1
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Liu P, Li Y, Ye Y, Chen J, Li R, Zhang Q, Li Y, Wang W, Meng Q, Ou J, Yang Z, Sun W, Gu W. The genome and antigen proteome analysis of Spiroplasma mirum. Front Microbiol 2022; 13:996938. [PMID: 36406404 PMCID: PMC9666726 DOI: 10.3389/fmicb.2022.996938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023] Open
Abstract
Spiroplasma mirum, small motile wall-less bacteria, was originally isolated from a rabbit tick and had the ability to infect newborn mice and caused cataracts. In this study, the whole genome and antigen proteins of S. mirum were comparative analyzed and investigated. Glycolysis, pentose phosphate pathway, arginine metabolism, nucleotide biosynthesis, and citrate fermentation were found in S. mirum, while trichloroacetic acid, fatty acids metabolism, phospholipid biosynthesis, terpenoid biosynthesis, lactose-specific PTS, and cofactors synthesis were completely absent. The Sec systems of S. mirum consist of SecA, SecE, SecDF, SecG, SecY, and YidC. Signal peptidase II was identified in S. mirum, but no signal peptidase I. The relative gene order in S. mirum is largely conserved. Genome analysis of available species in Mollicutes revealed that they shared only 84 proteins. S. mirum genome has 381 pseudogenes, accounting for 31.6% of total protein-coding genes. This is the evidence that spiroplasma genome is under an ongoing genome reduction. Immunoproteomics, a new scientific technique combining proteomics and immunological analytical methods, provided the direction of our research on S. mirum. We identified 49 proteins and 11 proteins (9 proteins in common) in S. mirum by anti-S. mirum serum and negative serum, respectively. Forty proteins in S. mirum were identified in relation to the virulence. All these proteins may play key roles in the pathogeny and can be used in the future for diagnoses and prevention.
Collapse
Affiliation(s)
- Peng Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuxin Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Youyuan Ye
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Jiaxin Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Rong Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Qinyi Zhang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuan Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Wen Wang
- Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Jingyu Ou
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Zhujun Yang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Basic Medical School, Hengyang Medical School, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Wei Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wei Gu
- Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Sagouti T, Belabess Z, Rhallabi N, Barka EA, Tahiri A, Lahlali R. Citrus Stubborn Disease: Current Insights on an Enigmatic Problem Prevailing in Citrus Orchards. Microorganisms 2022; 10:183. [PMID: 35056632 PMCID: PMC8779666 DOI: 10.3390/microorganisms10010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Citrus stubborn was initially observed in California in 1915 and was later proven as a graft-transmissible disease in 1942. In the field, diseased citrus trees have compressed and stunted appearances, and yield poor-quality fruits with little market value. The disease is caused by Spiroplasma citri, a phloem-restricted pathogenic mollicute, which belongs to the Spiroplasmataceae family (Mollicutes). S. citri has the largest genome of any Mollicutes investigated, with a genome size of roughly 1780 Kbp. It is a helical, motile mollicute that lacks a cell wall and peptidoglycan. Several quick and sensitive molecular-based and immuno-enzymatic pathogen detection technologies are available. Infected weeds are the primary source of transmission to citrus, with only a minor percentage of transmission from infected citrus to citrus. Several phloem-feeding leafhopper species (Cicadellidae, Hemiptera) support the natural spread of S. citri in a persistent, propagative manner. S. citri-free buds are used in new orchard plantings and bud certification, and indexing initiatives have been launched. Further, a quarantine system for newly introduced types has been implemented to limit citrus stubborn disease (CSD). The present state of knowledge about CSD around the world is summarized in this overview, where recent advances in S. citri detection, characterization, control and eradication were highlighted to prevent or limit disease spread through the adoption of best practices.
