1
|
He K, Liu Q, Zhang J, Zhang G, Li G. Biochar Enhances the Resistance of Legumes and Soil Microbes to Extreme Short-Term Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:4155. [PMID: 38140481 PMCID: PMC10748378 DOI: 10.3390/plants12244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Short-term drought events occur more frequently and more intensively under global climate change. Biochar amendment has been documented to ameliorate the negative effects of water deficits on plant performance. Moreover, biochar can alter the soil microbial community, soil properties and soil metabolome, resulting in changes in soil functioning. We aim to reveal the extent of biochar addition on soil nutrients and the soil microbial community structure and how this improves the tolerance of legume crops (peanuts) to short-term extreme drought. We measured plant performances under different contents of biochar, set as a gradient of 2%, 3% and 4%, after an extreme experimental drought. In addition, we investigated how soil bacteria and fungi respond to biochar additions and how the soil metabolome changes in response to biochar amendments, with combined growth experiments, high-throughput sequencing and soil omics. The results indicated that biochar increased nitrites and available phosphorus. Biochar was found to influence the soil bacterial community structure more intensively than the soil fungal community. Additionally, the fungal community showed a higher randomness under biochar addition when experiencing short-term extreme drought compared to the bacterial community. Soil bacteria may be more strongly related to soil nutrient cycling in peanut agricultural systems. Although the soil metabolome has been documented to be influenced by biochar addition independent of soil moisture, we found more differential metabolites with a higher biochar content. We suggest that biochar enhances the resistance of plants and soil microbes to short-term extreme drought by indirectly modifying soil functioning probably due to direct changes in soil moisture and soil pH.
Collapse
Affiliation(s)
- Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China;
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Jialei Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China;
| | - Guolin Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Jiang C, Yan H, Shen X, Zhang Y, Wang Y, Sun S, Jiang H, Zang H, Zhao X, Hou N, Li Z, Wang L, Wang H, Li C. Genome Functional Analysis of the Psychrotrophic Lignin-Degrading Bacterium Arthrobacter sp. C2 and the Role of DyP in Catalyzing Lignin Degradation. Front Microbiol 2022; 13:921549. [PMID: 35910642 PMCID: PMC9327799 DOI: 10.3389/fmicb.2022.921549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In the cold regions of China, lignin-rich corn straw accumulates at high levels due to low temperatures. The application of psychrotrophic lignin-degrading bacteria should be an effective means of overcoming the low-temperature limit for lignin degradation and promoting the utilization of corn straw. However, this application is limited by the lack of suitable strains for decomposition of lignin; furthermore, the metabolic mechanism of psychrotrophic lignin-degrading bacteria is unclear. Here, the whole genome of the psychrotrophic lignin-degrading bacterium Arthrobacter sp. C2, isolated in our previous work, was sequenced. Comparative genomics revealed that C2 contained unique genes related to lignin degradation and low-temperature adaptability. DyP may participate in lignin degradation and may be a cold-adapted enzyme. Moreover, DyP was proven to catalyze lignin Cα-Cβ bond cleavage. Deletion and complementation of the DyP gene verified its ability to catalyze the first-step reaction of lignin degradation. Comparative transcriptomic analysis revealed that the transcriptional expression of the DyP gene was upregulated, and the genetic compensation mechanism allowed C2ΔDyP to degrade lignin, which provided novel insights into the survival strategy of the psychrotrophic mutant strain C2ΔdyP. This study improved our understanding of the metabolic mechanism of psychrotrophic lignin-degrading bacteria and provided potential application options for energy-saving production using cold-adapted lignin-degrading enzymes.
