1
|
Li Y, Yu X, Li P, Li X, Wang L. Characterization of the ferric uptake regulator VaFur regulon and its role in Vibrio anguillarum pathogenesis. Appl Environ Microbiol 2024:e0150824. [PMID: 39382293 DOI: 10.1128/aem.01508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Xin Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Li Z, Sun Y, Tan R, Gao Y. Identification, characterization and complete genome analysis of a Vibrio anguillarum isolated from Sebastes schlegelii. Microb Pathog 2024; 190:106611. [PMID: 38467165 DOI: 10.1016/j.micpath.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.
Collapse
Affiliation(s)
- Zeyu Li
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yungui Sun
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ruiming Tan
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yingli Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
3
|
Skåne A, Loose JSM, Vaaje-Kolstad G, Askarian F. Comparative proteomic profiling reveals specific adaption of Vibrio anguillarum to oxidative stress, iron deprivation and humoral components of innate immunity. J Proteomics 2022; 251:104412. [PMID: 34737109 DOI: 10.1016/j.jprot.2021.104412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SIGNIFICANCE: Vibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.
Collapse
Affiliation(s)
- Anna Skåne
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jennifer S M Loose
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Faleye OS, Sathiyamoorthi E, Lee JH, Lee J. Inhibitory Effects of Cinnamaldehyde Derivatives on Biofilm Formation and Virulence Factors in Vibrio Species. Pharmaceutics 2021; 13:pharmaceutics13122176. [PMID: 34959457 PMCID: PMC8708114 DOI: 10.3390/pharmaceutics13122176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Vibrio parahaemolyticus is considered one of the most relevant pathogenic marine bacteria with a range of virulence factors to establish food-related gastrointestinal infections in humans. Cinnamaldehyde (CNMA) and some of its derivatives have antimicrobial and antivirulence activities against several bacterial pathogens. This study examined the inhibitory effects of CNMA and its derivatives on biofilm formation and the virulence factors in Vibrio species, particularly V. parahaemolyticus. CNMA and ten of its derivatives were initially screened against V. parahaemolyticus biofilm formation, and their effects on the production of virulence factors and gene expression were studied. Among the CNMA derivatives tested, 4-nitrocinnamaldehyde, 4-chlorocinnamaldehyde, and 4-bromocinnamaldehyde displayed antibacterial and antivirulence activities, while the backbone CNMA had weak effects. The derivatives could prevent the adhesion of V. parahaemolyticus to surfaces by the dose-dependent inhibition of cell surface hydrophobicity, fimbriae production, and flagella-mediated swimming and swarming phenotypes. They also decreased the protease secretion required for virulence and indole production, which could act as an important signal molecule. The expression of QS and biofilm-related genes (aphA, cpsA, luxS, and opaR), virulence genes (fliA, tdh, and vopS), and membrane integrity genes (fadL, and nusA) were downregulated in V. parahaemolyticus by these three CNMA analogs. Interestingly, they eliminated V. parahaemolyticus and reduced the background flora from the squid surface. In addition, they exhibited similar antimicrobial and antibiofilm activities against Vibrio harveyi. This study identified CNMA derivatives as potential broad-spectrum antimicrobial agents to treat biofilm-mediated Vibrio infections and for surface disinfection in food processing facilities.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Lee
- Correspondence: (J.-H.L.); (J.L.); Tel.: +82-53-810-3812 (J.-H.L.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.-H.L. & J.L.)
| | - Jintae Lee
- Correspondence: (J.-H.L.); (J.L.); Tel.: +82-53-810-3812 (J.-H.L.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.-H.L. & J.L.)