Collapse
Affiliation(s)
- Tourya Sagouti
- Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, Faculté des Sciences et Techniques de Mohammedia, Mohammedia 20650, Morocco; (T.S.); (N.R.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco;
| | - Naima Rhallabi
- Laboratoire de Virologie, Microbiologie et Qualité/Ecotoxicologie et Biodiversité, Faculté des Sciences et Techniques de Mohammedia, Mohammedia 20650, Morocco; (T.S.); (N.R.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Meknes 50001, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Meknes 50001, Morocco;
| |
Collapse
|
4
|
Interactions between the flavescence dorée phytoplasma and its insect vector indicate lectin-type adhesion mediated by the adhesin VmpA. Sci Rep 2021; 11:11222. [PMID: 34045641 PMCID: PMC8160148 DOI: 10.1038/s41598-021-90809-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
The flavescence dorée phytoplasma undergoes a propagative cycle in its insect vectors by first interacting with the insect cell surfaces, primarily in the midgut lumen and subsequently in the salivary glands. Adhesion of flavescence dorée phytoplasma to insect cells is mediated by the adhesin VmpA. We hypothesize that VmpA may have lectin-like activity, similar to several adhesins of bacteria that invade the insect gut. We first demonstrated that the luminal surface of the midgut and the basal surface of the salivary gland cells of the natural vector Scaphoideus titanus and those of the experimental vector Euscelidius variegatus were differentially glycosylated. Using ELISA, inhibition and competitive adhesion assays, and protein overlay assays in the Euva-6 insect cell line, we showed that the protein VmpA binds insect proteins in a lectin-like manner. In conclusion, the results of this study indicate that N-acetylglucosamine and mannose present on the surfaces of the midgut and salivary glands serve as recognition sites for the phytoplasma adhesin VmpA.
Collapse
|
5
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|
6
|
Dubrana MP, Béven L, Arricau-Bouvery N, Duret S, Claverol S, Renaudin J, Saillard C. Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts. BMC Microbiol 2016; 16:53. [PMID: 27005573 PMCID: PMC4804543 DOI: 10.1186/s12866-016-0666-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background Spiroplasma citri is a cell wall-less, plant pathogenic bacteria that colonizes two distinct hosts, the leafhopper vector and the host plant. Given the absence of a cell wall, surface proteins including lipoproteins and transmembrane polypeptides are expected to play key roles in spiroplasma/host interactions. Important functions in spiroplasma/insect interactions have been shown for a few surface proteins such as the major lipoprotein spiralin, the transmembrane S. citri adhesion-related proteins (ScARPs) and the sugar transporter subunit Sc76. S. citri efficient transmission from the insect to the plant is expected to rely on its ability to adapt to the different environments and more specifically to regulate the expression of genes encoding surface-exposed proteins. Results Genes encoding S. citri lipoproteins and ScARPs were investigated for their expression level in axenic medium, in the leafhopper vector Circulifer haematoceps and in the host plant (periwinkle Catharanthus roseus) either insect-infected or graft-inoculated. The vast majority of the lipoprotein genes tested (25/28) differentially responded to the various host environments. Considering their relative expression levels in the different environments, the possible involvement of the targeted genes in spiroplasma host adaptation was discussed. In addition, two S. citri strains differing notably in their ability to express adhesin ScARP2b and pyruvate dehydrogenase E1 component differed in their capacity to multiply in the two hosts, the plant and the leafhopper vector. Conclusions This study provided us with a list of genes differentially expressed in the different hosts, leading to the identification of factors that are thought to be involved in the process of S. citri host adaptation. The identification of such factors is a key step for further understanding of S. citri pathogenesis. Moreover the present work highlights the high capacity of S. citri in tightly regulating the expression level of a large set of surface protein genes, despite the small size of its genome. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0666-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Pierre Dubrana
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Laure Béven
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France. .,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France.
| | - Nathalie Arricau-Bouvery
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Sybille Duret
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Stéphane Claverol
- Plateforme Protéome, CGFB, Université de Bordeaux, F-33076, Bordeaux, France
| | - Joël Renaudin
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| | - Colette Saillard
- UMR 1332 Biologie du Fruit et Pathologie, INRA, F-33882, Villenave d'Ornon, France.,UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, F-33882, Villenave d'Ornon, France
| |
Collapse
|
7
|
Bolaños LM, Servín-Garcidueñas LE, Martínez-Romero E. Arthropod-Spiroplasma relationship in the genomic era. FEMS Microbiol Ecol 2014; 91:1-8. [PMID: 25764543 DOI: 10.1093/femsec/fiu008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The genus Spiroplasma comprises wall-less, low-GC bacteria that establish pathogenic, mutualistic and commensal symbiotic associations with arthropods and plants. This review focuses on the symbiotic relationships between Spiroplasma bacteria and arthropod hosts in the context of the available genomic sequences. Spiroplasma genomes are reduced and some contain highly repetitive plectrovirus-related sequences. Spiroplasma's diversity in viral invasion susceptibility, virulence factors, substrate utilization, genome dynamics and symbiotic associations with arthropods make this bacterial genus a biological model that provides insights about the evolutionary traits that shape bacterial symbiotic relationships with eukaryotes.
