CP position 86, as compared to the only isolate available in databank.
Collapse
Affiliation(s)
- B-L Lennefors
- Syngenta Seeds AB, Box 302, SE-261 23, Landskrona, Sweden.
| | | | | | | |
Collapse
|
19
|
Crutzen F, Mehrvar M, Gilmer D, Bragard C. A full-length infectious clone of beet soil-borne virus indicates the dispensability of the RNA-2 for virus survival in planta and symptom expression on Chenopodium quinoa leaves. J Gen Virol 2009; 90:3051-3056. [PMID: 19726609 DOI: 10.1099/vir.0.014548-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For a better understanding of the functionality and pathogenicity of beet soil-borne virus (BSBV), full-length cDNA clones have been constructed for the three genomic RNAs. With the aim of assessing their effectiveness and relative contribution to the virus housekeeping functions, transcripts were inoculated on Chenopodium quinoa and Beta macrocarpa leaves using five genome combinations. Both RNAs-1 (putative replicase) and -3 (putative movement proteins) proved to be essential for virus replication in planta and symptom production on C. quinoa, whereas RNA-2 (putative coat protein, CP, and a read-through domain, RT) was not. No symptoms were recorded on B. macrocarpa, but viral RNAs were detected. In both host plants, the 19 kDa CP was detected by Western blotting as well as a 115 kDa protein corresponding to the CP-RT.
Collapse
Affiliation(s)
- François Crutzen
- Université catholique de Louvain, unité de phytopathologie, Croix du Sud 2 bte 3, B-1348 Louvain-la-Neuve, Belgium
| | - Mohsen Mehrvar
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Université catholique de Louvain, unité de phytopathologie, Croix du Sud 2 bte 3, B-1348 Louvain-la-Neuve, Belgium
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Claude Bragard
- Université catholique de Louvain, unité de phytopathologie, Croix du Sud 2 bte 3, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Crutzen F, Kreit M, Bragard C. The beet virus Q coat protein readthrough domain is longer than previously reported, with two transmembrane domains. J Gen Virol 2009; 90:754-758. [DOI: 10.1099/vir.0.008029-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten beet virus Q (BVQ) strains from six different countries were sequenced to characterize the readthrough (RT) domain of the coat protein (CP). The GenBank/EMBL/DDBJ accession numbers for the sequences reported in this paper are FM244643–FM244652. With three nucleotide additions of 5, 285 and 1 nt, the common RT of 76 kDa was found to be longer than the single reference available to date (35 kDa). It is hypothesized that multiple inoculation cycles on Chenopodium quinoa were responsible for these three deletions in the C-terminal part of the BVQ RNA-2 previously described. Two putative transmembrane domains, TM1 and TM2, were predicted in the consensus amino acid sequence of the ten BVQ strains, and the putative BVQ TM2 was aligned with that of potato mop-top virus.
