1
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Vaca J, Ortiz A, Sansinenea E. A study of bacteriocin like substances comparison produced by different species of Bacillus related to B. cereus group with specific antibacterial activity against foodborne pathogens. Arch Microbiol 2022; 205:13. [PMID: 36463345 DOI: 10.1007/s00203-022-03356-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
The antibiotic-resistant bacteria are emerging as a great threat worldwide. For this reason it is important to develop new antibiotic substances. Bacillus is considered as a factory of a wide range of chemical compounds with a variety of activities. Among these substances are bacteriocins which are small peptides showing stability in a wide range of pH and temperatures and having a potent antibacterial activity. Bacillus species can be grouped into families such as B. cereus group based on their genetic similarity. It can be helpful to study the bacteriocins presented in these related species identifying the differences and similarities between them to relate the presence of a given bacteriocin with the producer specie. The aim of this study was to isolate the bacteriocins from three related species of B. cereus group such as B. mycoides, B. weihenstephanensis and B. toyonensis and compare among them and with the bacteriocins isolated from B. velezensis. Besides it was analyzed the bactericidal activity of each isolated bacteriocin. Five different bacteriocins of similar molecular mass and specific against foodborne pathogens were isolated from three Bacillus species related to B. cereus group, that were quite different both in molecular mass and bactericidal activity from that was isolated from B. velezensis. The results indicated that bacteriocins can be distinguished according to Bacillus specie from it has been isolated.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP, 72590, Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP, 72590, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP, 72590, Puebla, Puebla, México.
| |
Collapse
|
3
|
Martinenghi LD, Leisner JJ. Scientists’ Assessments of Research on Lactic Acid Bacterial Bacteriocins 1990–2010. Front Microbiol 2022; 13:908336. [PMID: 35722309 PMCID: PMC9204228 DOI: 10.3389/fmicb.2022.908336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
The antimicrobial activity of bacteriocins from lactic acid bacteria has constituted a very active research field within the last 35 years. Here, we report the results of a questionnaire survey with assessments of progress within this field during the two decades of the 1990s and the 2000s by 48 scientists active at that time. The scientists had research positions at the time ranging from the levels of Master’s and Ph.D. students to principal investigators in 19 Asian, European, Oceanian and North American countries. This time period was evaluated by the respondents to have resulted in valuable progress regarding the basic science of bacteriocins, whereas this was not achieved to the same degree with regard to their applications. For the most important area of application, food biopreservation, there were some success stories, but overall the objectives had not been entirely met due to a number of issues, such as limited target spectrum, target resistance, poor yield as well as economic and regulatory challenges. Other applications of bacteriocins such as enhancers of the effects of probiotics or serving as antimicrobials in human clinical or veterinary microbiology, were not evaluated as having been implemented successfully to any large extent at the time. However, developments in genomic and chemical methodologies illustrate, together with an interest in combining bacteriocins with other antimicrobials, the current progress of the field regarding potential applications in human clinical microbiology and food biopreservation. In conclusion, this study illuminates parameters of importance not only for R&D of bacteriocins, but also for the broader field of antimicrobial research.
Collapse
|
4
|
Bangar SP, Chaudhary V, Singh TP, Özogul F. Retrospecting the concept and industrial significance of LAB bacteriocins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Dhanam S, Arumugam T, Rajasekar S. Biofilm Effects of the Soil Bacillus cereus Metabolites: Isolation, Characterization and Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Himjyoti Dutta
- Department of Food Technology Mizoram University Aizawl India
| |
Collapse
|
7
|
Gumienna M, Górna B. Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules 2021; 26:3735. [PMID: 34207426 PMCID: PMC8234186 DOI: 10.3390/molecules26123735] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination with chitosan, PLA, or bacteriocins to improve the properties of packaging in new food packaging technologies. Consequently, they can be a promising solution to improve the quality, delay the spoilage of packaged food, as well as increase the safety and shelf life of food.