Collapse
Affiliation(s)
- Luis M Bolaños
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Luis E Servín-Garcidueñas
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
8
|
Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 2014; 16:1119-32. [PMID: 24438161 DOI: 10.1111/cmi.12265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Spiroplamas are helical, cell wall-less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram-positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin-less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface-exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild-type but not of the spiralin-less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.
Collapse
Affiliation(s)
- Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Oshima K, Maejima K, Namba S. Genomic and evolutionary aspects of phytoplasmas. Front Microbiol 2013; 4:230. [PMID: 23966988 PMCID: PMC3743221 DOI: 10.3389/fmicb.2013.00230] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 11/20/2022] Open
Abstract
Parasitic bacteria that infect eukaryotes, such as animals and plants, often have reduced genomes, having lost important metabolic genes as a result of their host-dependent life cycles. Genomic sequencing of these bacteria has revealed their survival strategies and adaptations to parasitism. Phytoplasmas (class Mollicutes, genus ‘Candidatus Phytoplasma’) are intracellular bacterial pathogens of plants and insects and cause devastating yield losses in diverse low- and high-value crops worldwide. The complete genomic sequences of four Candidatus Phytoplasma species have been reported. The genomes encode even fewer metabolic functions than other bacterial genomes do, which may be the result of reductive evolution as a consequence of their life as an intracellular parasite. This review summarizes current knowledge of the diversity and common features of phytoplasma genomes, including the factors responsible for pathogenicity.
Collapse
Affiliation(s)
- Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
10
|
The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 2011; 6:e22571. [PMID: 21799902 PMCID: PMC3143171 DOI: 10.1371/journal.pone.0022571] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022] Open
Abstract
Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.
Collapse
|
11
|
Involvement of a minimal actin-binding region of Spiroplasma citri phosphoglycerate kinase in spiroplasma transmission by its leafhopper vector. PLoS One 2011; 6:e17357. [PMID: 21364953 PMCID: PMC3043095 DOI: 10.1371/journal.pone.0017357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 12/02/2022] Open
Abstract
Background Spiroplasma citri is a wall-less bacterium that colonizes phloem vessels of a large number of host plants. Leafhopper vectors transmit S. citri in a propagative and circulative manner, involving colonization and multiplication of bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of S. citri into Circulifer haematoceps cells. Methodology/Principal Findings In an attempt to identify the actin-interacting regions of PGK, several overlapping PGK truncations were generated. Binding assays, using the truncations as probes on insect protein blots, revealed that the actin-binding region of PGK was located on the truncated peptide designated PGK-FL5 containing amino acids 49–154. To investigate the role of PGK-FL5-actin interaction, competitive spiroplasma attachment and internalization assays, in which His6-tagged PGK-FL5 was added to Ciha-1 cells prior to infection with S. citri, were performed. No effect on the efficiency of attachment of S. citri to leafhopper cells was observed while internalization was drastically reduced. The in vivo effect of PGK-FL5 was confirmed by competitive experimental transmission assays as injection of PGK-FL5 into S. citri infected leafhoppers significantly affected spiroplasmal transmission. Conclusion These results suggest that S. citri transmission by its insect vector is correlated to PGK ability to bind actin.
Collapse
|
12
|
Carle P, Saillard C, Carrère N, Carrère S, Duret S, Eveillard S, Gaurivaud P, Gourgues G, Gouzy J, Salar P, Verdin E, Breton M, Blanchard A, Laigret F, Bové JM, Renaudin J, Foissac X. Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 2010; 76:3420-6. [PMID: 20363791 PMCID: PMC2876439 DOI: 10.1128/aem.02954-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/25/2010] [Indexed: 11/20/2022] Open
Abstract
The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.
