1
|
Piras C, De Fazio R, Di Francesco A, Oppedisano F, Spina AA, Cunsolo V, Roncada P, Cramer R, Britti D. Detection of Antimicrobial Proteins/Peptides and Bacterial Proteins Involved in Antimicrobial Resistance in Raw Cow's Milk from Different Breeds. Antibiotics (Basel) 2024; 13:838. [PMID: 39335011 PMCID: PMC11429332 DOI: 10.3390/antibiotics13090838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Proteins involved in antibiotic resistance (resistome) and with antimicrobial activity are present in biological specimens. This study aims to explore the presence and abundance of antimicrobial peptides (AMPs) and resistome proteins in bovine milk from diverse breeds and from intensive (Pezzata rossa, Bruna alpina, and Frisona) and non-intensive farming (Podolica breeds). Liquid atmospheric pressure matrix-assisted laser desorption/ionization (LAP-MALDI) mass spectrometry (MS) profiling, bottom-up proteomics, and metaproteomics were used to comprehensively analyze milk samples from various bovine breeds in order to identify and characterize AMPs and to investigate resistome proteins. LAP-MALDI MS coupled with linear discriminant analysis (LDA) machine learning was employed as a rapid classification method for Podolica milk recognition against the milk of other bovine species. The results of the LAP-MALDI MS analysis of milk coupled with the linear discriminant analysis (LDA) demonstrate the potential of distinguishing between Podolica and control milk samples based on MS profiles. The classification accuracy achieved in the training set is 86% while it reaches 98.4% in the test set. Bottom-up proteomics revealed approximately 220 quantified bovine proteins (identified using the Bos taurus database), with cathelicidins and annexins exhibiting higher abundance levels in control cows (intensive farming breeds). On the other hand, the metaproteomics analysis highlighted the diversity within the milk's microbial ecosystem with interesting results that may reflect the diverse environmental variables. The bottom-up proteomics data analysis using the Comprehensive Antibiotic Resistance Database (CARD) revealed beta-lactamases and tetracycline resistance proteins in both control and Podolica milk samples, with no relevant breed-specific differences observed.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| | - Rosario De Fazio
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Antonella Di Francesco
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy; (A.D.F.); (V.C.)
| | - Francesca Oppedisano
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Anna Antonella Spina
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Vincenzo Cunsolo
- Laboratory of Organic Mass Spectrometry, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy; (A.D.F.); (V.C.)
| | - Paola Roncada
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK;
| | - Domenico Britti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (R.D.F.); (F.O.); (A.A.S.); (P.R.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University “Magna Graecia” of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Sun R, Liu Y, Li T, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Plastic wastes and surface antibiotic resistance genes pollution in mangrove environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:634. [PMID: 37133617 DOI: 10.1007/s10661-023-11312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Mangroves are located at the intersection of land and sea and are also heavily affected by plastic wastes. Biofilms of plastic wastes in mangroves are reservoirs for antibiotic resistance genes (ARGs). In this study, plastic wastes and ARG pollution were investigated from three typical mangrove areas in Zhanjiang, South China. Transparent was the dominant colors of plastic wastes in three mangroves. Fragment and film shape accounted for 57.73-88.23% of plastic waste samples in mangroves. In addition, 39.50% of plastic wastes in protected area mangroves are PS. The metagenomic results shows that the 175 ARGs were found on plastic wastes of the three mangroves, the abundance accounting for 91.11% of the total ARGs. The abundance of Vibrio accounted for 2.31% of the total bacteria genera in aquaculture pond area mangrove. Correlation analysis shows that a microbe can carry multiple ARGs that may improve resistance to antibiotics. Microbes are the potential hosts of most ARGs, suggesting that ARGs can be transmitted by microbes. Because the mangroves are closely related to human activities and the high abundance of ARGs on plastic increases the ecological risks, people should improve plastic waste management and prevent the spread of ARGs by reducing plastic pollution.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China.