Collapse
Affiliation(s)
- Małgorzata Gumienna
- Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | | |
Collapse
|
8
|
Vaca J, Ortiz A, Sansinenea E. Bacillus sp. Bacteriocins: Natural Weapons against Bacterial Enemies. Curr Med Chem 2021; 29:2093-2108. [PMID: 34047258 DOI: 10.2174/0929867328666210527093041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, antibiotic-resistant pathogenic bacteria are emerging as an important health problem worldwide. The search for new compounds with antibiotic characteristics is the most promising alternative. Bacteriocins are natural compounds that are inhibitory against pathogens, and Bacillus species are the major producers of these compounds, which have shown antimicrobial activity against clinically important bacteria. These peptides not only have potential in the pharmaceutical industry but also in food and agricultural sectors. OBJECTIVE We provide an overview of the recent bacteriocins isolated from different species of Bacillus including their applications and the older bacteriocins. RESULTS In this review, we have revised some works about the improvements carried out in the production of bacteriocins. CONCLUSION These applications make bacteriocins very promising compounds that need to study for industrial production.
Collapse
Affiliation(s)
- Jessica Vaca
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590 Puebla; Pue, Mexico
| |
Collapse
|
9
|
Kumar N, Kumar V, Waheed SM, Pradhan D. Efficacy of Reuterin and Bacteriocins Nisin and Pediocin in the Preservation of Raw Milk from Dairy Farms. Food Technol Biotechnol 2021; 58:359-369. [PMID: 33505199 PMCID: PMC7821776 DOI: 10.17113/ftb.58.04.20.6728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background In the current scenario of milk production in developing and developed countries, several factors influence the shelf-life of raw milk and add significant numbers of microbial contaminants that drastically lower the initial microbial quality leading to milk spoilage by the time it reaches the processing units. Experimental approach The present study was undertaken to investigate the biopreservative efficacy of reuterin system along with different combinations of bacteriocins in controlling the initial microflora of raw milk at farm level. Lactobacillus reuteri strain LR47, having effective antimicrobial activity, was shortlisted from our previous study and further characterized for reuterin production and tested in raw milk system. Results and conclusions Preliminary testing of the cell-free supernatant from L. reuteri LR47 demonstrated significant growth inhibition of the majority of the tested bacterial indicators of milk spoilage. Further genetic analysis of the L. reuteri LR47 revealed the presence of two genes (pduC and dhaB) involved in the utilization of glycerol to produce reuterin via two different pathways. The strain LR47 was also found to possess comparatively higher capacity to convert glycerol into reuterin when checked through colorimetric assay. In the raw milk biopreservation experiment with reuterin alone or in combination with bacteriocins, the highest level of growth suppression in the total bacterial load and coliform counts was observed in the sample that was treated with a combination of reuterin, nisin and pediocin. The treatment combining these three natural biopreservatives at specific concentrations was able to maintain the initial microbial quality and extend the shelf-life of raw milk by 6 h at 37 °C based on the microbial counts and physicochemical properties, viz. pH and titratable acidity. In conclusion, the results confirm that the use of reuterin in combination with bacteriocins is a promising approach for temporary control of the raw milk microflora and extension of its shelf-life until further processing. Novelty and scientific contribution This study demonstrates for the first time the use of reuterin for the extension of shelf-life of raw milk as an alternative treatment method.
Collapse
Affiliation(s)
- Nirmal Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Society Area, Clement Town, 248002 Dehradun, Uttarakhand, India
| | - Vinay Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Society Area, Clement Town, 248002 Dehradun, Uttarakhand, India
| | - Syed Mohsin Waheed
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Society Area, Clement Town, 248002 Dehradun, Uttarakhand, India
| | - Diwas Pradhan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, GT Rd, 132001 Karnal, Haryana, India
| |
Collapse
|
10
|
S S, S R. Cyclic peptide production from lactic acid bacteria (LAB) and their diverse applications. Crit Rev Food Sci Nutr 2020; 62:2909-2927. [PMID: 33356473 DOI: 10.1080/10408398.2020.1860900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cyclic peptides gave gained increasing attention owing to their pH tolerance, heat stability and resistance to enzymatic actions. The increasing outbreaks of antibiotic resistant pathogens and food spoilage have prompted researchers to search for new approaches to combat them. The increasing number of reports on novel cyclic peptides from lactic acid bacteria (LAB) is considered as a breakthrough due to their potential applications. Although an extensive investigation is required to understand the mechanism of action and range of applications, LAB cyclic peptides can be considered as potential substitutes for commercially available antibiotics and bio preservatives. This review summarizes the current updates of LAB cyclic peptides with emphasis on their structure, mode of action and applications. Recent trends in cyclic peptide applications are also discussed.