| |
Collapse
|
6
|
Can only one physiological trait determinate the adverse effect of green fluorescent protein (GFP) incorporation on Vibrio virulence? Appl Microbiol Biotechnol 2021; 105:7899-7912. [PMID: 34559285 DOI: 10.1007/s00253-021-11556-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Green fluorescent protein (GFP) has been used extensively for in situ animal studies that follow up bacterial infection under epifluorescence microscopy. It is assumed that GFP is acting as a "neutral" protein with no influence on the bacterial physiology. To verify this hypothesis, the virulence of Vibrio splendidus ME9, Vibrio anguillarum NB10, and their respective GFP-tagged strains ME9-GFP and NB10-GFP (transconjugants) was compared in vitro and tested in vivo towards blue mussel (Mytilus edulis) larvae. Results showed that the incorporation of GFP negatively impacted the growth and swimming motility of NB10 in vitro. Correspondingly, the mRNA levels of genes involved in bacterial swimming motility (flaA, flaE, and cheR) were significantly down-regulated in NB10-GFP. As for the strain ME9 on the other hand, GFP incorporation only had a negative effect on swimming motility. However, both the strains NB10-GFP and ME9-GFP showed almost the same virulence as their respective parental strain towards mussel larvae in vivo. Overall, the data presented here demonstrated that incorporation of GFP may cause modifications in cell physiology and highlight the importance of preliminary physiological tests to minimize the negative influence of GFP tagging when it is used to monitor the target localization. The study also supports the idea that the virulence of Vibrio species is determined by complex regulatory networks. Notwithstanding the change of a single physiological trait, especially growth or swimming motility, the GFP-tagged Vibrio strain can thus still be considered usable in studies mainly focusing on the virulence of the strain. KEY POINTS: • The effect of GFP incorporation on physiological trait of Vibrio strains. • The virulence in vibrios could be multifactorial. • The stable virulence of Vibrio strains after GFP incorporation.
Collapse
|
7
|
Kumar S, Kumar CB, Rajendran V, Abishaw N, Anand PSS, Kannapan S, Nagaleekar VK, Vijayan KK, Alavandi SV. Delineating virulence of Vibrio campbellii: a predominant luminescent bacterial pathogen in Indian shrimp hatcheries. Sci Rep 2021; 11:15831. [PMID: 34349168 PMCID: PMC8339124 DOI: 10.1038/s41598-021-94961-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Luminescent vibriosis is a major bacterial disease in shrimp hatcheries and causes up to 100% mortality in larval stages of penaeid shrimps. We investigated the virulence factors and genetic identity of 29 luminescent Vibrio isolates from Indian shrimp hatcheries and farms, which were earlier presumed as Vibrio harveyi. Haemolysin gene-based species-specific multiplex PCR and phylogenetic analysis of rpoD and toxR identified all the isolates as V. campbellii. The gene-specific PCR revealed the presence of virulence markers involved in quorum sensing (luxM, luxS, cqsA), motility (flaA, lafA), toxin (hly, chiA, serine protease, metalloprotease), and virulence regulators (toxR, luxR) in all the isolates. The deduced amino acid sequence analysis of virulence regulator ToxR suggested four variants, namely A123Q150 (AQ; 18.9%), P123Q150 (PQ; 54.1%), A123P150 (AP; 21.6%), and P123P150 (PP; 5.4% isolates) based on amino acid at 123rd (proline or alanine) and 150th (glutamine or proline) positions. A significantly higher level of the quorum-sensing signal, autoinducer-2 (AI-2, p = 2.2e-12), and significantly reduced protease activity (p = 1.6e-07) were recorded in AP variant, whereas an inverse trend was noticed in the Q150 variants AQ and PQ. The pathogenicity study in Penaeus (Litopenaeus) vannamei juveniles revealed that all the isolates of AQ were highly pathogenic with Cox proportional hazard ratio 15.1 to 32.4 compared to P150 variants; PP (5.4 to 6.3) or AP (7.3 to 14). The correlation matrix suggested that protease, a metalloprotease, was positively correlated with pathogenicity (p > 0.05) and negatively correlated (p < 0.05) with AI-2 and AI-1. The syntenic organization of toxS-toxR-htpG operon in V. campbellii was found to be similar to pathogenic V. cholerae suggesting a similar regulatory role. The present study emphasizes that V. campbellii is a predominant pathogen in Indian shrimp hatcheries, and ToxR plays a significant role as a virulence regulator in the quorum sensing-protease pathway. Further, the study suggests that the presence of glutamine at 150th position (Q150) in ToxR is crucial for the pathogenicity of V. campbellii.