| |
Collapse
|
3
|
Schoch L, Sutelman P, Suades R, Badimon L, Moreno-Indias I, Vilahur G. The gut microbiome dysbiosis is recovered by restoring a normal diet in hypercholesterolemic pigs. Eur J Clin Invest 2023; 53:e13927. [PMID: 36453873 DOI: 10.1111/eci.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Gut microbiota is thought to modulate cardiovascular risk. However, the effect of cardiovascular primary prevention strategies on gut microbiota remains largely unknown. This study investigates the impact of diet and rosuvastatin interventions on gut microbiota composition in hypercholesterolemic pigs and associated potential changes in host metabolic pathways. METHODS Diet-induced hypercholesterolemic pigs (n = 32) were randomly distributed to receive one of the following 30-day interventions: (I) continued hypercholesterolemic diet (HCD; n = 9), (II) normocholesterolemic diet (NCD; n = 8), (III) continued HCD plus 40 mg rosuvastatin/daily (n = 7), or (IV) NCD plus 40 mg rosuvastatin/daily (n = 8). Faeces were collected at study endpoint for characterisation of the gut microbiome and metabolic profile prediction (PICRUSt2). TMAO levels and biochemical parameters were determined. RESULTS Principal coordinate analyses (beta-diversity) showed clear differences in the microbiota of NCD vs HCD pigs (PERMANOVA, p = .001). NCD-fed animals displayed significantly higher alpha-diversity, which inversely correlated with total cholesterol and LDL-cholesterol levels (p < .0003). NCD and HCD animals differed in the abundance of 12 genera (ANCOM; p = .001 vs HCD), and PICRUSt2 analysis revealed detrimental changes in HCD-related microbiota metabolic capacities. These latter findings were associated with a significant fivefold increase in TMAO levels in HCD-fed pigs (p < .0001 vs NCD). The addition of a 30-day rosuvastatin treatment to either of the diets exerted no effects in microbiota nor lipid profile. CONCLUSION In hypercholesterolemic animals, the ingestion of a low-fat diet for 30 days modifies gut microbiota composition in favour of alpha-diversity and towards a healthy metabolic profile, whereas rosuvastatin treatment for this period exerts no effects.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Pablo Sutelman
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, Malaga, Spain
- CiberOBN, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CiberCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Audu BJ, Norval S, Bruno L, Meenakshi R, Marion M, Forbes KJ. Genomic diversity and antimicrobial resistance of Campylobacter spp. from humans and livestock in Nigeria. J Biomed Sci 2022; 29:7. [PMID: 35073916 PMCID: PMC8788075 DOI: 10.1186/s12929-022-00786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Campylobacter spp. are zoonotic pathogens, ubiquitous and are found naturally as commensals in livestock from where they can be transmitted to humans directly or through animal products. The genomic diversity and antimicrobial resistance profile of Campylobacter was investigated with a focus on C. jejuni and C. coli in humans and livestock (poultry and cattle) from Nigeria. Methods 586 human stool samples and 472 faecal samples from livestock were cultured for thermophilic Campylobacter species on modified charcoal cefoperazone deoxycholate agar (mCCDA). Culture in combination with whole genome sequencing identified and confirmed the presence of Campylobacter in humans and animals from the study area. Further analysis of the sequences was performed to determine multilocus sequence types and genetic determinants of antimicrobial resistance to fluoroquinolone, betalactam, tetracycline and macrolide classes of antimicrobials. Results From the human stool samples tested, 50 (9%) were positive of which 33 (66%) were C. jejuni, 14 (28%) were C. coli while 3 (6%) were C. hyointestinalis. In livestock, 132 (28%) were positive. Thirty one (7%) were C. jejuni while 101 (21%) were C. coli. Whole genome sequencing and MLST of the isolates revealed a total of 32 sequence types (STs) identified from 47 human isolates while 48 STs were identified in 124 isolates from livestock indicating a population which was overall, genetically diverse with a few more dominant strains. The antimicrobial resistance profiles of the isolates indicated a higher prevalence of resistance in Campylobacter isolated from livestock than in humans. Generally, resistance was greatest for betalactams (42%) closely followed by fluoroquinolones (41%), tetracyclines (15%) and lastly macrolides (2%). Multidrug resistance to three or more antimicrobials was observed in 24 (13%) isolates from humans (n = 1, 4%) and chicken (n = 23, 96%). Conclusions This study has further contributed information about the epidemiology, genetic diversity and antimicrobial resistance profile of thermophilic Campylobacter in Nigeria.
Collapse
|
5
|
Baquero F, Martínez JL, Novais Â, Rodríguez-Beltrán J, Martínez-García L, Coque TM, Galán JC. Allogenous Selection of Mutational Collateral Resistance: Old Drugs Select for New Resistance Within Antibiotic Families. Front Microbiol 2021; 12:757833. [PMID: 34745065 PMCID: PMC8569428 DOI: 10.3389/fmicb.2021.757833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Allogeneous selection occurs when an antibiotic selects for resistance to more advanced members of the same family. The mechanisms of allogenous selection are (a) collateral expansion, when the antibiotic expands the gene and gene-containing bacterial populations favoring the emergence of other mutations, inactivating the more advanced antibiotics; (b) collateral selection, when the old antibiotic selects its own resistance but also resistance to more modern drugs; (c) collateral hyper-resistance, when resistance to the old antibiotic selects in higher degree for populations resistant to other antibiotics of the family than to itself; and (d) collateral evolution, when the simultaneous or sequential use of antibiotics of the same family selects for new mutational combinations with novel phenotypes in this family, generally with higher activity (higher inactivation of the antibiotic substrates) or broader spectrum (more antibiotics of the family are inactivated). Note that in some cases, collateral selection derives from collateral evolution. In this article, examples of allogenous selection are provided for the major families of antibiotics. Improvements in minimal inhibitory concentrations with the newest drugs do not necessarily exclude “old” antibiotics of the same family of retaining some selective power for resistance to the newest agents. If this were true, the use of older members of the same drug family would facilitate the emergence of mutational resistance to the younger drugs of the family, which is frequently based on previously established resistance traits. The extensive use of old drugs (particularly in low-income countries and in farming) might be significant for the emergence and selection of resistance to the novel members of the family, becoming a growing source of variation and selection of resistance to the whole family. In terms of future research, it could be advisable to focus antimicrobial drug discovery more on the identification of new targets and new (unique) classes of antimicrobial agents, than on the perpetual chemical exploitation of classic existing ones.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José L Martínez
- Department of Microbial Biotechnology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Laura Martínez-García
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Juan Carlos Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
6
|
Kwiecień E, Stefańska I, Chrobak-Chmiel D, Kizerwetter-Świda M, Moroz A, Olech W, Spinu M, Binek M, Rzewuska M. Trueperella pyogenes Isolates from Livestock and European Bison ( Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics (Basel) 2021; 10:380. [PMID: 33916765 PMCID: PMC8065510 DOI: 10.3390/antibiotics10040380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Determinants of tetracycline resistance in Trueperella pyogenes are still poorly known. In this study, resistance to tetracycline was investigated in 114 T. pyogenes isolates from livestock and European bison. Tetracycline minimum inhibitory concentration (MIC) was evaluated by a microdilution method, and tetracycline resistance genes were detected by PCR. To determine variants of tetW and their linkage with mobile elements, sequencing analysis was performed. Among the studied isolates, 43.0% were tetracycline resistant (MIC ≥ 8 µg/mL). The highest MIC90 of tetracycline (32 µg/mL) was noted in bovine and European bison isolates. The most prevalent determinant of tetracycline resistance was tetW (in 40.4% of isolates), while tetA(33) was detected only in 8.8% of isolates. Four variants of tetW (tetW-1, tetW-2, tetW-3, tetW-4) were recognized. The tetW-3 variant was the most frequent and was linked to the ATE-1 transposon. The tetW-2 variant, found in a swine isolate, was not previously reported in T. pyogenes. This is the first report on determinants of tetracycline resistance in T. pyogenes isolates from European bison. These findings highlight that wild animals, including wild ruminants not treated with antimicrobials, can be a reservoir of tetracycline-resistant bacteria carrying resistance determinants, which may be easily spread among pathogenic and environmental microorganisms.