Collapse
Affiliation(s)
- François Crutzen
- Université Catholique de Louvain, Unité de Phytopathologie, Place Croix du Sud 2, Bte 3, B-1348 Louvain la-Neuve, Belgium
| | - Marguerite Kreit
- Université Catholique de Louvain, Unité de Phytopathologie, Place Croix du Sud 2, Bte 3, B-1348 Louvain la-Neuve, Belgium
| | - Claude Bragard
- Université Catholique de Louvain, Unité de Phytopathologie, Place Croix du Sud 2, Bte 3, B-1348 Louvain la-Neuve, Belgium
| |
Collapse
|
21
|
Mehrvar M, Valizadeh J, Koenig R, Bragard CG. Iranian beet necrotic yellow vein virus (BNYVV): pronounced diversity of the p25 coding region in A-type BNYVV and identification of P-type BNYVV lacking a fifth RNA species. Arch Virol 2009; 154:501-6. [DOI: 10.1007/s00705-009-0322-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/14/2009] [Indexed: 11/29/2022]
|
22
|
Ratti C, Hleibieh K, Bianchi L, Schirmer A, Autonell CR, Gilmer D. Beet soil-borne mosaic virus RNA-3 is replicated and encapsidated in the presence of BNYVV RNA-1 and -2 and allows long distance movement in Beta macrocarpa. Virology 2009; 385:392-9. [PMID: 19141358 DOI: 10.1016/j.virol.2008.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 11/18/2008] [Accepted: 12/06/2008] [Indexed: 11/19/2022]
Abstract
Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV) belong to the Benyvirus genus. BSBMV has been reported only in the United States, while BNYVV has a worldwide distribution. Both viruses are vectored by Polymyxa betae and possess similar host ranges, particle number and morphology. BNYVV and BSBMV are not serologically related but they have similar genomic organizations. Field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs 1 and 2 are essential for infection and replication while RNAs 3 and 4 play important roles in plant and vector interactions, respectively. Nucleotide and amino acid analyses revealed that BSBMV and BNYVV are sufficiently different to be classified as two species. Complementary base changes found within the BSBMV RNA-3 5' UTR made it resemble to BNYVV 5' RNA-3 structure whereas the 3' UTRs of both species were more conserved. cDNA clones were obtained, and allowed complete copies of BSBMV RNA-3 to be trans-replicated, trans-encapsidated by the BNYVV viral machinery. Long-distance movement was observed indicating that BSBMV RNA-3 could substitute BNYVV RNA-3 for systemic spread, even though the p29 encoded by BSBMV RNA-3 is much closer to the RNA-5-encoded p26 than to BNYVV RNA-3-encoded p25. Competition occurred when BSBMV RNA-3-derived replicons were used together with BNYVV-derived RNA-3 but not when the RNA-5-derived component was used. Exploitation of the similarities and divergences between BSBMV and BNYVV should lead to a better understanding of molecular interactions between Benyviruses and their hosts.
Collapse
Affiliation(s)
- Claudio Ratti
- DISTA-Plant pathology, University of Bologna, Viale G. Fanin, 40-40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
23
|
González-Vázquez M, Ayala J, García-Arenal F, Fraile A. Occurrence of Beet black scorch virus Infecting Sugar Beet in Europe. PLANT DISEASE 2009; 93:21-24. [PMID: 30764261 DOI: 10.1094/pdis-93-1-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In a survey of soilborne viruses infecting sugar beet in central Spain, Beet black scorch virus (BBSV) was detected in field grown sugar beets with symptoms of rhizomania disease. BBSV was found in all analyzed sugar beet producing regions from central Spain, as well as in bait plants grown in soils with a history of rhizomania from several Western European countries, thereby constituting the first report of BBSV in Europe. BBSV was transferred to Chenopodium quinoa, where it caused chlorotic local lesions from which virus particles were purified. The nucleotide sequence of the 3'-untranslated region of the genomic RNA was determined for 13 European isolates, and sequences were highly similar to those reported for Chinese and U.S. isolates. Sequence comparisons revealed three clusters of sequences, one including most European isolates, one including one European and two Chinese isolates, and the third including the U.S. isolate. BBSV was detected in a number of samples with rhizomania symptoms in which Beet necrotic yellow vein virus went undetected. However, its role in rhizomania disease in Europe, if any, remains to be established.
Collapse
Affiliation(s)
- Magali González-Vázquez
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Julián Ayala
- Asociación de Investigación y Mejora del Cultivo de la Remolacha Azucarera, Ctra. De Villabañez Km 2.7, 47012 Valladolid, Spain
| | - Fernando García-Arenal
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Aurora Fraile
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
24
|
McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. MOLECULAR PLANT PATHOLOGY 2009; 10:129-41. [PMID: 19161359 PMCID: PMC6640442 DOI: 10.1111/j.1364-3703.2008.00514.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae. BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1, has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.