Collapse
Affiliation(s)
- Sujeet Kumar
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Chandra Bhushan Kumar
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India ,grid.473401.50000 0001 2301 4227ICAR - National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha Marg, Lucknow, 226002 India
| | - Vidya Rajendran
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Nishawlini Abishaw
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - P. S. Shyne Anand
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - S. Kannapan
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Viswas K. Nagaleekar
- grid.417990.20000 0000 9070 5290ICAR -Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 India
| | - K. K. Vijayan
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - S. V. Alavandi
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| |
Collapse
|
8
|
Wang D, Loor A, Bels LD, Stappen GV, den Broeck WV, Nevejan N. Dynamic Immune Response to Vibriosis in Pacific Oyster Crassostrea gigas Larvae during the Infection Process as Supported by Accurate Positioning of GFP-Tagged Vibrio Strains. Microorganisms 2021; 9:microorganisms9071523. [PMID: 34361958 PMCID: PMC8303456 DOI: 10.3390/microorganisms9071523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
As the immune system is not fully developed during the larval stage, hatchery culture of bivalve larvae is characterized by frequent mass mortality caused by bacterial pathogens, especially Vibrio spp. However, the knowledge is limited to the pathogenesis of vibriosis in oyster larvae, while the immune response to pathogenic microorganisms in this early life stage is still far from being fully elucidated. In this study, we combined green fluorescent protein (GFP)-tagging, histological and transcriptomic analyses to clarify the pathogenesis of experimental vibriosis and the mechanisms used by the host Pacific oyster Crassostrea gigas larvae to resist infection. The Vibrio strains first colonized the digestive system and rapidly proliferated, while only the transcription level of IκB kinase (IKK) and nuclear factor κB (NF-κB) associated with signaling transduction were up-regulated in oyster at 18 h post challenge (hpc). The mRNA levels for integrin β-1, peroxinectin, and heat shock protein 70 (HSP70), which are associated with phagocytosis, cell adhesion, and cytoprotection, were not upregulated until 30 hpc when the necrosis already happened in the larval digestive system. This suggested that the immunity in the early stages of C. gigas is not strong enough to prevent vibriosis and future research may focus on the strengthening of the gastrointestinal immune ability to defend vibriosis in bivalve larvae.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
- Correspondence: or
| | - Alfredo Loor
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| | - Lobke De Bels
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.D.B.); (W.V.d.B.)
| | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (L.D.B.); (W.V.d.B.)
| | - Nancy Nevejan
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (A.L.); (G.V.S.); (N.N.)
| |
Collapse
|
9
|
León M, Kokkari C, García K, Castillo D, Katharios P, Bastías R. Diversification of Vibrio anguillarum Driven by the Bacteriophage CHOED. Front Microbiol 2019; 10:1396. [PMID: 31281297 PMCID: PMC6596326 DOI: 10.3389/fmicb.2019.01396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023] Open
Abstract
Bacteriophages are an important factor in bacterial evolution. Some reports suggest that lytic bacteriophages can select for resistant mutant strains with reduced virulence. The present study explores the role of the CHOED bacteriophage in the diversification and virulence of its host Vibrio anguillarum. Nine phage-resistant strains were analyzed for their phenotype and different virulence factors, showing alterations in their fitness, motility, biofilm formation, lipopolysaccharide profiles and/or protease activity. Seven of the nine phage-resistant strains showed virulence reduction in a Sparus aurata larvae model. However, this is not generalized since two of the resistant strains show equal virulence compared with the parental strain. The genomic analysis of representative resistant strains displayed that the majority of the mutations are specific for each isolate, affecting genes related to lipopolysaccharide biosynthesis, quorum sensing, motility, toxin and membrane transport. The observed mutations were coherent with the phenotypic and virulence differences observed. These results suggest that the CHOED phage acts as a selective pressure on V. anguillarum, allowing proliferation of resistant strains with different genotypes, phenotypes and degrees of virulence, contributing to bacterial diversification.