Collapse
Affiliation(s)
- Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-786 Warsaw, Poland;
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marina Spinu
- Department of Infectious Diseases and Preventive Medicine, Law and Ethics, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| |
Collapse
|
7
|
Lynch CT, Lynch H, Burke S, Hawkins K, Buttimer C, Mc Carthy C, Egan J, Whyte P, Bolton D, Coffey A, Lucey B. Antimicrobial Resistance Determinants Circulating among Thermophilic Campylobacter Isolates Recovered from Broilers in Ireland Over a One-Year Period. Antibiotics (Basel) 2020; 9:E308. [PMID: 32521746 PMCID: PMC7344827 DOI: 10.3390/antibiotics9060308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5). The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of mobile genetic element.
Collapse
Affiliation(s)
- Caoimhe T. Lynch
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Helen Lynch
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Sarah Burke
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Kayleigh Hawkins
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Conor Mc Carthy
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| | - John Egan
- NRL Campylobacter, Backweston Laboratory Complex, Young’s Cross, Celbridge, W23 X3PH Kildare, Ireland; (H.L.); (J.E.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland; (C.T.L.); (S.B.); (K.H.); (C.M.C.); (A.C.)
| |
Collapse
|
8
|
Korry BJ, Cabral DJ, Belenky P. Metatranscriptomics Reveals Antibiotic-Induced Resistance Gene Expression in the Murine Gut Microbiota. Front Microbiol 2020; 11:322. [PMID: 32210932 PMCID: PMC7069102 DOI: 10.3389/fmicb.2020.00322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance is a current and expanding threat to the practice of modern medicine. Antibiotic therapy has been shown to perturb the composition of the host microbiome with significant health consequences. In addition, the gut microbiome is known to be a reservoir of antibiotic resistance genes. Work has demonstrated that antibiotics can alter the collection of antibiotic resistance genes within the microbiome through selection and horizontal gene transfer. While antibiotics also have the potential to impact the expression of resistance genes, metagenomic-based pipelines currently lack the ability to detect these shifts. Here, we utilized a dual sequencing approach combining shotgun metagenomics and metatranscriptomics to profile how three antibiotics, amoxicillin, doxycycline, and ciprofloxacin, impact the murine gut resistome at the DNA and RNA level. We found that each antibiotic induced broad, but untargeted impacts on the gene content of the resistome. In contrast, changes in ARG transcript abundance were more targeted to the antibiotic treatment. Doxycycline and amoxicillin induced the expression of tetracycline and beta-lactamase resistance genes, respectively. Furthermore, the increased beta-lactamase resistance gene transcripts could contribute to an observed bloom of Bacteroides thetaiotaomicron during amoxicillin treatment. Based on these findings, we propose that the utilization of a dual sequencing methodology provides a unique capacity to fully understand the response of the resistome to antibiotic perturbation. In particular, the analysis of transcripts reveals that the expression and utilization of resistance genes is far narrower than their abundance at the genomic level would suggest.
Collapse
Affiliation(s)
- Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Damien J Cabral
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Yoshikawa S, Araoka R, Kajihara Y, Ito T, Miyamoto H, Kodama H. Valerate production by Megasphaera elsdenii isolated from pig feces. J Biosci Bioeng 2018; 125:519-524. [DOI: 10.1016/j.jbiosc.2017.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
|
10
|
Preferential isolation of Megasphaera elsdenii from pig feces. Anaerobe 2017; 48:160-164. [PMID: 28842275 DOI: 10.1016/j.anaerobe.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023]
Abstract
Lactic acid produced by intestinal bacteria is fermented by lactate-utilizing bacteria. In this study, we developed a selective culture medium (KMI medium) for Megasphaera elsdenii, a lactate-utilizing bacterium that is abundant in pig intestines. Supplementation of the medium with lactate and beef extract powder was necessary for the preferential growth of M. elsdenii. In addition, we designed a species-specific primer set to detect M. elsdenii. When pig fecal samples were plated on KMI agar medium, approximately 60-100% of the resulting colonies tested positive using the M. elsdenii-specific PCR primers. In fact, nearly all of the large, yellow-white colonies that grew on the KMI agar medium tested positive by PCR with this primer set. The 16S rRNA gene sequences of three representative PCR-positive strains showed strong similarities to that of M. elsdenii ATCC 25940T (98.9-99.2% identity). These three strains were approximately 1.5 μm sized cocci that were primarily arranged in pairs, as was observed for M. elsdenii JCM 1772T. The selective KMI medium and species-specific primer set developed in this study are useful for the isolation and detection of M. elsdenii and will be useful in research aimed at increasing our understanding of intestinal short-chain fatty acid metabolism in pigs.