Collapse
Affiliation(s)
- Graham R D McGrann
- Broom's Barn Research Centre, Rothamsted Research, Department of Applied Crop Sciences, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
| | | | | | | |
Collapse
|
25
|
Lennefors BL, van Roggen PM, Yndgaard F, Savenkov EI, Valkonen JPT. Efficient dsRNA-mediated transgenic resistance to Beet necrotic yellow vein virus in sugar beets is not affected by other soilborne and aphid-transmitted viruses. Transgenic Res 2007; 17:219-28. [PMID: 17431806 DOI: 10.1007/s11248-007-9092-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 03/11/2007] [Indexed: 10/23/2022]
Abstract
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.
Collapse
|
26
|
|
27
|
Vaïanopoulos C, Legrève A, Lorca C, Moreau V, Steyer S, Maraite H, Bragard C. Widespread Occurrence of Wheat spindle streak mosaic virus in Belgium. PLANT DISEASE 2006; 90:723-728. [PMID: 30781230 DOI: 10.1094/pd-90-0723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In order to assess the occurrence of Wheat spindle streak mosaic virus (WSSMV) in Belgium, a reverse-transcription polymerase chain reaction (RT-PCR) was developed, targeting WSSMV isolates from Canada, France, Germany, Italy, and the United States. The primers also were designed for virus quantification by real-time RT-PCR with SYBR-Green. No cross-reaction with soilborne cereal viruses such as Barley mild mosaic virus, Barley yellow mosaic virus, Soilborne cereal mosaic virus, and Soil-borne wheat mosaic virus was observed. The RT-PCR and real-time quantitative RT-PCR allowed a more sensitive detection of WSSMV than enzymelinked immunosorbent assay. The incidence of WSSMV in Belgium was evaluated using a bioassay with wheat cvs. Cezanne and Savannah and rye cv. Halo, grown in 104 Belgian soils. The presence of WSSMV was detected from plants grown in 32% of the soils. The RT-PCR methods developed here, combined with large sampling, allowed WSSMV to be detected for the first time in Belgium. The real-time quantitative RT-PCR was developed as a tool for evaluating the resistance to WSSMV by quantifying the virus concentration in wheat cultivars.
Collapse
Affiliation(s)
- C Vaïanopoulos
- Unité de Phytopathologie, Université catholique de Louvain (UCL), Louvain-la-Neuve 1348, Belgium
| | - A Legrève
- Unité de Phytopathologie, Université catholique de Louvain (UCL), Louvain-la-Neuve 1348, Belgium
| | - C Lorca
- Unité de Phytopathologie, Université catholique de Louvain (UCL), Louvain-la-Neuve 1348, Belgium
| | - V Moreau
- Unité de Phytopathologie, Université catholique de Louvain (UCL), Louvain-la-Neuve 1348, Belgium
| | - S Steyer
- Département Lutte biologique et Ressources phytogénétiques, Centre wallon de recherches agronomiques, CRA-W, Gembloux 5030, Belgium
| | - H Maraite
- Unité de Phytopathologie, UCL, Belgium
| | - C Bragard
- Unité de Phytopathologie, UCL, Belgium
| |
Collapse
|
28
|
Schirmer A, Link D, Cognat V, Moury B, Beuve M, Meunier A, Bragard C, Gilmer D, Lemaire O. Phylogenetic analysis of isolates of Beet necrotic yellow vein virus collected worldwide. J Gen Virol 2005; 86:2897-2911. [PMID: 16186246 DOI: 10.1099/vir.0.81167-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A study of molecular diversity was carried out on 136 sugar beets infected withBeet necrotic yellow vein virus(BNYVV,Benyvirus) collected worldwide. The nucleotide sequences of the RNA-2-encoded CP, RNA-3-encoded p25 and RNA-5-encoded p26 proteins were analysed. The resulting phylogenetic trees allowed BNYVV to be classified into groups that show correlations between the virus clusters and geographic origins. The selective constraints on these three sequences were measured by estimating the ratio between synonymous and non-synonymous substitution rates (ω) with maximum-likelihood models. The results suggest that selective constraints are exerted differently on the proteins. CP was the most conserved, with meanωvalues ranging from 0·12 to 0·15, while p26 was less constrained, with meanωvalues ranging from 0·20 to 0·33. Selection was detected in three amino acid positions of p26, withωvalues of about 5·0. The p25 sequences presented the highest meanωvalues (0·36–1·10), with strong positive selection (ω=4·7–54·7) acting on 14 amino acids, and particularly on amino acid 68, where theωvalue was the highest so far encountered in plant viruses.