Collapse
Affiliation(s)
- Marcela León
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Chile
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
The Probiotic Bacterium Phaeobacter inhibens Downregulates Virulence Factor Transcription in the Shellfish Pathogen Vibrio coralliilyticus by N-Acyl Homoserine Lactone Production. Appl Environ Microbiol 2019; 85:AEM.01545-18. [PMID: 30389771 DOI: 10.1128/aem.01545-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
Phaeobacter inhibens S4Sm acts as a probiotic bacterium against the oyster pathogen Vibrio coralliilyticus Here, we report that P. inhibens S4Sm secretes three molecules that downregulate the transcription of major virulence factors, metalloprotease genes, in V. coralliilyticus cultures. The effects of the S4Sm culture supernatant on the transcription of three genes involved in protease activity, namely, vcpA, vcpB, and vcpR (encoding metalloproteases A and B and their transcriptional regulator, respectively), were examined by reverse transcriptase quantitative PCR (qRT-PCR). The expression of vcpB and vcpR were reduced to 36% and 6.6%, respectively, compared to that in an untreated control. We constructed a V. coralliilyticus green fluorescent protein (GFP) reporter strain to detect the activity of inhibitory compounds. Using a bioassay-guided approach, the molecules responsible for V. coralliilyticus protease inhibition activity were isolated from S4Sm supernatant and identified as three N-acyl homoserine lactones (AHLs). The three AHLs are N-(3-hydroxydecanoyl)-l-homoserine lactone, N-(dodecanoyl-2,5-diene)-l-homoserine lactone, and N-(3-hydroxytetradecanoyl-7-ene)-l-homoserine lactone, and their half maximal inhibitory concentrations (IC50s) against V. coralliilyticus protease activity were 0.26 μM, 3.7 μM, and 2.9 μM, respectively. Our qRT-PCR data demonstrated that exposures to the individual AHLs reduced the transcription of vcpR and vcpB Combinations of the three AHLs (any two or all three AHLs) on V. coralliilyticus produced additive effects on protease inhibition activity. These AHL compounds may contribute to the host protective effects of S4Sm by disrupting the quorum sensing pathway that activates protease transcription of V. coralliilyticus IMPORTANCE Probiotics represent a promising alternative strategy to control infection and disease caused by marine pathogens of aquaculturally important species. Generally, the beneficial effects of probiotics include improved water quality, control of pathogenic bacteria and their virulence, stimulation of the immune system, and improved animal growth. Previously, we isolated a probiotic bacterium, Phaeobacter inhibens S4Sm, which protects oyster larvae from Vibrio coralliilyticus RE22Sm infection. We also demonstrated that both antibiotic secretion and biofilm formation play important roles in S4Sm probiotic activity. Here, we report that P. inhibens S4Sm, an alphaproteobacterium and member of the Roseobacter clade, also secretes secondary metabolites that hijack the quorum sensing ability of V. coralliilyticus RE22Sm, suppressing virulence gene expression. This finding demonstrates that probiotic bacteria can exert their host protection by using a multipronged array of behaviors that limit the ability of pathogens to become established and cause infection.
Collapse
|
11
|
Balado M, Lages MA, Fuentes-Monteverde JC, Martínez-Matamoros D, Rodríguez J, Jiménez C, Lemos ML. The Siderophore Piscibactin Is a Relevant Virulence Factor for Vibrio anguillarum Favored at Low Temperatures. Front Microbiol 2018; 9:1766. [PMID: 30116232 PMCID: PMC6083037 DOI: 10.3389/fmicb.2018.01766] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes vibriosis, a hemorrhagic septicaemia that affects many cultured marine fish species worldwide. Two catechol siderophores, vanchrobactin and anguibactin, were previously identified in this bacterium. While vanchrobactin is a chromosomally encoded system widespread in all pathogenic and environmental strains, anguibactin is a plasmid-encoded system restricted to serotype O1 strains. In this work, we have characterized, from a serotype O2 strain producing vanchrobactin, a novel genomic island containing a cluster of genes that would encode the synthesis of piscibactin, a siderophore firstly described in the fish pathogen Photobacterium damselae subsp. piscicida. The chemical characterization of this siderophore confirmed that some strains of V. anguillarum produce piscibactin. An in silico analysis of the available genomes showed that this genomic island is present in many of the highly pathogenic V. anguillarum strains lacking the anguibactin system. The construction of single and double biosynthetic mutants for vanchrobactin and piscibactin allowed us to study the contribution of each siderophore to iron uptake, cell fitness, and virulence. Although both siderophores are simultaneously produced, piscibactin constitute a key virulence factor to infect fish, while vanchrobactin seems to have a secondary role in virulence. In addition, a transcriptional analysis of the gene cluster encoding piscibactin in V. anguillarum showed that synthesis of this siderophore is favored at low temperatures, being the transcriptional activity of the biosynthetic genes three-times higher at 18°C than at 25°C. We also show that iron levels and temperature contribute to balance the synthesis of both siderophores.
Collapse
Affiliation(s)
- Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan C Fuentes-Monteverde
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Diana Martínez-Matamoros
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jaime Rodríguez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Carlos Jiménez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
13
|
Abstract
Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify QStatin, a potent and selective inhibitor of V. harveyi LuxR homologues, which are well-conserved master QS regulators in Vibrio species. Structural and biochemical analyses revealed that QStatin binds tightly to a putative ligand-binding pocket on SmcR, the LuxR homologue in V. vulnificus, and affects expression of QS-regulated genes. Remarkably, QStatin attenuated diverse QS-regulated phenotypes in various Vibrio species, including pathogenesis against brine shrimp, with no impact on bacterial viability. Taken together, the results suggest that QStatin may be a sustainable antivibriosis agent useful in aquacultures.