Collapse
Affiliation(s)
- Patricia Carle
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Colette Saillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Nathalie Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sébastien Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sandrine Eveillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Patrice Gaurivaud
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Géraldine Gourgues
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Jérome Gouzy
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Pascal Salar
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Eric Verdin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Marc Breton
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Alain Blanchard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Frédéric Laigret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joseph-Marie Bové
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joel Renaudin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Xavier Foissac
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
13
|
Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 2010; 76:3198-205. [PMID: 20305023 DOI: 10.1128/aem.00181-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.
Collapse
|
14
|
Gasparich GE. Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals 2010; 38:193-203. [PMID: 20153217 DOI: 10.1016/j.biologicals.2009.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/12/2009] [Indexed: 02/01/2023] Open
Abstract
This review will focus on two distinct genera, Spiroplasma and 'Candidatus Phytoplasma,' within the class Mollicutes (which also includes the genus Mycoplasma, a concern for animal-based cell culture). As members of the Mollicutes, both are cell wall-less microbes which have a characteristic small size (1-2 microM in diameter) and small genome size (530 Kb-2220 Kb). These two genera contain microbes which have a dual host cycle in which they can replicate in their leafhopper or psyllid insect vectors as well as in the sieve tubes of their plant hosts. Major distinctions between the two genera are that most spiroplasmas are cultivable in nutrient rich media, possess a very characteristic helical morphology, and are motile, while the phytoplasmas remain recalcitrant to cultivation attempts to date and exhibit a pleiomorphic or filamentous shape. This review article will provide a historical over view of their discovery, a brief review of taxonomical characteristics, diversity, host interactions (with a focus on plant hosts), phylogeny, and current detection and elimination techniques.
Collapse
Affiliation(s)
- Gail E Gasparich
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA.
| |
Collapse
|
15
|
Entry of Spiroplasma citri into Circulifer haematoceps cells involves interaction between spiroplasma phosphoglycerate kinase and leafhopper actin. Appl Environ Microbiol 2010; 76:1879-86. [PMID: 20118377 DOI: 10.1128/aem.02384-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of the phytopathogenic mollicutes, spiroplasmas, and phytoplasmas by their insect vectors mainly depends on their ability to pass through gut cells, to multiply in various tissues, and to traverse the salivary gland cells. The passage of these different barriers suggests molecular interactions between the plant mollicute and the insect vector that regulate transmission. In the present study, we focused on the interaction between Spiroplasma citri and its leafhopper vector, Circulifer haematoceps. An in vitro protein overlay assay identified five significant binding activities between S. citri proteins and insect host proteins from salivary glands. One insect protein involved in one binding activity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as actin. Confocal microscopy observations of infected salivary glands revealed that spiroplasmas colocated with the host actin filaments. An S. citri actin-binding protein of 44 kDa was isolated by affinity chromatography and identified by LC-MS/MS as phosphoglycerate kinase (PGK). To investigate the role of the PGK-actin interaction, we performed competitive binding and internalization assays on leafhopper cultured cell lines (Ciha-1) in which His(6)-tagged PGK from S. citri or purified PGK from Saccharomyces cerevisiae was added prior to the addition of S. citri inoculum. The results suggested that exogenous PGK has no effect on spiroplasmal attachment to leafhopper cell surfaces but inhibits S. citri internalization, demonstrating that the process leading to internalization of S. citri in eukaryotic cells requires the presence of PGK. PGK, regardless of origin, reduced the entry of spiroplasmas into Ciha-1 cells in a dose-dependent manner.
Collapse
|
16
|
Duret S, Batailler B, Danet JL, Béven L, Renaudin J, Arricau-Bouvery N. Infection of the Circulifer haematoceps cell line Ciha-1 by Spiroplasma citri: the non-insect-transmissible strain 44 is impaired in invasion. MICROBIOLOGY-SGM 2009; 156:1097-1107. [PMID: 20019079 DOI: 10.1099/mic.0.035063-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful transmission of Spiroplasma citri by its leafhopper vector requires a specific interaction between the spiroplasma surface and the insect cells. With the aim of studying these interactions at the cellular and molecular levels, a cell line, named Ciha-1, was established using embryonic tissues from the eggs of the S. citri natural vector Circulifer haematoceps. This is the first report, to our knowledge, of a cell line for this leafhopper species and of its successful infection by the insect-transmissible strain S. citri GII3. Adherence of the spiroplasmas to the cultured Ciha-1 cells was studied by c.f.u. counts and by electron microscopy. Entry of the spiroplasmas into the insect cells was analysed quantitatively by gentamicin protection assays and qualitatively by double immunofluorescence microscopy. Spiroplasmas were detected within the cell cytoplasm as early as 1 h after inoculation and survived at least 2 days inside the cells. Comparing the insect-transmissible GII3 and non-insect-transmissible 44 strains revealed that adherence to and entry into Ciha-1 cells of S. citri 44 were significantly less efficient than those of S. citri GII3.