Collapse
Affiliation(s)
- Cheng Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Haohao Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xiaohui Shen
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Yuting Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hanyi Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Ziwei Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Liwen Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Hanjun Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Glycine Betaine Monooxygenase, an Unusual Rieske-Type Oxygenase System, Catalyzes the Oxidative N-Demethylation of Glycine Betaine in Chromohalobacter salexigens DSM 3043. Appl Environ Microbiol 2018; 84:AEM.00377-18. [PMID: 29703733 DOI: 10.1128/aem.00377-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022] Open
Abstract
Although some bacteria, including Chromohalobacter salexigens DSM 3043, can use glycine betaine (GB) as a sole source of carbon and energy, little information is available about the genes and their encoded proteins involved in the initial step of the GB degradation pathway. In the present study, the results of conserved domain analysis, construction of in-frame deletion mutants, and an in vivo functional complementation assay suggested that the open reading frames Csal_1004 and Csal_1005, designated bmoA and bmoB, respectively, may act as the terminal oxygenase and the ferredoxin reductase genes in a novel Rieske-type oxygenase system to convert GB to dimethylglycine in C. salexigens DSM 3043. To further verify their function, BmoA and BmoB were heterologously overexpressed in Escherichia coli, and 13C nuclear magnetic resonance analysis revealed that dimethylglycine was accumulated in E. coli BL21(DE3) expressing BmoAB or BmoA. In addition, His-tagged BmoA and BmoB were individually purified to electrophoretic homogeneity and estimated to be a homotrimer and a monomer, respectively. In vitro biochemical analysis indicated that BmoB is an NADH-dependent flavin reductase with one noncovalently bound flavin adenine dinucleotide (FAD) as its prosthetic group. In the presence of BmoB, NADH, and flavin, BmoA could aerobically degrade GB to dimethylglycine with the concomitant production of formaldehyde. BmoA exhibited strict substrate specificity for GB, and its demethylation activity was stimulated by Fe2+ Phylogenetic analysis showed that BmoA belongs to group V of the Rieske nonheme iron oxygenase (RO) family, and all the members in this group were able to use quaternary ammonium compounds as substrates.IMPORTANCE GB is widely distributed in nature. In addition to being accumulated intracellularly as a compatible solute to deal with osmotic stress, it can be utilized by many bacteria as a source of carbon and energy. However, very limited knowledge is presently available about the molecular and biochemical mechanisms for the initial step of the aerobic GB degradation pathway in bacteria. Here, we report the molecular and biochemical characterization of a novel two-component Rieske-type monooxygenase system, GB monooxygenase (BMO), which is responsible for oxidative demethylation of GB to dimethylglycine in C. salexigens DSM 3043. The results gained in this study extend our knowledge on the catalytic reaction of microbial GB degradation to dimethylglycine.
Collapse
|
4
|
Fu X, Lai Q, Dong C, Wang W, Shao Z. Complete genome sequence of Alcanivorax xenomutans P40, an alkane-degrading bacterium isolated from deep seawater. Mar Genomics 2018. [DOI: 10.1016/j.margen.2017.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Jiang XW, Cheng H, Zheng BW, Li A, Lv LX, Ling ZX, Yan R, Jiang HY, Cheng YW, Gu SL, Li LJ. Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. Gene 2015; 578:25-31. [PMID: 26706221 DOI: 10.1016/j.gene.2015.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
Abstract
In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential.
Collapse
Affiliation(s)
- Xia-Wei Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Cheng
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Bei-Wen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Long-Xian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zong-Xin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Yong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Wen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Lan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Isolation of salt-tolerant mutants of Mesorhizobium ciceri strain Rch125 and identification of genes involved in salt sensitivity. Symbiosis 2015. [DOI: 10.1007/s13199-015-0357-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
8
|
Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Sci Rep 2015; 5:8642. [PMID: 25721465 PMCID: PMC4342571 DOI: 10.1038/srep08642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/23/2015] [Indexed: 01/06/2023] Open
Abstract
Arthrobacter is one of the most prevalent genera of nicotine-degrading bacteria; however, studies of nicotine degradation in Arthrobacter species remain at the plasmid level (plasmid pAO1). Here, we report the bioinformatic analysis of a nicotine-degrading Arthrobacter aurescens M2012083, and show that the moeB and mogA genes that are essential for nicotine degradation in Arthrobacter are absent from plasmid pAO1. Homologues of all the nicotine degradation-related genes of plasmid pAO1 were found to be located on a 68,622-bp DNA segment (nic segment-1) in the M2012083 genome, showing 98.1% nucleotide acid sequence identity to the 69,252-bp nic segment of plasmid pAO1. However, the rest sequence of plasmid pAO1 other than the nic segment shows no significant similarity to the genome sequence of strain M2012083. Taken together, our data suggest that the nicotine degradation-related genes of strain M2012083 are located on the chromosome or a plasmid other than pAO1. Based on the genomic sequence comparison of strain M2012083 and six other Arthrobacter strains, we have identified 17 σ(70) transcription factors reported to be involved in stress responses and 109 genes involved in environmental adaptability of strain M2012083. These results reveal the molecular basis of nicotine degradation and survival capacities of Arthrobacter species.