Collapse
|
14
|
Mou X, Spinard EJ, Hillman SL, Nelson DR. Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss). BMC Microbiol 2017; 17:217. [PMID: 29137620 PMCID: PMC5686843 DOI: 10.1186/s12866-017-1124-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022] Open
Abstract
Background Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as V. anguillarum. Results Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (Oncorhynchus mykiss). Only the isocitrate dehydrogenase (icd) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the icd mutant was shown to be immunoprotective against wild type V. anguillarum infection. There was no significant decrease in the expression of the three hemolysin genes detected by qRT-PCR. Additionally, only the icd mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type icd gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout. Conclusions The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth. Additionally, a live vaccine strain could be created from an icd deletion strain. Electronic supplementary material The online version of this article (10.1186/s12866-017-1124-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangyu Mou
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA.,Present Address: Division of Infectious Diseases, Massachusetts General Hospital, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Edward J Spinard
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Hillman
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - David R Nelson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
15
|
Jaishankar J, Srivastava P. Molecular Basis of Stationary Phase Survival and Applications. Front Microbiol 2017; 8:2000. [PMID: 29085349 PMCID: PMC5650638 DOI: 10.3389/fmicb.2017.02000] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/28/2017] [Indexed: 12/04/2022] Open
Abstract
Stationary phase is the stage when growth ceases but cells remain metabolically active. Several physical and molecular changes take place during this stage that makes them interesting to explore. The characteristic proteins synthesized in the stationary phase are indispensable as they confer viability to the bacteria. Detailed knowledge of these proteins and the genes synthesizing them is required to understand the survival in such nutrient deprived conditions. The promoters, which drive the expression of these genes, are called stationary phase promoters. These promoters exhibit increased activity in the stationary phase and less or no activity in the exponential phase. The vectors constructed based on these promoters are ideal for large-scale protein production due to the absence of any external inducers. A number of recombinant protein production systems have been developed using these promoters. This review describes the stationary phase survival of bacteria, the promoters involved, their importance, regulation, and applications.
Collapse
Affiliation(s)
- Jananee Jaishankar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
16
|
Cárdenas A, Neave MJ, Haroon MF, Pogoreutz C, Rädecker N, Wild C, Gärdes A, Voolstra CR. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME JOURNAL 2017; 12:59-76. [PMID: 28895945 PMCID: PMC5739002 DOI: 10.1038/ismej.2017.142] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.
Collapse
Affiliation(s)
- Anny Cárdenas
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany.,Max Plank Institute for Marine Microbiology, Bremen, Germany.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthew J Neave
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohamed Fauzi Haroon
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Claudia Pogoreutz
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Christian Wild
- Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Astrid Gärdes
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Chromosome-Encoded Hemolysin, Phospholipase, and Collagenase in Plasmidless Isolates of Photobacterium damselae subsp. damselae Contribute to Virulence for Fish. Appl Environ Microbiol 2017; 83:AEM.00401-17. [PMID: 28341681 DOI: 10.1128/aem.00401-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/18/2017] [Indexed: 11/20/2022] Open
Abstract
Photobacterium damselae subsp. damselae is a pathogen of marine animals, including fish of importance in aquaculture. The virulence plasmid pPHDD1, characteristic of highly hemolytic isolates, encodes the hemolysins damselysin (Dly) and phobalysin (PhlyP). Strains lacking pPHDD1 constitute the vast majority of the isolates from fish outbreaks, but genetic studies to identify virulence factors in plasmidless strains are scarce. Here, we show that the chromosome I-encoded hemolysin PhlyC plays roles in virulence and cell toxicity in pPHDD1-negative isolates of this pathogen. By combining the analyses of whole genomes and of gene deletion mutants, we identified two hitherto uncharacterized chromosomal loci encoding a phospholipase (PlpV) and a collagenase (ColP). PlpV was ubiquitous in the subspecies and exerted hemolytic activity against fish erythrocytes, which was enhanced in the presence of lecithin. ColP was restricted to a fraction of the isolates and was responsible for the collagen-degrading activity in this subspecies. Consistent with the presence of signal peptides in PlpV and ColP sequences, mutants for the type II secretion system (T2SS) genes epsL and pilD exhibited impairments in phospholipase and collagenase activities. Sea bass virulence experiments and cell culture assays demonstrated major contributions of PhlyC and PlpV to virulence and toxicity.IMPORTANCE This study constitutes genetic and genomic analyses of plasmidless strains of an emerging pathogen in marine aquaculture, Photobacterium damselae subsp. damselae To date, studies on the genetic basis of virulence were restricted to the pPHDD1 plasmid-encoded toxins Dly and PhlyP. However, the vast majority of the recent isolates of this pathogen from fish farm outbreaks lack this plasmid. Here we demonstrate that the plasmidless strains produce two hitherto uncharacterized ubiquitous toxins encoded in chromosome I, namely, the hemolysin PhlyC and the phospholipase PlpV. We report the main roles of these two toxins in fish virulence and in cell toxicity. Our results constitute the basis for a better understanding of the virulence of a widespread marine pathogen.