Collapse
Affiliation(s)
- Sybille Duret
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Brigitte Batailler
- Plateau Technique Imagerie/Cytologie, INRA, Centre de Bordeaux-Aquitaine, F-33883 Villenave d'Ornon, France.,Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Jean-Luc Danet
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Laure Béven
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Joël Renaudin
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Nathalie Arricau-Bouvery
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| |
Collapse
|
17
|
Bai X, Correa VR, Toruño TY, Ammar ED, Kamoun S, Hogenhout SA. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:18-30. [PMID: 19061399 DOI: 10.1094/mpmi-22-1-0018] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fully sequenced genome of aster yellows phytoplasma strain witches' broom (AY-WB; Candidatus Phytoplasma asteris) was mined for the presence of genes encoding secreted proteins based on the presence of N-terminal signal peptides (SP). We identified 56 secreted AY-WB proteins (SAP). These SAP are candidate effector proteins potentially involved in interaction with plant and insect cell components. One of these SAP, SAP11, contains an N-terminal SP sequence and a eukaryotic bipartite nuclear localization signal (NLS). Transcripts for SAP11 were detected in AY-WB-infected plants. Yellow fluorescence protein (YFP)-tagged SAP11 accumulated in Nicotiana benthamiana cell nuclei, whereas the nuclear targeting of YFP-tagged SAP11 mutants with disrupted NLS was inhibited. The nuclear transport of YFP-SAP11 was also inhibited in N. benthamiana plants in which the expression of importin alpha was knocked down using virus-induced gene silencing (VIGS). Furthermore, SAP11 was detected by immunocytology in nuclei of young sink tissues of China aster plants infected with AY-WB. In summary, this work shows that AY-WB phytoplasma produces a protein that targets the nuclei of plant host cells; this protein is a potential phytoplasma effector that may alter plant cell physiology.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, The Ohio State University-OARDC, Wooster 44691, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. MOLECULAR PLANT PATHOLOGY 2008; 9:403-23. [PMID: 18705857 PMCID: PMC6640453 DOI: 10.1111/j.1364-3703.2008.00472.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
TAXONOMY Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. HOST RANGE Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. DISEASE SYMPTOMS In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. DISEASE CONTROL The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Saillard C, Carle P, Duret-Nurbel S, Henri R, Killiny N, Carrère S, Gouzy J, Bové JM, Renaudin J, Foissac X. The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome. BMC Genomics 2008; 9:195. [PMID: 18442384 PMCID: PMC2386487 DOI: 10.1186/1471-2164-9-195] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/28/2008] [Indexed: 11/24/2022] Open
Abstract
Background Spiroplama citri, the causal agent of citrus stubborn disease, is a bacterium of the class Mollicutes and is transmitted by phloem-feeding leafhopper vectors. In order to characterize candidate genes potentially involved in spiroplasma transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered. Results Assembling 20,000 sequencing reads generated seven circular contigs, none of which fit the 1.8 Mb chromosome map or carried chromosomal markers. These contigs correspond to seven plasmids: pSci1 to pSci6, with sizes ranging from 12.9 to 35.3 kbp and pSciA of 7.8 kbp. Plasmids pSci were detected as multiple copies in strain GII3-3X. Plasmid copy numbers of pSci1-6, as deduced from sequencing coverage, were estimated at 10 to 14 copies per spiroplasma cell, representing 1.6 Mb of extrachromosomal DNA. Genes encoding proteins