Collapse
|
11
|
Warburton PJ, Amodeo N, Roberts AP. Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J Antimicrob Chemother 2016; 71:3333-3339. [PMID: 27494928 PMCID: PMC5181394 DOI: 10.1093/jac/dkw304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.
Collapse
Affiliation(s)
- Philip J Warburton
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, School of Biomedical and Healthcare Services, Plymouth, UK
| | - Nina Amodeo
- Department of Biomedical and Forensic Science, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, UK
| | - Adam P Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
12
|
Draft Genome Sequence of Megasphaera sp. Strain DJF_B143, an Isolate from Pig Hindgut Unable to Produce Skatole. GENOME ANNOUNCEMENTS 2016; 4:4/1/e00007-16. [PMID: 26950318 PMCID: PMC4767908 DOI: 10.1128/genomea.00007-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The butyrate-producing Megasphaera spp. predominate in the pig hindgut and may play important roles in gut health. Moreover, one Megasphaera isolate has been reported to produce the boar taint compound, skatole. Here, we provide a 2.58-Mbp draft genome of a pig hindgut isolate, Megasphaera sp. DJF_B143, unable to produce skatole.
Collapse
|
13
|
Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Appl Environ Microbiol 2013; 79:3879-81. [PMID: 23584773 DOI: 10.1128/aem.00589-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To identify bacteria with potential for influencing gut health, 980 anaerobes were cultured from the swine intestinal tract and analyzed for butyrate production. Fifteen isolates in the order Clostridiales produced butyrate and had butyryl coenzyme A (CoA):acetate CoA transferase activity. Three of the isolates grew on mucin, suggesting an intimate association with host intestinal mucosa.
Collapse
|
14
|
Novais C, Freitas AR, Silveira E, Baquero F, Peixe L, Roberts AP, Coque TM. A tet(S/M) hybrid from CTn6000 and CTn916 recombination. MICROBIOLOGY-SGM 2012; 158:2710-2711. [PMID: 22968088 DOI: 10.1099/mic.0.062729-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Carla Novais
- REQUIMTE, Faculdade Farmácia, Universidade do Porto, Portugal
| | - Ana R Freitas
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,REQUIMTE, Faculdade Farmácia, Universidade do Porto, Portugal
| | | | - Fernando Baquero
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain.,Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luisa Peixe
- REQUIMTE, Faculdade Farmácia, Universidade do Porto, Portugal
| | - Adam P Roberts
- Division of Microbial Diseases. UCL Eastman Dental Institute. University College London. UK
| | - Teresa M Coque
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain.,Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
15
|
Levine UY, Bearson SMD, Stanton TB. Mitsuokella jalaludinii inhibits growth of Salmonella enterica serovar Typhimurium. Vet Microbiol 2012; 159:115-22. [PMID: 22503601 DOI: 10.1016/j.vetmic.2012.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022]
Abstract
Salmonella continues to be a significant human health threat, and the objective of this study was to identify microorganisms with the potential to improve porcine food-safety through their antagonism of Salmonella. Anaerobic culture supernatants of 973 bacterial isolates from the gastrointestinal tract and feces of swine were screened for their capacity to inhibit the growth of Salmonella enterica serovar Typhimurium. Growth inhibition of 1000-fold or greater was observed from 16 isolates, and 16S rRNA sequencing identified the isolates as members of the genera Mitsuokella, Escherichia/Shigella, Anaerovibrio, Selenomonas, and Streptococcus. Four isolates were identified as Mitsuokella jalaludinii, and the mechanism of Salmonella Typhimurium growth inhibition by M. jalaludinii was further investigated. M. jalaludinii stationary phase culture supernatants were observed to significantly inhibit growth, and featured the production of lactic, succinic, and acetic acids. Aerobic and anaerobic S. Typhimurium growth was restored when the pH of the culture supernatants (pH 4.6) was increased to pH 6.8. However, S. Typhimurium growth in fermentation acid-free media was the same at pH 4.6 and pH 6.8 - indicating a synergistic effect between fermentation acid production and low pH as the cause of S. Typhimurium growth inhibition. Furthermore, exposure of S. Typhimurium to M. jalaludinii culture supernatants inhibited Salmonella invasion of HEp-2 cells by 10-fold. The results identify M. jalaludinii as a possible inhibitor of Salmonella growth and invasion in swine, and thus a potential probiotic capable of improving food safety.