Collapse
Affiliation(s)
- Silpa S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| |
Collapse
|
11
|
Samelis J, Kakouri A. Cell Growth Density and Nisin A Activity of the Indigenous Lactococcus lactis subsp. cremoris M78 Costarter Depend Strongly on Inoculation Levels of a Commercial Streptococcus thermophilus Starter in Milk: Practical Aspects for Traditional Greek Cheese Processors. J Food Prot 2020; 83:542-551. [PMID: 32084256 DOI: 10.4315/0362-028x.jfp-19-430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mixed thermophilic and mesophilic commercial starter cultures (CSCs), particularly those including Streptococcus thermophilus as a primary milk acidifier, have been found to reduce growth and counteract in situ nisin A (NisA+) antilisterial effects by the novel, indigenous Lactococcus lactis subsp. cremoris M78 costarter in traditional Graviera thermized milk cheese curds. Therefore, this model challenge study evaluated growth and in situ NisA+ activity of strain M78 in coculture with S. thermophilus ST1 singly in sterilized raw milk (SRM). Strain ST1, derived from a CSC for cheese, was challenged at two inoculation levels (5 and 7 log CFU/mL) in SRM against 6 and 3 log CFU/mL of strain M78 and Listeria monocytogenes, respectively. Pure cultures of each strain and cocultures of strain ST1 with the CSC L. lactis LL2, in replacement of strain M78, served as controls. At the high (7-log) inoculation level, the rapid, competitive growth (>9.3 log CFU/mL) of S. thermophilus ST1 reduced growth of both L. lactis by at least 10-fold; the industrial strain LL2 retained slightly higher relative population densities (7.4 to 9.1%) than the wild NisA+ strain M78 (3.8 to 5.6%) after 6 h at 37°C, followed by an additional 66 h of incubation at 22°C. In full contrast, at the low (5-log) inoculation level, S. thermophilus ST1 failed to predominate in SRM at 6 h; thus, the starter lactic acid bacteria populations were reversed in favor of L. lactis. Notably, strain M78 retained higher relative population densities (83.0 to 90.1%) than the CSC strain LL2 (80.3 to 85.2%) at 22°C. Moreover, at the 5-log ST1 level, the direct and deferred in situ NisA+ activities of strain M78 were at similar levels with its pure culture with L. monocytogenes in SRM, whereas at the 7-log ST1 level, the respective NisA+ effects were counteracted. Hence, 10- to 100-fold lowered inoculation levels of CSC S. thermophilus are required to enhance the performance of the M78 costarter in traditional Greek cheese technologies. HIGHLIGHTS
Collapse
Affiliation(s)
- John Samelis
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | - Athanasia Kakouri
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| |
Collapse
|
12
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
13
|
Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. Bacteriocins From LAB and Other Alternative Approaches for the Control of Clostridium and Clostridiodes Related Gastrointestinal Colitis. Front Bioeng Biotechnol 2020; 8:581778. [PMID: 33042979 PMCID: PMC7517946 DOI: 10.3389/fbioe.2020.581778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is considered as a promising target for future non-conventional therapeutic treatment of inflammatory and infectious diseases. The search for appropriate safe and beneficial (lactic acid bacterial and other) putative probiotic strains and/or their antimicrobial metabolites represents a challenging approach for combating several problematic and emerging infections. The process of selecting suitable strains, especially of lactic acid bacteria (LAB) with superior properties, has been accelerated and intensified during the past two decades, also thanks to recent developments in lab techniques. Currently, special focus is on the potential of antimicrobial metabolites produced by some LAB strains and their application as active therapeutic agents. The vision is to develop a scientific basis for 'biotherapeutics' as alternative to conventional approaches in both human and veterinary medicine. Consequently, innovative and promising applications of LAB to the therapeutic practice are presently emerging. An overview of the existing literature indicates that some antimicrobial metabolites such as bacteriocins, widely produced by different bacterial species including LAB, are promising biotherapeutic agents for controlling infections caused by potential pathogens, such as Clostridium and Clostridiodes. Non-conventional, safe and well designed therapeutic treatments may contribute to the improvement of gut dysbiotic conditions. Thereby gut homeostasis can be restored and inflammatory conditions such as gastrointestinal colitis ameliorated. Combining the knowledge on the production, characterization and application of bacteriocins from probiotic LAB, together with their antibacterial properties, appears to be a promising and novel approach in biotherapy. In this overview, different scenarios for the control of Clostridium spp. by application of bacteriocins as therapeutic agents, also in synergistic combination with antibiotics, will be discussed.