of the TrsE-TraE, Mob, TraD-TraG, and Soj-ParA protein families were predicted in most of the pSci sequences, in addition to members of 14 protein families of unknown function. Plasmid pSci6 encodes protein P32, a marker of insect transmissibility. Plasmids pSci1-5 code for eight different S. citri adhesion-related proteins (ScARPs) that are homologous to the previously described protein P89 and the S. kunkelii SkARP1. Conserved signal peptides and C-terminal transmembrane alpha helices were predicted in all ScARPs. The predicted surface-exposed N-terminal region possesses the following elements: (i) 6 to 8 repeats of 39 to 42 amino acids each (sarpin repeats), (ii) a central conserved region of 330 amino acids followed by (iii) a more variable domain of about 110 amino acids. The C-terminus, predicted to be cytoplasmic, consists of a 27 amino acid stretch enriched in arginine and lysine (KR) and an optional 23 amino acid stretch enriched in lysine, aspartate and glutamate (KDE). Plasmids pSci mainly present a linear increase of cumulative GC skew except in regions presenting conserved hairpin structures. Conclusion The genome of S. citri GII3-3X is characterized by abundant extrachromosomal elements. The pSci plasmids could not only be vertically inherited but also horizontally transmitted, as they encode proteins usually involved in DNA element partitioning and cell to cell DNA transfer. Because plasmids pSci1-5 encode surface proteins of the ScARP family and pSci6 was recently shown to confer insect transmissibility, diversity and abundance of S. citri plasmids may essentially aid the rapid adaptation of S. citri to more efficient transmission by different insect vectors and to various plant hosts.
Collapse
Affiliation(s)
- Colette Saillard
- Université Victor Ségalen Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, BP 81, F-33883 Villenave d'Ornon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Berho N, Duret S, Danet JL, Renaudin J. Plasmid pSci6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri 44. Microbiology (Reading) 2006; 152:2703-2716. [PMID: 16946265 DOI: 10.1099/mic.0.29085-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The insect-transmissible strain GII-3 of Spiroplasma citri contains plasmids pSci1–6, five of which (pSci1–5) encode adhesin-like proteins and one (pSci6) encodes protein P32, which has been associated with insect transmissibility. In contrast, S. citri strains ASP-1 and 44, which cannot be transmitted via injection into the leafhopper vector Circulifer haematoceps, lack these proteins and also do not carry plasmids pSci1–6. To further study the apparent relationship between the presence of plasmids and insect transmissibility, plasmids from S. citri GII-3 were introduced into the insect-non-transmissible S. citri strain 44 by electrotransformation using the tetM gene as the selection marker. Tetracycline-resistant transformants were shown to carry one, two or three distinct plasmids. Plasmids pSci1–6 were all detected in the transformants, pSci1 being the most frequently found, alone or together with other plasmids. Selected S. citri 44 transformants having distinct plasmid contents were submitted, separately or in combination, to experimental transmission to periwinkle (Catharanthus roseus) plants via injection into the leafhopper vector. The occurrence of symptomatic plants indicated that, in contrast to S. citri 44, spiroplasmal transformants were transmitted to the host plant, in which they multiplied. Spiroplasma cultures isolated from these infected plants all contained pSci6, leading to the conclusion that, under the experimental conditions used, transformation by pSci6 conferred insect transmissibility to S. citri strain 44. This is believed to be the first report of a phenotypic change associated with transformation of S. citri by natural plasmids.