Collapse
Affiliation(s)
- Uri Y Levine
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | | | | |
Collapse
|
16
|
Stanton TB, Humphrey SB. Persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive Megasphaera elsdenii strains to prevent colonization of swine by antibiotic-resistant strains. Appl Environ Microbiol 2011; 77:7158-66. [PMID: 21821757 PMCID: PMC3194883 DOI: 10.1128/aem.00647-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/25/2011] [Indexed: 11/20/2022] Open
Abstract
Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC=64 to >256 μg/ml) and to carry mosaic (recombinant) tetracycline resistance genes. Baby pigs inherit intestinal microbiota from the mother sow. In these investigations we addressed two questions. When do M. elsdenii strains from the sow colonize baby pigs? Can five antibiotic-sensitive M. elsdenii strains administered intragastrically to newborn pigs affect natural colonization of the piglets by antibiotic-resistant (AR) M. elsdenii strains from the mother? M. elsdenii natural colonization of newborn pigs was undetectable (<10(4) CFU/g [wet weight] of feces) prior to weaning (20 days after birth). After weaning, all pigs became colonized (4 × 10(5) to 2 × 10(8) CFU/g feces). In a separate study, 61% (76/125) of M. elsdenii isolates from a gravid sow never exposed to antibiotics were resistant to chlortetracycline, ampicillin, or tylosin. The inoculation of the sow's offspring with mixtures of M. elsdenii antibiotic-sensitive strains prevented colonization of the offspring by maternal AR strains until at least 11 days postweaning. At 25 and 53 days postweaning, however, AR strains predominated. Antibiotic susceptibility phenotypes and single nucleotide polymorphism (SNP)-based identities of M. elsdenii isolated from sow and offspring were unexpectedly diverse. These results suggest that dosing newborn piglets with M. elsdenii antibiotic-sensitive strains delays but does not prevent colonization by maternal resistant strains. M. elsdenii subspecies diversity offers an explanation for the persistence of resistant strains in the absence of antibiotic selection.
Collapse
Affiliation(s)
- Thad B Stanton
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | | |
Collapse
|
17
|
Chlortetracycline-resistant intestinal bacteria in organically raised and feral Swine. Appl Environ Microbiol 2011; 77:7167-70. [PMID: 21821750 DOI: 10.1128/aem.00688-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Organically raised swine had high fecal populations of chlortetracycline (CTC)-resistant (growing at 64 μg CTC/ml) Escherichia coli, Megasphaera elsdenii, and anaerobic bacteria. By comparison, CTC-resistant bacteria in feral swine feces were over 1,000-fold fewer and exhibited lower taxonomic diversity.
Collapse
|
18
|
Different genetic elements carrying the tet(W) gene in two human clinical isolates of Streptococcus suis. Antimicrob Agents Chemother 2010; 55:631-6. [PMID: 21115784 DOI: 10.1128/aac.00965-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic support for tet(W), an emerging tetracycline resistance determinant, was studied in two strains of Streptococcus suis, SsCA and SsUD, both isolated in Italy from patients with meningitis. Two completely different tet(W)-carrying genetic elements, sharing only a tet(W)-containing segment barely larger than the gene, were found in the two strains. The one from strain SsCA was nontransferable, and aside from an erm(B)-containing insertion, it closely resembled a genomic island recently described in an S. suis Chinese human isolate in sequence, organization, and chromosomal location. The tet(W)-carrying genetic element from strain SsUD was transferable (at a low frequency) and, though apparently noninducible following mitomycin C treatment, displayed a typical phage organization and was named ΦSsUD.1. Its full sequence was determined (60,711 bp), the highest BLASTN score being Streptococcus pyogenes Φm46.1. ΦSsUD.1 exhibited a unique combination of antibiotic and heavy metal resistance genes. Besides tet(W), it contained a MAS (macrolide-aminoglycoside-streptothricin) fragment with an erm(B) gene having a deleted leader peptide and a cadC/cadA cadmium efflux cassette. The MAS fragment closely resembled the one recently described in pneumococcal transposons Tn6003 and Tn1545. These resistance genes found in the ΦSsUD.1 phage scaffold differed from, but were in the same position as, cargo genes carried by other streptococcal phages. The chromosome integration site of ΦSsUD.1 was at the 3' end of a conserved tRNA uracil methyltransferase (rum) gene. This site, known to be an insertional hot spot for mobile elements in S. pyogenes, might play a similar role in S. suis.
Collapse
|
19
|
Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci 2010; 67:419-31. [PMID: 19862477 PMCID: PMC11115633 DOI: 10.1007/s00018-009-0172-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/24/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022]
Abstract
Resistance to tetracycline emerged soon after its discovery six decades ago. Extensive clinical and non-clinical uses of this class of antibiotic over the years have combined to select for a large number of resistant determinants, collectively termed the tetracycline resistome. In order to impart resistance, microbes use different molecular mechanisms including target protection, active efflux, and enzymatic degradation. A deeper understanding of the structure, mechanism, and regulation of the genes and proteins associated with tetracycline resistance will contribute to the development of tetracycline derivatives that overcome resistance. Newer generations of tetracyclines derived from engineering of biosynthetic genetic programs, semi-synthesis, and in particular recent developments in their chemical synthesis, together with a growing understanding of resistance, will serve to retain this class of antibiotic to combat pathogens.
Collapse
Affiliation(s)
- Maulik Thaker
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, Canada
| | - Peter Spanogiannopoulos
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, Canada
| | - Gerard D. Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1200 Main St W, Hamilton, Canada
| |
Collapse
|
20
|
Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:1086-108. [PMID: 19398507 DOI: 10.2134/jeq2008.0128] [Citation(s) in RCA: 476] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.