Collapse
Affiliation(s)
- Svetoslav D. Todorov
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
| | - Hye-Ji Kang
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
- HEM Inc., Handong Global University, Pohang, South Korea
| | - Iskra V. Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Wilhelm H. Holzapfel
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, South Korea
- HEM Inc., Handong Global University, Pohang, South Korea
- *Correspondence: Wilhelm H. Holzapfel,
| |
Collapse
|
14
|
Silva CCG, Silva SPM, Ribeiro SC. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front Microbiol 2018; 9:594. [PMID: 29686652 PMCID: PMC5900009 DOI: 10.3389/fmicb.2018.00594] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
In the last years, consumers are becoming increasingly aware of the human health risk posed by the use of chemical preservatives in foods. In contrast, the increasing demand by the dairy industry to extend shelf-life and prevent spoilage of dairy products has appeal for new preservatives and new methods of conservation. Bacteriocins are antimicrobial peptides, which can be considered as safe since they can be easily degraded by proteolytic enzymes of the mammalian gastrointestinal tract. Also, most bacteriocin producers belong to lactic acid bacteria (LAB), a group that occurs naturally in foods and have a long history of safe use in dairy industry. Since they pose no health risk concerns, bacteriocins, either purified or excreted by bacteriocin producing strains, are a great alternative to the use of chemical preservatives in dairy products. Bacteriocins can be applied to dairy foods on a purified/crude form or as a bacteriocin-producing LAB as a part of fermentation process or as adjuvant culture. A number of applications of bacteriocins and bacteriocin-producing LAB have been reported to successful control pathogens in milk, yogurt, and cheeses. One of the more recent trends consists in the incorporation of bacteriocins, directly as purified or semi-purified form or in incorporation of bacteriocin-producing LAB into bioactive films and coatings, applied directly onto the food surfaces and packaging. This review is focused on recent developments and applications of bacteriocins and bacteriocin-producing LAB for reducing the microbiological spoilage and improve safety of dairy products.
Collapse
Affiliation(s)
- Célia C. G. Silva
- Instituto de Investigação e Tecnologias Agrárias e do Ambiente, Universidade dos Açores, Angra do Heroísmo, Portugal
| | | | | |
Collapse
|
15
|
Samelis J, Kakouri A. Hurdle factors minimizing growth of Listeria monocytogenes while counteracting in situ antilisterial effects of a novel nisin A-producing Lactococcus lactis subsp. cremoris costarter in thermized cheese milks. AIMS Microbiol 2018; 4:19-41. [PMID: 31294202 PMCID: PMC6605024 DOI: 10.3934/microbiol.2018.1.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022] Open
Abstract
The capacity of growth, survival, and adaptive responses of an artificial contamination of a three-strain L. monocytogenes cocktail in factory-scale thermized (65 °C, 30 s) Graviera cheese milk (TGCM) was evaluated. Bulk TGCM samples for inoculation were sequentially taken from the cheese making vat before process initiation (CN-LM) and after addition of a commercial starter culture (CSC), the CSC plus the nisin A-producing (NisA+) costarter strain Lactococcus lactis subsp. cremoris M78 (CSC + M78), and all ingredients with the rennet last (CSC + M78-RT). Additional treatments included Listeria-inoculated TGCM samples coinoculated with the NisA+ costarter strain M78 in the absence of the CSC or with the CSC in previously sterilized TGCM to inactivate the background microbiota (CSC-SM). All cultures were incubated at 37 to 42 °C for 6 h, followed by additional 66 h at 22 °C, and 48 h at 12 °C after addition of 2% edible salt. L. monocytogenes failed to grow and declined in all CSC-inoculated treatments after 24 h. In contrast, the pathogen increased by 3.34 and 1.46 log units in the CN-LM and the CSC-SM treatments, respectively, indicating that the background microbiota or the CSC alone failed to suppress it, but they did so synergistically. Supplementation of the CSC with the NisA+ strain M78 did not deliver additional antilisterial effects, because the CSC Streptococcus thermophilus reduced the growth prevalence rates and counteracted the in situ NisA+ activity of the costarter. In the absence of the CSC, however, strain M78 predominated and caused the strongest in situ nisin-A mediated effects, which resulted in the highest listerial inactivation rates after 24 to 72 h at 22 °C. In all TGCM treatments, however, L. monocytogenes displayed a "tailing" survival (1.63 to 1.96 log CFU/mL), confirming that this pathogen is exceptionally tolerant to cheese-related stresses, and thus, can't be easily eliminated.