Collapse
|
18
|
Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits. mSystems 2017; 2:mSystems00001-17. [PMID: 28293680 PMCID: PMC5347184 DOI: 10.1128/msystems.00001-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023] Open
Abstract
Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights into the evolution of V. anguillarum and can also be important for survey and diagnostic purposes. Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood. Here, we analyzed whole-genome sequences of a collection of V. anguillarum strains and compared them to virulence of the strains as determined in larval challenge assays. Previously identified virulence factors were globally distributed among the strains, with some genetic diversity. However, the pan-genome revealed that six out of nine high-virulence strains possessed a unique accessory genome that was attributed to pathogenic genomic islands, prophage-like elements, virulence factors, and a new set of gene clusters involved in biosynthesis, modification, and transport of polysaccharides. In contrast, V. anguillarum strains that were medium to nonvirulent had a high degree of genomic homogeneity. Finally, we found that a phylogeny based on the core genomes clustered the strains with moderate to no virulence, while six out of nine high-virulence strains represented phylogenetically separate clusters. Hence, we suggest a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. IMPORTANCE Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights into the evolution of V. anguillarum and can also be important for survey and diagnostic purposes.
Collapse
|
19
|
Zhao W, Dao C, Karim M, Gomez-Chiarri M, Rowley D, Nelson DR. Contributions of tropodithietic acid and biofilm formation to the probiotic activity of Phaeobacter inhibens. BMC Microbiol 2016; 16:1. [PMID: 26728027 PMCID: PMC4700733 DOI: 10.1186/s12866-015-0617-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm. Results Mutations in clpX (ATP-dependent ATPase) and exoP (an exopolysaccharide biosynthesis gene) were created by insertional mutagenesis using homologous recombination. Mutation of clpX resulted in the loss of TDA production, no decline in biofilm formation, and loss of the ability to inhibit the growth of Vibrio tubiashii and Vibrio anguillarum in co-colonization experiments. Mutation of exoP resulted in a ~60 % decline in biofilm formation, no decline in TDA production, and delayed inhibitory activity towards Vibrio pathogens in co-colonization experiments. Both clpX and exoP mutants exhibited reduced ability to protect oyster larvae from death when challenged by Vibrio tubiashii. Complementation of the clpX and exoP mutations restored the wild type phenotype. We also found that pre-colonization of surfaces by S4Sm was critical for this bacterium to inhibit pathogen colonization and growth. Conclusions Our observations demonstrate that probiotic activity by P. inhibens S4Sm involves contributions from both biofilm formation and the production of the antibiotic TDA. Further, probiotic activity also requires colonization of surfaces by S4Sm prior to the introduction of the pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0617-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd., Kingston, RI, 02881, USA. .,Present Address: Department of Microbiology and Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Christine Dao
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA. .,Present Address: Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Darmouth, MA 02747, USA.
| | - Murni Karim
- Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, 02881, USA. .,Present Address: Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Marta Gomez-Chiarri
- Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | - David Rowley
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | - David R Nelson
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd., Kingston, RI, 02881, USA.