Collapse
Affiliation(s)
| | - Didier Link
- IBMP, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Valérie Cognat
- IBMP, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Benoît Moury
- INRA, Station de Pathologie Végétale, 84143 Montfavet, France
| | - Monique Beuve
- INRA, UR-BIVV, 28 rue de Herrlisheim, 68021 Colmar, France
| | | | - Claude Bragard
- UCL-FYMY, Croix du Sud 2 (bte 3), 1348 Louvain-La-Neuve, Belgium
| | - David Gilmer
- IBMP, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | |
Collapse
|
29
|
Ratti C, Clover GRG, Autonell CR, Harju VA, Henry CM. A multiplex RT-PCR assay capable of distinguishing beet necrotic yellow vein virus types A and B. J Virol Methods 2004; 124:41-7. [PMID: 15664049 DOI: 10.1016/j.jviromet.2004.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 11/22/2022]
Abstract
A multiplex reverse-transcription polymerase chain assay (mRT-PCR) was developed, based on primers designed to distinguish the A and B types of beet necrotic yellow vein virus (BNYVV). RNA was extracted from 72 BNYVV isolates from Asia, Europe and North America, and the type of each isolate determined using an established detection method based on single strand conformation polymorphisms (SSCPs). An area of the 'triple gene block' region on RNA 2 was amplified and sequenced from 16 isolates of the A and B types. These sequences were aligned and two sets of PCR primers were designed to amplify unique areas common to each type. The A type assay produced a single 324 base-pair RT-PCR fragment when positive samples were amplified. The B type assay produced a 178 base-pair product from positive samples. No amplification was observed from healthy Chenopodium quinoa or sugar beet plants and from plants infected by others sugar beet soil-borne viruses. Fragment length differed sufficiently to allow both assays to be run in a single PCR tube. The results obtained using the new multiplex RT-PCR assay were consistent with those from the established SSCP method for all 72 reference samples.
Collapse
|
30
|
Herranz MC, Sanchez-Navarro JA, Aparicio F, Pallás V. Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or 'polyprobe'. J Virol Methods 2004; 124:49-55. [PMID: 15664050 DOI: 10.1016/j.jviromet.2004.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/01/2004] [Accepted: 11/02/2004] [Indexed: 10/26/2022]
Abstract
A new strategy for the simultaneous detection of plant viruses by molecular hybridization has been developed. Two, four or six viral sequences were fused in tandem and transcribed to render unique riboprobes and designated as 'polyprobes'. The 'polyprobe four' (poly 4) covered the four ilarviruses affecting stone fruit trees including apple mosaic virus (ApMV), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), and American plum line pattern virus (APLPV) whereas the 'polyprobe two' (poly 2) was designed to detect simultaneously, plum pox virus (PPV) and apple chlorotic leaf spot virus (ACLSV), the two more important viruses affecting these trees. Finally, a 'polyprobe six' (poly 6) was generated to detect any of the six viruses. The three polyprobes were comparable to the individual riboprobes in terms of end-point dilution limit and specificity. The validation of the new simultaneous detection strategy was confirmed by the analysis of 46 field samples from up to seven different hosts collected from 10 different geographical areas.
Collapse
Affiliation(s)
- M Carmen Herranz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politecnica de Valencia-CSIC, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|