Collapse
Affiliation(s)
- John Samelis
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | | |
Collapse
|
16
|
Mills S, Griffin C, O'Connor PM, Serrano LM, Meijer WC, Hill C, Ross RP. A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum. Appl Environ Microbiol 2017; 83:e00799-17. [PMID: 28476774 PMCID: PMC5494623 DOI: 10.1128/aem.00799-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Functional starter cultures demonstrating superior technological and food safety properties are advantageous to the food fermentation industry. We evaluated the efficacies of single- and double-bacteriocin-producing starters of Lactococcus lactis capable of producing the class I bacteriocins nisin A and/or lacticin 3147 in terms of starter performance. Single producers were generated by mobilizing the conjugative bacteriophage resistance plasmid pMRC01, carrying lacticin genetic determinants, or the conjugative transposon Tn5276, carrying nisin genetic determinants, to the commercial starter L. lactis CSK2775. The effect of bacteriocin coproduction was examined by superimposing pMRC01 into the newly constructed nisin transconjugant. Transconjugants were improved with regard to antimicrobial activity and bacteriophage insensitivity compared to the recipient strain, and the double producer was immune to both bacteriocins. Bacteriocin production in the starter was stable, although the recipient strain proved to be a more efficient acidifier than transconjugant derivatives. Overall, combinations of class I bacteriocins (the double producer or a combination of single producers) proved to be as effective as individual bacteriocins for controlling Listeria innocua growth in laboratory-scale cheeses. However, using the double producer in combination with the class II bacteriocin producer Lactobacillus plantarum or using the lacticin producer with the class II producer proved to be most effective for reducing bacterial load. As emergence of bacteriocin tolerance was reduced 10-fold in the presence of nisin and lacticin, we suggest that the double producer in conjunction with the class II producer could serve as a protective culture providing a food-grade, multihurdle approach to control pathogenic growth in a variety of industrial applications.IMPORTANCE We generated a suite of single- and double-bacteriocin-producing starter cultures capable of generating the class I bacteriocin lacticin 3147 or nisin or both bacteriocins simultaneously via conjugation. The transconjugants exhibited improved bacteriophage resistance and antimicrobial activity. The single producers proved to be as effective as the double-bacteriocin producer at reducing Listeria numbers in laboratory-scale cheese. However, combining the double producer or the lacticin-producing starter with a class II bacteriocin producer, Lactobacillus plantarum LMG P-26358, proved to be most effective at reducing Listeria numbers and was significantly better than a combination of the three bacteriocin-producing strains, as the double producer is not inhibited by either of the class I bacteriocins. Since the simultaneous use of lacticin and nisin should reduce the emergence of bacteriocin-tolerant derivatives, this study suggests that a protective starter system produced by bacteriocin stacking is a worthwhile multihurdle approach for food safety applications.