Collapse
|
21
|
Abstract
The occurrence of genes conferring resistance to tetracyclines in the organic pig gut was assessed through the metagenomic approach. Of 9,000 bacterial artificial chromosome clones analyzed, 10 were identified as carrying the known tet(C), tet(W), and tet(40) genes, as well as novel genes encoding resistance to the tetracyclines minocycline and doxycycline. The latter are different from the known tet genes and are homologous to genes encoding UDP-glucose 4-epimerases, with the domain structure characteristic for these enzymes. The majority of the resistance genes were associated with putative mobile genetic elements. The sequence of a novel 9.7-kb plasmid carrying tet(W) and tet(40) was also identified. Conserved flanking regions identified around the tet(W) and tet(40) genes in our metagenomic library may play a role in genetic exchange of these genes. This is the first report describing the occurrence of tet(40) outside the human intestine. The maintenance of antibiotic resistance genes in apparently antibiotic-free animals is probably due to their presence on mobile genetic elements, the fitness cost of which for the cell is ameliorated during the previous antibiotic selection.
Collapse
|
22
|
A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones. Antimicrob Agents Chemother 2008; 52:4001-9. [PMID: 18779355 DOI: 10.1128/aac.00308-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Clostridium saccharolyticum K10, isolated from a fecal sample obtained from a healthy donor who had received long-term tetracycline therapy, was found to carry three tetracycline resistance genes: tet(W) and the mosaic tet(O/32/O), both conferring ribosome protection-type resistance, and a novel, closely linked efflux-type resistance gene designated tet(40). tet(40) encodes a predicted membrane-associated protein with 42% amino acid identity to tetA(P). Tetracycline did not accumulate in Escherichia coli cells expressing the Tet(40) efflux protein, and resistance to tetracycline was reduced when cells were incubated with an efflux pump inhibitor. E. coli cells carrying tet(40) had a 50% inhibitory concentration of tetracycline of 60 microg/ml. Analysis of a transconjugant from a mating between donor strain C. saccharolyticum K10 and the recipient human gut commensal bacterium Roseburia inulinivorans suggested that tet(O/32/O) and tet(40) were cotransferred on a mobile element. Sequence analysis of a 37-kb insert identified on the basis of tetracycline resistance from a metagenomic fosmid library again revealed a tandem arrangement of tet(O/32/O) and tet(40), flanked by regions with homology to parts of the VanG operon previously identified in Enterococcus faecalis. At least 10 of the metagenomic inserts that carried tet(O/32/O) also carried tet(40), suggesting that tet(40), although previously undetected, may be an abundant efflux gene.
Collapse
|
23
|
Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilum and Lactobacillus johnsonii. Antimicrob Agents Chemother 2007; 52:248-52. [PMID: 17967912 DOI: 10.1128/aac.00714-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the first time, mosaic tetracycline resistance genes were identified in Lactobacillus johnsonii and in Bifidobacterium thermophilum strains. The L. johnsonii strain investigated contains a complex hybrid gene, tet(O/W/32/O/W/O), whereas the five bifidobacterial strains possess two different mosaic tet genes: i.e., tet(W/32/O) and tet(O/W). As reported by others, the crossover points of the mosaic tet gene segments were found at similar positions within the genes, suggesting a hot spot for recombination. Analysis of the sequences flanking these genes revealed that the upstream part corresponds to the 5' end of the mosaic open reading frame. In contrast, the downstream region was shown to be more variable. Surprisingly, in one of the B. thermophilum strains a third tet determinant was identified, coding for the efflux pump Tet(L).
Collapse
|
24
|
Muñoz-Aguayo J, Lang KS, LaPara TM, González G, Singer RS. Evaluating the effects of chlortetracycline on the proliferation of antibiotic-resistant bacteria in a simulated river water ecosystem. Appl Environ Microbiol 2007; 73:5421-5. [PMID: 17616621 PMCID: PMC2042072 DOI: 10.1128/aem.00708-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotics and antibiotic metabolites have been found in the environment, but the biological activities of these compounds are uncertain, especially given the low levels that are typically detected in the environment. The objective of this study was to estimate the selection potential of chlortetracycline (CTC) on the antibiotic resistance of aerobic bacterial populations in a simulated river water ecosystem. Six replicates of a 10-day experiment using river water in continuous flow chemostat systems were conducted. Each replicate used three chemostats, one serving as a control to which no antibiotic was added and the other two receiving low and high doses of CTC (8 microg/liter and 800 microg/liter, respectively). The addition of CTC to the chemostats did not impact the overall level of cultivable aerobic bacteria (P = 0.51). The high-CTC chemostat had significantly higher tetracycline-resistant bacterial colony counts than both the low-CTC and the control chemostats (P < 0.035). The differences in resistance between the low-CTC and control chemostats were highly nonsignificant (P = 0.779). In general a greater diversity of tet resistance genes was detected in the high-CTC chemostat and with a greater frequency than in the low-CTC and control chemostats. Low levels of CTC in this in vitro experiment did not select for increased levels of tetracycline resistance among cultivable aerobic bacteria. This finding should not be equated with the absence of environmental risk, however. Low concentrations of antibiotics in the environment may select for resistant bacterial populations once they are concentrated in sediments or other locations.