| |
Collapse
|
20
|
Crisafi F, Denaro R, Yakimov M, Felice M, Giuliano L, Genovese L. NaCl concentration in the medium modulates the secretion of active EmpA protease in Vibrio anguillarum
at post-transcriptional level. J Appl Microbiol 2015; 119:1494-501. [DOI: 10.1111/jam.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/03/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Affiliation(s)
- F. Crisafi
- Institute for Coastal Marine Environment CNR; Messina Italy
| | - R. Denaro
- Institute for Coastal Marine Environment CNR; Messina Italy
| | - M. Yakimov
- Institute for Coastal Marine Environment CNR; Messina Italy
| | - M.R. Felice
- Department of Biological and Environmental Sciences; University of Messina; Messina Italy
| | - L. Giuliano
- Institute for Coastal Marine Environment CNR; Messina Italy
| | - L. Genovese
- Institute for Coastal Marine Environment CNR; Messina Italy
| |
Collapse
|
21
|
Holm KO, Nilsson K, Hjerde E, Willassen NP, Milton DL. Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia. Stand Genomic Sci 2015; 10:60. [PMID: 26380645 PMCID: PMC4572688 DOI: 10.1186/s40793-015-0060-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.
Collapse
Affiliation(s)
- Kåre Olav Holm
- />Department of Chemistry, Faculty of Science and Technology, UiT: The Arctic University of Norway, 9037 Tromsø, NO Norway
| | - Kristina Nilsson
- />Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Department of Molecular Biology, 901 87 Umeå, SE Sweden
| | - Erik Hjerde
- />Department of Chemistry, Faculty of Science and Technology, UiT: The Arctic University of Norway, 9037 Tromsø, NO Norway
| | - Nils-Peder Willassen
- />Department of Chemistry, Faculty of Science and Technology, UiT: The Arctic University of Norway, 9037 Tromsø, NO Norway
| | - Debra L. Milton
- />Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Department of Molecular Biology, 901 87 Umeå, SE Sweden
| |
Collapse
|
22
|
McMillan S, Verner-Jeffreys D, Weeks J, Austin B, Desbois AP. Larva of the greater wax moth, Galleria mellonella, is a suitable alternative host for studying virulence of fish pathogenic Vibrio anguillarum. BMC Microbiol 2015; 15:127. [PMID: 26099243 PMCID: PMC4477312 DOI: 10.1186/s12866-015-0466-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microbial diseases cause considerable economic losses in aquaculture and new infection control measures often rely on a better understanding of pathogenicity. However, disease studies performed in fish hosts often require specialist infrastructure (e.g., aquaria), adherence to strict legislation and do not permit high-throughput approaches; these reasons justify the development of alternative hosts. This study aimed to validate the use of larvae of the greater wax moth (Galleria mellonella) to investigate virulence of the important fish pathogen, Vibrio anguillarum. RESULTS Using 11 wild-type isolates of V. anguillarum, these bacteria killed larvae in a dose-dependent manner and replicated inside the haemolymph, but infected larvae were rescued by antibiotic therapy. Crucially, virulence correlated significantly and positively in larva and Atlantic salmon (Salmo salar) infection models. Challenge studies with mutants knocked out for single virulence determinants confirmed conserved roles in larva and fish infections in some cases (pJM1 plasmid, rtxA), but not all (empA, flaA, flaE). CONCLUSIONS The G. mellonella model is simple, more ethically acceptable than experiments on vertebrates and, crucially, does not necessitate liquid systems, which reduces infrastructure requirements and biohazard risks associated with contaminated water. The G. mellonella model may aid our understanding of microbial pathogens in aquaculture and lead to the timely introduction of new effective remedies for infectious diseases, while adhering to the principles of replacement, reduction and refinement (3Rs) and considerably reducing the number of vertebrates used in such studies.
Collapse
Affiliation(s)
- Stuart McMillan
- Marine Biotechnology Research Group, Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK.
| | | | - Jason Weeks
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK. .,Present address: Department of Environmental Science and Technology, Cranfield University, Bedford, UK.
| | - Brian Austin
- Marine Biotechnology Research Group, Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK.
| | - Andrew P Desbois
- Marine Biotechnology Research Group, Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK.
| |
Collapse
|
23
|
Hickey ME, Richards GP, Lee JL. Development of a two-step, non-probed multiplex real-time PCR for surveilling Vibrio anguillarum in seawater. JOURNAL OF FISH DISEASES 2015; 38:551-559. [PMID: 25039502 DOI: 10.1111/jfd.12264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
Vibrio anguillarum is an aggressive and halophilic bacterial pathogen most commonly originating from seawater. Vibrio anguillarum presence in fisheries and aquaculture facilities causes significant morbidity and mortality among aquaculture species primarily from haemorrhaging of the body and skin of the infected fish that eventually leads to death, collectively recognized as the disease vibriosis. This study served to develop a non-probe, multiplex real-time PCR assay to rapidly detect V. anguillarum presence in seawater. Specific primers targeting genes vah1, empA and rpoN of V. anguillarum were selected for multiplex reaction among 11 different primer sets and the extension step was eliminated. Primer concentration, denaturation time as well as annealing time and temperature of DNA amplification were optimized, thus reducing reaction duration. The two-step, non-probed multiplex real-time PCR set forth by this study detects as little as 3 CFU mL(-1) of V. anguillarum presence in sea water, without enrichment cultivation, in 70 min with molecular precision and includes melting curve confirmation.