Collapse
Affiliation(s)
- S Mills
- CSK Food Enrichment, Ede, The Netherlands
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - C Griffin
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- CSK Food Enrichment, Ede, The Netherlands
| | - P M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | - W C Meijer
- CSK Food Enrichment, Ede, The Netherlands
| | - C Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R P Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Ribeiro SC, O'Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Liang Q, Qi Q. From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 2014; 32:1328-1335. [DOI: 10.1016/j.biotechadv.2014.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/23/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
|
19
|
Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. ASIAN PAC J TROP MED 2014; 6:934-41. [PMID: 24144023 DOI: 10.1016/s1995-7645(13)60167-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/15/2013] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To screen the bacteriocinogenic isolate from buffalo milk and to characterize it on physical, chemical and biological aspects for the application in biopreservation. METHODS Bacillus cereus (B. cereus) was isolated and assessed for its baceteriocinogenic activity. Bacteriocin was produced and purified by ammonium sulphate precipitation, dialysis and gel filtration chromatography. Purified bacteriocin was used to check its antimicrobial activity against food borne bacteria. Effect and stability of bacteriocin was determined with the respect to temperature, pH, enzymes, organic solvents and chemicals. Bacteriocin was also subjected to SDS PAGE analysis to determine its molecular weight. In addition, functional groups exist in the bacteriocin was determined by FTIR analysis. RESULTS B. cereus was identified by 16S rRNA sequence analysis. Bacteriocin showed increased activity against all the bacteria used and its activity unit was found to be 51, 200 AU/mL. It was stable to high temperature (100 °C) and wide range of pH (3-10), sensitive to proteolytic enzymes and resistant to nonproteolytic enzymes. It was low molecular weight (3.5 - 6 KDa) protein and FTIR study revealed the presence of amide group and NH stretching. CONCLUSIONS Bacteriocin produced in this study possesses the highest antimicrobial activity against both gram positive and gram negative bacteria thereby it has immense application as biopreservative agent. FTIR proved its peptide nature.
Collapse
|
20
|
Balciunas EM, Castillo Martinez FA, Todorov SD, Franco BDGDM, Converti A, Oliveira RPDS. Novel biotechnological applications of bacteriocins: A review. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.11.025] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
O' Shea EF, Cotter PD, Ross RP, Hill C. Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 2013; 24:130-4. [PMID: 23337424 DOI: 10.1016/j.copbio.2012.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/04/2023]
Abstract
Lactic acid bacteria (LAB) produce a wide variety of antimicrobial peptides (bacteriocins) which contribute to the safety and preservation of fermented foods. This review discusses strategies that have been or could be employed to further enhance the commercial application of bacteriocins and/or bacteriocin-producing LAB for food use.
Collapse
Affiliation(s)
- Eileen F O' Shea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | |
Collapse
|
22
|
Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in cottage cheese. Int J Food Microbiol 2011; 153:58-65. [PMID: 22104121 DOI: 10.1016/j.ijfoodmicro.2011.10.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/24/2011] [Indexed: 11/26/2022]
Abstract
In recent years, there has been a particular focus on the application of antimicrobial compounds produced by lactic acid bacteria (LAB) as natural preservatives to control the growth of spoilage and pathogenic bacteria in food. Bacteriocins are antimicrobial peptides which can be added to foods in concentrated forms as food preservatives, e.g. additives, or they can be produced in situ by starters or protective cultures. In this study, twenty Lactococcus lactis bacteriocin producers previously isolated from Italian fermented foods were subjected to a variety of physical and biochemical tests in order to identify those with the greatest potential as starter cultures in cheese production. Of these, four strains isolated from cheese (one nisin Z producer, one nisin A producer and two lacticin 481 producers) which fulfilled the desired technological criteria were assessed for their ability to control Listeria monocytogenes. The subsequent application of these bacteriocinogenic strains as starter cultures in Cottage cheese established that the nisin A producing Lact. lactis 40FEL3, and to a lesser extent the lacticin 481 producers 32FL1 and 32FL3, successfully controlled the growth of the pathogen. This is the first study to directly compare the ability of nisin A, nisin Z and lacticin 481 producing strains to control listerial growth during the manufacture and storage of Cottage cheese.