Collapse
Affiliation(s)
- Jeannette Muñoz-Aguayo
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
25
|
Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov RI, Mackie RI. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol 2007; 73:4813-23. [PMID: 17545324 PMCID: PMC1951052 DOI: 10.1128/aem.00665-07] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tc(r)) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tc(r) genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tc(r) genes was quantified by real-time quantitative PCR. To confirm the Tc(r) gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tc(r) genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tc(r) genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool.
Collapse
Affiliation(s)
- S Koike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
A new perspective on the topic of antibiotic resistance is beginning to emerge based on a broader evolutionary and ecological understanding rather than from the traditional boundaries of clinical research of antibiotic-resistant bacterial pathogens. Phylogenetic insights into the evolution and diversity of several antibiotic resistance genes suggest that at least some of these genes have a long evolutionary history of diversification that began well before the 'antibiotic era'. Besides, there is no indication that lateral gene transfer from antibiotic-producing bacteria has played any significant role in shaping the pool of antibiotic resistance genes in clinically relevant and commensal bacteria. Most likely, the primary antibiotic resistance gene pool originated and diversified within the environmental bacterial communities, from which the genes were mobilized and penetrated into taxonomically and ecologically distant bacterial populations, including pathogens. Dissemination and penetration of antibiotic resistance genes from antibiotic producers were less significant and essentially limited to other high G+C bacteria. Besides direct selection by antibiotics, there is a number of other factors that may contribute to dissemination and maintenance of antibiotic resistance genes in bacterial populations.
Collapse
|
27
|
Villedieu A, Roberts AP, Allan E, Hussain H, McNab R, Spratt DA, Wilson M, Mullany P. Determination of the genetic support for tet(W) in oral bacteria. Antimicrob Agents Chemother 2007; 51:2195-7. [PMID: 17371816 PMCID: PMC1891419 DOI: 10.1128/aac.01587-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA sequence flanking a tet(W) gene in an oral Rothia sp. was determined. The gene was linked to two different transposases, and these were flanked by two almost identical mef (macrolide efflux) genes. This structure was found in 4 out of 20 tet(W)-containing oral bacteria investigated.
Collapse
Affiliation(s)
- A Villedieu
- Division of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, University College London, London WC1X 8LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kazimierczak KA, Scott KP. Antibiotics and Resistance Genes: Influencing the Microbial Ecosystem in the Gut. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:269-92. [PMID: 17869608 DOI: 10.1016/s0065-2164(07)62009-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Katarzyna A Kazimierczak
- Microbial Ecology, Gut Health Division, Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, Scotland, United Kingdom
| | | |
Collapse
|
29
|
Patterson AJ, Rincon MT, Flint HJ, Scott KP. Mosaic tetracycline resistance genes are widespread in human and animal fecal samples. Antimicrob Agents Chemother 2006; 51:1115-8. [PMID: 17178791 PMCID: PMC1803118 DOI: 10.1128/aac.00725-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mosaic tetracycline resistance genes comprising tet(O), tet(W), and tet(32) sequences were abundant in DNA extracted from pig and human fecal samples, accounting for 78% (50/64) and 46% (37/80) of genes amplified with a tet(O) primer set, respectively, in two samples. The nonmosaic tet(32) gene was isolated from a human saliva bacterium.
Collapse
Affiliation(s)
- Andrea J Patterson
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | |
Collapse
|
30
|
Kazimierczak KA, Flint HJ, Scott KP. Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 2006; 50:2632-9. [PMID: 16870752 PMCID: PMC1538676 DOI: 10.1128/aac.01587-05] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tet(W) is one of the most abundant tetracycline resistance genes found in bacteria from the mammalian gut and was first identified in the rumen anaerobe Butyrivibrio fibrisolvens 1.230, where it is highly mobile and its transfer is associated with the transposable chromosomal element TnB1230. In order to compare the genetic basis for tet(W) carriage in different bacteria, we studied sequences flanking tet(W) in representatives of seven bacterial genera originating in diverse gut environments. The sequences 657 bp upstream and 43 bp downstream of tet(W) were 96 to 100% similar in all strains examined. A common open reading frame (ORF) was identified downstream of tet(W) in five different bacteria, while another conserved ORF that flanked tet(W) in B. fibrisolvens 1.230 was also present upstream of tet(W) in a human colonic Roseburia isolate and in another rumen B. fibrisolvens isolate. In one species, Bifidobacterium longum (strain F8), a novel transposase was located within the conserved 657-bp region upstream of tet(W) and was flanked by imperfect direct repeats. Additional direct repeats 6 bp long were identified on each end of a chromosomal ORF interrupted by the insertion of the putative transposase and the tet(W) gene. This tet(W) gene was transferable at low frequencies between Bifidobacterium strains. A putative minielement carrying a copy of tet(W) was identified in B. fibrisolvens transconjugants that had acquired the tet(W) gene on TnB1230. Several different mechanisms, including mechanisms involving plasmids and conjugative transposons, appear to be involved in the horizontal transfer of tet(W) genes, but small core regions that may function as minielements are conserved.