Collapse
|
9
|
Salt tolerance of a Sinorhizobium meliloti strain isolated from dry lands: growth capacity and protein profile changes. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0153-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1298-307. [PMID: 17918631 DOI: 10.1094/mpmi-20-10-1298] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A DNA microarray, comprising 70-mer oligonucleotides, representing 8,453 open reading frames (ORFs), was constructed based on the Bradyrhizobium japonicum strain USDA110 genomic sequence. New annotation predicted 199 additional genes, which were added to the microarray and were shown to be transcribed. These arrays were used to profile transcription in cells under a variety of conditions, including growth in minimal versus rich medium, osmotic stress, and free-living cells versus bacteroids. Increased expression was seen for genes involved in translation, motility, and cell envelope synthesis in rich medium whereas expression increased in minimal medium for genes involved in vitamin biosynthesis and stress responses. Treatment with 50 mM NaCl activated stress-inducible genes but repressed genes involved in chemotaxis and motility. Strikingly, no known transport systems for accumulation of compatible solutes or osmoprotectants were induced in response to osmotic stress. A number of nif, fix, and hup genes, but not all, were upregulated in bacteroids. The B. japonicum type III secretion system, known to be important in early nodulation, was downregulated in bacteroids. The availability of a reliable, low-cost B. japonicum microarray provides a useful tool for functional genomic studies of one of the most agriculturally important bacteria.
Collapse
Affiliation(s)
- Woo-Suk Chang
- National Center for Soybean Biotechnology, University of Missouri, Columbia 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2007; 2:e214. [PMID: 17194220 PMCID: PMC1713258 DOI: 10.1371/journal.pgen.0020214] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/02/2006] [Indexed: 01/24/2023] Open
Abstract
Arthrobacter sp. strains are among the most frequently isolated, indigenous, aerobic bacterial genera found in soils. Member of the genus are metabolically and ecologically diverse and have the ability to survive in environmentally harsh conditions for extended periods of time. The genome of Arthrobacter aurescens strain TC1, which was originally isolated from soil at an atrazine spill site, is composed of a single 4,597,686 basepair (bp) circular chromosome and two circular plasmids, pTC1 and pTC2, which are 408,237 bp and 300,725 bp, respectively. Over 66% of the 4,702 open reading frames (ORFs) present in the TC1 genome could be assigned a putative function, and 13.2% (623 genes) appear to be unique to this bacterium, suggesting niche specialization. The genome of TC1 is most similar to that of Tropheryma, Leifsonia, Streptomyces, and Corynebacterium glutamicum, and analyses suggest that A. aurescens TC1 has expanded its metabolic abilities by relying on the duplication of catabolic genes and by funneling metabolic intermediates generated by plasmid-borne genes to chromosomally encoded pathways. The data presented here suggest that Arthrobacter's environmental prevalence may be due to its ability to survive under stressful conditions induced by starvation, ionizing radiation, oxygen radicals, and toxic chemicals. Soil systems contain the greatest diversity of microorganisms on earth, with 5,000–10,000 species of microorganism per gram of soil. Arthrobacter sp. strains have a primitive life cycle and are among the most frequently isolated, indigenous soil bacteria, found in common and deep subsurface soils, arctic ice, and environments contaminated with industrial chemicals and radioactive materials. To better understand how these bacteria survive in environmentally harsh conditions, the authors used a structural genomics approach to identify genes involved in soil survival of Arthrobacter aurescens strain TC1, a bacterium originally isolated for its ability to degrade the herbicide atrazine. They found that the genome of this bacterium comprises a single circular chromosome and two plasmids that encode for a large number proteins involved in stress responses due to starvation, desiccation, oxygen radicals, and toxic chemicals. A. aurescens' metabolic versatility is in part due to the presence of duplicated catabolic genes and its ability to funnel plasmid-derived intermediates into chromosomally encoded pathways. Arthrobacter's array of genes that allow for survival in stressful conditions and its ability to produce a temperature-tolerant “cyst”-like resting cell render this soil microorganism able to survive and prosper in a variety of environmental conditions.