Collapse
Affiliation(s)
- Barbara Dal Bello
- Department of Agricultural Microbiology and Food Technology sector, DIVAPRA, University of Turin, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Mills S, Stanton C, Hill C, Ross R. New Developments and Applications of Bacteriocins and Peptides in Foods. Annu Rev Food Sci Technol 2011; 2:299-329. [DOI: 10.1146/annurev-food-022510-133721] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Mills
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
| | - C. Stanton
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| | - C. Hill
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - R.P. Ross
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Bravo D, Rodríguez E, Medina M. Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes’ milk. J Dairy Sci 2009; 92:4805-11. [DOI: 10.3168/jds.2009-2237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo. Appl Environ Microbiol 2009; 75:6352-60. [PMID: 19666731 DOI: 10.1128/aem.00470-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetracycline-resistant Lactococcus lactis strains originally isolated from Polish raw milk were analyzed for the ability to transfer their antibiotic resistance genes in vitro, using filter mating experiments, and in vivo, using germfree rats. Four of six analyzed L. lactis isolates were able to transfer tetracycline resistance determinants in vitro to L. lactis Bu2-60, at frequencies ranging from 10(-5) to 10(-7) transconjugants per recipient. Three of these four strains could also transfer resistance in vitro to Enterococcus faecalis JH2-2, whereas no transfer to Bacillus subtilis YBE01, Pseudomonas putida KT2442, Agrobacterium tumefaciens UBAPF2, or Escherichia coli JE2571 was observed. Rats were initially inoculated with the recipient E. faecalis strain JH2-2, and after a week, the L. lactis IBB477 and IBB487 donor strains were introduced. The first transconjugants were detected in fecal samples 3 days after introduction of the donors. A subtherapeutic concentration of tetracycline did not have any significant effect on the number of transconjugants, but transconjugants were observed earlier in animals dosed with this antibiotic. Molecular analysis of in vivo transconjugants containing the tet(M) gene showed that this gene was identical to tet(M) localized on the conjugative transposon Tn916. Primer-specific PCR confirmed that the Tn916 transposon was complete in all analyzed transconjugants and donors. This is the first study showing in vivo transfer of a Tn916-like antibiotic resistance transposon from L. lactis to E. faecalis. These data suggest that in certain cases food lactococci might be involved in the spread of antibiotic resistance genes to other lactic acid bacteria.
Collapse
|
26
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Sobrino-López A, Martín-Belloso O. Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.11.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Lee NK, Choi IA, Park YH, Kim JM, Kim JM, Jung SC, Paik HD. Screening of Antimicrobial Lactic Acid Bacteria against Bovine Mastitis. Korean J Food Sci Anim Resour 2007. [DOI: 10.5851/kosfa.2007.27.4.543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
30
|
Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.10.026] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
O'Sullivan L, O'connor EB, Ross RP, Hill C. Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J Appl Microbiol 2006; 100:135-43. [PMID: 16405693 DOI: 10.1111/j.1365-2672.2005.02747.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A live Lactococcus lactis culture, producing the two-component broad spectrum bacteriocin lacticin 3147, was assessed for ability to inhibit the food pathogen Listeria monocytogenes on the surface of smear-ripened cheese. METHODS AND RESULTS In initial experiments, the addition of Listeria to a lacticin 3147-containing fermentate produced with L. lactis DPC4275 (a transconjugant strain derived from L. lactis DPC3147) resulted in at least a 4 log reduction of the pathogen in 30 min. Two separate trials were performed in order to assess the most suitable method for application of the potential protective culture to smear-ripened cheese. In the initial trial, the L. lactis was sprayed onto the surface of the cheese either before or after Listeria was deliberately applied. Application of the culture following Listeria challenge, yielded up to a 1000-fold reduction of the pathogen in contrast to the pretreatment where Listeria numbers were unaffected. In a further trial, three applications of the live lacticin 3147-producing culture was used on a cheese surface containing Listeria. Listeria numbers were found to be up to 100-fold lower than in the cheese treated with L. lactis DPC4268 (control). CONCLUSION While application of the live lacticin 3147 producer did not give complete elimination of the pathogen the results nonetheless demonstrate the potential of the bioprotectant for improving the safety of smear-ripened cheeses and particularly those that contain low level contamination with Listeria. SIGNIFICANCE AND IMPACT OF THE STUDY The application of lacticin 3147 as a live-culture can serve as a bioprotectant for the control of L. monocytogenes on the surface of smear-ripened cheese.
Collapse
Affiliation(s)
- L O'Sullivan
- Teagasc, Dairy Products Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | |
Collapse
|
32
|
|
33
|
Guinane CM, Cotter PD, Hill C, Ross RP. Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. J Appl Microbiol 2005; 98:1316-25. [PMID: 15916645 DOI: 10.1111/j.1365-2672.2005.02552.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C M Guinane
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|