Collapse
|
31
|
Billington SJ, Jost BH. Multiple genetic elements carry the tetracycline resistance gene tet(W) in the animal pathogen Arcanobacterium pyogenes. Antimicrob Agents Chemother 2006; 50:3580-7. [PMID: 16966401 PMCID: PMC1635169 DOI: 10.1128/aac.00562-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The tet(W) gene is associated with tetracycline resistance in a wide range of bacterial species, including obligately anaerobic rumen bacteria and isolates from the human gut and oral mucosa. However, little is known about how this gene is disseminated and the types of genetic elements it is carried on. We examined tetracycline-resistant isolates of the animal commensal and opportunistic pathogen Arcanobacterium pyogenes, all of which carried tet(W), and identified three genetic elements designated ATE-1, ATE-2, and ATE-3. These elements were found in 25%, 35%, and 60% of tetracycline-resistant isolates, respectively, with some strains carrying both ATE-2 and ATE-3. ATE-1 shows characteristics of a mobilizable transposon, and the tet(W) genes from strains carrying this element can be transferred at low frequencies between A. pyogenes strains. ATE-2 has characteristics of a simple transposon, carrying only the resistance gene and a transposase, while in ATE-3, the tet(W) gene is associated with a streptomycin resistance gene that is 100% identical at the DNA level with the aadE gene from the Campylobacter jejuni plasmid pCG8245. Both ATE-2 and ATE-3 show evidence of being carried on larger genetic elements, but conjugation to other strains was not observed under the conditions tested. ATE-1 was preferentially associated with A. pyogenes strains of bovine origin, while ATE-2 and ATE-3 elements were primarily found in porcine isolates, suggesting that these elements may circulate in different environments. In addition, four alleles of the tet(W) gene, primarily associated with different elements, were detected among A. pyogenes isolates.
Collapse
Affiliation(s)
- Stephen J Billington
- Department of Veterinary Science and Microbiology, The University of Arizona, 1117 East Lowell Street, Tucson, AZ 85721, USA.
| | | |
Collapse
|
32
|
Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W. Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. MICROBIAL ECOLOGY 2006; 51:267-76. [PMID: 16598633 DOI: 10.1007/s00248-006-9035-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 11/13/2005] [Accepted: 11/17/2005] [Indexed: 05/08/2023]
Abstract
The influence of the use of antibiotics on the prevalence of resistance genes in the environment is still poorly understood. We studied the diversity of tetracycline and sulfonamide resistance genes as influenced by fertilization with pig manure in soil microcosms and at two field locations. Manure contained a high diversity of resistance genes, regardless of whether it stemmed from a farm operation with low or regular use of antibiotics. In the microcosm soils, the influence of fertilization with manure was clearly shown by an increase in the number of resistance genes in the soil after manuring. Spiking of the tetracycline compounds to the microcosms had only little additional impact on the diversity of resistance genes. Overall, the tetracycline resistance genes tet(T), tet(W), and tet(Z) were ubiquitous in soil and pig slurries, whereas tet(Y), tet(S), tet(C), tet(Q), and tet(H) were introduced to the microcosm soil by manuring. The diversity of tetracycline and sulfonamide [sul(1), sul(2), and sul(3)] resistance genes on a Swiss pasture was very high even before slurry amendment, although manure from intensive farming had not been applied in the previous years. The additional effect of manuring was small, with the tetracycline and sulfonamide resistance diversity staying at high levels for the complete growth season. At an agricultural field site in Germany, the diversity of tetracycline and sulfonamide resistance genes was considerably lower, possibly reflecting regional differences in gene diversity. This study shows that there is a considerable pool of resistance genes in soils. Although it is not possible to conclude whether this diversity is caused by the global spread of resistance genes after 50 years of tetracycline use or is due to the natural background in soil resistance genes, it highlights a role that environmental reservoirs might play in resistance gene capture.
Collapse
Affiliation(s)
- Heike Schmitt
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80176, 3508 TD, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Stanton TB, Humphrey SB, Scott KP, Flint HJ. Hybrid tet genes and tet gene nomenclature: request for opinion. Antimicrob Agents Chemother 2005; 49:1265-6. [PMID: 15728946 PMCID: PMC549286 DOI: 10.1128/aac.49.3.1265-1266.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245:195-203. [PMID: 15837373 DOI: 10.1016/j.femsle.2005.02.034] [Citation(s) in RCA: 615] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 01/13/2005] [Accepted: 02/28/2005] [Indexed: 11/25/2022] Open
Abstract
This mini-review summarizes the changes in the field of bacterial acquired tetracycline resistance (tet) and oxytetracycline (otr) genes identified since the last major review in 2001. Thirty-eight acquired tetracycline resistant (Tc(r)) genes are known of which nine are new and include five genes coding for energy-dependent efflux proteins, two genes coding for ribosomal protection proteins, and two genes coding for tetracycline inactivating enzymes. The number of inactivating enzymes has increased from one to three, suggesting that work needs to be done to determine the role these enzymes play in bacterial resistance to tetracycline. In the same time period, 66 new genera have been identified which carry one or more of the previously described 29 Tc(r) genes. Included in the new genera is, for the first time, an obligate intracellular pathogen suggesting that this sheltered group of bacteria is capable of DNA exchange with non-obligate intracellular bacteria. The number of genera carrying ribosomal protection genes increased dramatically with the tet(M) gene now identified in 42 genera as compared with 24 and the tet(W) gene found in 17 new genera as compared to two genera in the last major review. New conjugative transposons, carrying different ribosomal protection tet genes, have been identified and an increase in the number of antibiotic resistance genes linked to tet genes has been found. Whether these new elements may help to spread the tet genes they carry to a wider bacterial host range is discussed.
Collapse
Affiliation(s)
- Marilyn C Roberts
- Department of Pathobiology, Box 357238, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|