Collapse
Affiliation(s)
- Nathalie Berho
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Jean-Luc Danet
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Joël Renaudin
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
21
|
Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 2006; 188:3682-96. [PMID: 16672622 PMCID: PMC1482866 DOI: 10.1128/jb.188.10.3682-3696.2006] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplasmas ("Candidatus Phytoplasma," class Mollicutes) cause disease in hundreds of economically important plants and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches' broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. This comparative analysis revealed that the repeated DNAs are organized into large clusters of potential mobile units (PMUs), which contain tra5 insertion sequences (ISs) and genes for specialized sigma factors and membrane proteins. So far, these PMUs appear to be unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore, phytoplasmas may use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and the presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of approximately 250 kb located between the lplA and glnQ genes are syntenic between the two phytoplasmas and contain the majority of the metabolic genes and no ISs. AY-WB appears to be further along in the reductive evolution process than OY-M. The AY-WB genome is approximately 154 kb smaller than the OY-M genome, primarily as a result of fewer multicopy sequences, including PMUs. Furthermore, AY-WB lacks genes that are truncated and are part of incomplete pathways in OY-M.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, 44691, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Killiny N, Batailler B, Foissac X, Saillard C. Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology (Reading) 2006; 152:1221-1230. [PMID: 16549684 DOI: 10.1099/mic.0.28602-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the aim of identifyingSpiroplasma citriproteins involved in transmission by the leafhopperCirculifer haematoceps, protein maps of four transmissible and four non-transmissible strains were compared. Total cell lysates of strains were analysed by two-dimensional gel electrophoresis using commercially available immobilized pH gradients (IPGs) covering a pH range of 4–7. Approximately 530 protein spots were visualized by silver staining and the resulting protein spot patterns for the eight strains were found to be highly similar. However, comparison using PDQuest 2-D analysis software revealed two trains of protein spots that were present only in the four transmissible strains. Using MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry and a nearly completeS. citriprotein database, established during the still-ongoingS. citriGII-3-3X genome project, the sequences of both proteins were deduced. One of these proteins was identified in the general databases as adhesion-related protein (P89) involved in the attachment ofS. citrito gut cells of the insect vector. The second protein, with an apparent molecular mass of 32 kDa deduced from the electrophoretic mobility, could not be assigned to a known protein and was named P32. The P32-encoding gene (714 bp) was carried by a large plasmid of 35·3 kbp present in transmissible strains and missing in non-transmissible strains. PCR products with primers designed from thep32gene were obtained only with genomic DNA isolated from transmissible strains. Therefore, P32 has a putative role in the transmission process and it could be considered as a marker forS. citrileafhopper transmissibility. Functional complementation of a non-transmissible strain with thep32gene did not restore the transmissible phenotype, despite the expression of P32 in the complemented strain. Electron microscopic observations of salivary glands of leafhoppers infected with the complemented strain revealed a close contact between spiroplasmas and the plasmalemma of the insect cells. This further suggests that P32 protein contributes to the association ofS. citriwith host membranes.
Collapse
MESH Headings
- Adhesins, Bacterial/analysis
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/physiology
- Animals
- Bacterial Proteins/analysis
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- DNA, Bacterial/analysis
- Electrophoresis, Gel, Two-Dimensional
- Genes, Bacterial
- Genetic Complementation Test
- Genome, Bacterial
- Hemiptera/microbiology
- Microscopy, Electron, Transmission
- Molecular Weight
- Plant Diseases/microbiology
- Plasmids/genetics
- Polymerase Chain Reaction
- Proteome/analysis
- Salivary Glands/microbiology
- Salivary Glands/ultrastructure
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spiroplasma citri/chemistry
- Spiroplasma citri/genetics
- Spiroplasma citri/physiology
Collapse
Affiliation(s)
- Nabil Killiny
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Brigitte Batailler
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Xavier Foissac
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Colette Saillard
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université Victor Segalen Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon cedex, France
| |
Collapse
|
23
|
Berho N, Duret S, Renaudin J. Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri. Microbiology (Reading) 2006; 152:873-886. [PMID: 16514166 DOI: 10.1099/mic.0.28541-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the plant-pathogenic mollicuteSpiroplasma citri, spiralin is the major lipoprotein at the cell surface and is thought to be one of the components involved in the interactions of the spiroplasma with its insect vector. With the aim of identifying surface proteins other than spiralin, monoclonal antibodies (mAbs) were produced by immunization of mice with the spiralin-defectiveS. citrimutant GII3-9a2. mAb 10G3 was found to react with several polypeptides of 43–47 and 80–95 kDa, all of which were detected in the detergent phase after Triton X-114 partitioning of proteins. Mass spectrometry (MALDI-TOF) analyses of the two major polypeptides P47 and P80 of GII3-9a2, reacting with mAb 10G3, revealed that P47 was a processed product and represented the C-terminal moiety of P80. Search for sequence homologies revealed that P80 shared strong similarities with theS. citriadhesion-related protein P89 (Sarp1) ofS. citriBR3, and is one (named Scarp4a) of the eight Scarps encoded by theS. citriGII-3 genome. The eightscarpgenes are carried by plasmids pSci1–5. Western immunoblotting of proteins with mAb 10G3 revealed that, in contrast to the insect-transmissibleS. citristrain GII-3, the non-insect-transmissible strains ASP-1, R8A2 and 44 did not express Scarps. Southern blot hybridization experiments indicated that these strains possessed noscarpgenes, and did not carry plasmids pSci1–5. However,S. citristrain GII3-5, lacking pSci5, was still efficiently transmitted, showing that, in the genetic background ofS. citriGII-3, the pSci5-encoded genes, and in particularscarp2b,3band5a, are not essential for insect transmission. Whether plasmid-encoded genes are involved in transmission ofS. citriby its leafhopper vector remains to be determined.