Collapse
Affiliation(s)
- Emmanuel F Mongodin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Nir Shapir
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Sean C Daugherty
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Robert T DeBoy
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Joanne B Emerson
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Alla Shvartzbeyn
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Diana Radune
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Jessica Vamathevan
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Florenta Riggs
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Viktoria Grinberg
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Hoda Khouri
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Lawrence P Wackett
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Karen E Nelson
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Michael J Sadowsky
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Laloknam S, Tanaka K, Buaboocha T, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 2006; 72:6018-26. [PMID: 16957224 PMCID: PMC1563673 DOI: 10.1128/aem.00733-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetT(A. halophytica)) that belongs to the betaine-choline-carnitine transporter (BCCT) family was isolated. Although the predicted isoelectric pH of a typical BCCT family transporter, OpuD of Bacillus subtilis, is basic, 9.54, that of BetT(A. halophytica) is acidic, 4.58. BetT(A. halophytica) specifically catalyzed the transport of betaine. Choline, gamma-aminobutyric acid, betaine aldehyde, sarcosine, dimethylglycine, and amino acids such as proline did not compete for the uptake of betaine by BetT(A. halophytica). Sodium markedly enhanced betaine uptake rates, whereas potassium and other cations showed no effect, suggesting that BetT(A. halophytica) is a Na(+)-betaine symporter. Betaine uptake activities of BetT(A. halophytica) were high at alkaline pH values, with the optimum pH around 9.0. Freshwater Synechococcus cells overexpressing BetT(A. halophytica) showed NaCl-activated betaine uptake activities with enhanced salt tolerance, allowing growth in seawater supplemented with betaine. Kinetic properties of betaine uptake in Synechococcus cells overexpressing BetT(A. halophytica) were similar to those in A. halophytica cells. These findings indicate that A. halophytica contains a Na(+)-betaine symporter that contributes to the salt stress tolerance at alkaline pH. BetT(A. halophytica) is the first identified transporter for compatible solutes in cyanobacteria.
Collapse
Affiliation(s)
- Surasak Laloknam
- Research Institute of Meijo University, Tenpaku-ku, Nagoya 468-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Clement M, Boncompagni E, de Almeida-Engler J, Herouart D. Isolation of a novel nodulin: a molecular marker of osmotic stress in Glycine max/Bradyrhizobium japonicum nodule. PLANT, CELL & ENVIRONMENT 2006; 29:1841-52. [PMID: 16913873 DOI: 10.1111/j.1365-3040.2006.01558.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Symbiotic N(2) fixation of legume crops is highly sensitive to drought, which results in a dramatic drop of N accumulation and yield. The symbiosis between soybean (Glycine max) and Bradyrhizobium japonicum, because of its extreme sensitivity to drought, was chosen as a model to analyse the response to drought stress at a molecular level. The mRNA differential display technique was performed to isolate cDNA markers differentially expressed in well-watered [100% of N(2) fixation capacity (NFC)] and drought-stressed nodules (40% NFC). One gene noted, G93, appeared strongly down-regulated by drought and fully recovered after rehydration. In situ hybridization showed that G93 transcripts were localized in N(2)-fixing cells of mature nodules, indicating that G93 could be considered as a late nodulin. However, G93 expression was not directly correlated to N(2) fixation but mainly responded to osmotic stress. Other stresses that lead to decrease of N(2) fixation did not affect G93 expression. Sequence analyses showed that G93 presented a strong homology with two soybean expressed sequence tags (ESTs) and with the ZR1 protein of Medicago sativa. Putative roles of this nodulin in adaptation of soybean nodule to osmotic stress are proposed.
Collapse
Affiliation(s)
- Mathilde Clement
- Unité Mixte de Recherche (UMR) 'Interactions Plantes Microorganimes et Santé Végétale' INRA1064-CNRS 6192-Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, 400 Routes des Chappes, 06903 Sophia-Antipolis Cedex, France
| | | | | | | |
Collapse
|
14
|
Sheehan VM, Sleator RD, Fitzgerald GF, Hill C. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 2006; 72:2170-7. [PMID: 16517668 PMCID: PMC1393183 DOI: 10.1128/aem.72.3.2170-2177.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Given the increasing commercial and clinical relevance of probiotic cultures, improving the technological robustness of what are often process-sensitive cultures is an important biological goal. The nisin-controlled expression system was used to direct the heterologous expression of the listerial betaine uptake system BetL in the probiotic strain Lactobacillus salivarius UCC118. Following nisin induction, strains expressing betL exhibited a significant increase in resistance to several stresses, including elevated osmo-, cryo-, baro-, and chill tolerance, as well as increased resistance to spray- and freeze-drying. The ability to confer additional stress tolerance on a probiotic culture may be an important step in delivering viable cultures for maximal efficacy.
Collapse
|