Collapse
Affiliation(s)
- Nathalie Berho
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université de Bordeaux 2, IBVM, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université de Bordeaux 2, IBVM, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Joël Renaudin
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA et Université de Bordeaux 2, IBVM, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
24
|
Duret S, André A, Renaudin J. Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination. MICROBIOLOGY-SGM 2005; 151:2793-2803. [PMID: 16079355 DOI: 10.1099/mic.0.28123-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Spiroplasma citri, where homologous recombination is inefficient, specific gene targeting could only be achieved by using replicative, oriC plasmids. To improve the probability of selecting rare recombination events without fastidious, extensive passaging of the transformants, a new targeting vector was constructed, which was used to inactivate the crr gene encoding the IIA component of the glucose phosphotransferase system (PTS) permease. Selection of recombinants was based on a two-step strategy using two distinct selection markers, one of which could only be expressed once recombination had occurred through one single crossover at the target gene. According to this strategy, spiroplasmal transformants were screened and multiplied in the presence of gentamicin before the crr recombinants were selected for their resistance to tetracycline. In contrast to the wild-type strain GII-3, the crr-disrupted mutant GII3-gt1 used neither glucose nor trehalose, indicating that in S. citri the glucose and trehalose PTS permeases function with a single IIA component. In addition, the feasibility of using the transposon gammadelta TnpR/res recombination system to produce unmarked mutations in S. citri was demonstrated. In an arginine deiminase (arcA-disrupted) mutant, the tetM gene flanked by the res sequences was efficiently excised from the chromosome through expression of the TnpR resolvase from a replicative oriC plasmid. Due to oriC incompatibility, plasmid loss occurred spontaneously when selection pressure was removed. This approach will be helpful for constructing unmarked mutations and generating multiple mutants with the same selection marker in S. citri. It should also be relevant to other species of mollicutes.
Collapse
Affiliation(s)
- Sybille Duret
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Aurélie André
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| | - Joël Renaudin
- UMR 1090 Génomique Développement et Pouvoir Pathogène, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, BP 81, 33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
25
|
André A, Maucourt M, Moing A, Rolin D, Renaudin J. Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:33-42. [PMID: 15672816 DOI: 10.1094/mpmi-18-0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have shown previously that the glucose PTS (phosphotransferase system) permease enzyme II of Spiroplasma citri is split into two distinct polypeptides, which are encoded by two separate genes, crr and ptsG. A S. citri mutant was obtained by disruption of ptsG through homologous recombination and was proved unable to import glucose. The ptsG mutant (GII3-glc1) was transmitted to periwinkle (Catharanthus roseus) plants through injection to the leaf-hopper vector. In contrast to the previously characterized fructose operon mutant GMT 553, which was found virtually nonpathogenic, the ptsG mutant GII3-glc1 induced severe symptoms similar to those induced by the wild-type strain GII-3. These results, indicating that fructose and glucose utilization were not equally involved in pathogenicity, were consistent with biochemical data showing that, in the presence of both sugars, S. citri used fructose preferentially. Proton nuclear magnetic resonance analyses of carbohydrates in plant extracts revealed the accumulation of soluble sugars, particularly glucose, in plants infected by S. citri GII-3 or GII3-glc1 but not in those infected by GMT 553. From these data, a hypothetical model was proposed to establish the relationship between fructose utilization by the spiroplasmas present in the phloem sieve tubes and glucose accumulation in the leaves of S. citri infected plants.
Collapse
Affiliation(s)
- Aurélie André
- UMR 1090 Génomique Développement et Pouvoir Pathogene, INRA, Université de Bordeaux 2, Centre INRA de Bordeaux, B.P. 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | | | |
Collapse
|