Collapse
Affiliation(s)
- M E Hickey
- Department of Human Ecology, Food Science Program, College of Agricultural and Related Sciences, Delaware State University, Dover, DE, USA
| | | | | |
Collapse
|
24
|
Li X, Defoirdt T, Bossier P. Relation between virulence of Vibrio anguillarum strains and response to the host factors mucin, bile salts and cholesterol. J Appl Microbiol 2015; 119:25-32. [PMID: 25807847 DOI: 10.1111/jam.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
AIMS In this study, we investigated the responsiveness of 15 Vibrio anguillarum strains to three host factors (mucin, bile salts and cholesterol). METHODS AND RESULTS Three virulence-related phenotypes were investigated in this respect, i.e. motility, biofilm formation and exopolysaccharide production. Almost all V. anguillarum strains showed a significantly increased motility in the presence of either of the three host factors. Only five of the strains showed increased biofilm formation in the presence of host factors and only three strains showed increased exopolysaccharide production in the presence of the host factors. CONCLUSIONS There were no significant correlations between the three putatively virulence-linked phenotypes (in the absence of host factors) and virulence to sea bass larvae. There was no correlation between responsiveness to the host factors (percentage increase in motility, biofilm formation or exopolysaccharide production in the presence of the three host factors) and virulence to sea bass larvae. However, the responses of these virulence-related phenotypes upon the addition of either of the three host factors were significantly correlated with each other. This result suggests that the mechanisms by which V. anguillarum responds to these three host factors is linked. SIGNIFICANCE AND IMPACT OF THE STUDY Although the mechanism by which V. anguillarum responds to the host factors mucin, bile salts and cholesterol seems to be linked, there is no correlation between host factor responsiveness and virulence towards sea bass larvae. This emphasizes that one should be careful when extrapolating results obtained for one particular strain to reach general conclusions on a species of pathogenic bacteria.
Collapse
Affiliation(s)
- X Li
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| | - T Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| | - P Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Crisafi F, Denaro R, Genovese M, Yakimov M, Genovese L. Application of relative real-time PCR to detect differential expression of virulence genes in Vibrio anguillarum under standard and stressed growth conditions. JOURNAL OF FISH DISEASES 2014; 37:629-640. [PMID: 24033758 DOI: 10.1111/jfd.12158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 06/02/2023]
Abstract
In this study, we aimed to understand whether abiotic factors affect the expression of virulence genes in Vibrio anguillarum. We observed the in vitro responses of two Mediterranean strains of V. anguillarum to temperature, NaCl and iron concentration changes. We monitored growth performance and gene transcription levels by comparing the results obtained under stressed conditions (temperatures of 5 °C, 15 °C and 37 °C; NaCl concentrations of 3% and 5%; and iron depletion and excess) with those obtained under standard growth conditions (25 °C, 1.5% NaCl and 0.6 μm of iron). The results showed that the strains respond differently. The strain 975/I was most strongly affected by conditions of 15 °C and iron depletion; these conditions induced increased transcription levels of empA, angR and fatA. Growth of the strain 17/I was inhibited at 15 °C and in iron depletion conditions; this strain also showed dramatic changes in the transcription levels of toxR and tonB2 under increased NaCl concentrations. These results demonstrate that environmental stress affects the expression of virulence genes in V. anguillarum that have implications for the competitiveness, stress tolerance and the ability of V. anguillarum to cause infection.
Collapse
Affiliation(s)
- F Crisafi
- Institute for Coastal Marine Environment (IAMC), CNR, Messina, Italy
| | | | | | | | | |
Collapse
|
26
|
Navais R, Méndez J, Pérez-Pascual D, Cascales D, Guijarro JA. The yrpAB operon of Yersinia ruckeri encoding two putative U32 peptidases is involved in virulence and induced under microaerobic conditions. Virulence 2014; 5:619-24. [PMID: 24865652 DOI: 10.4161/viru.29363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In an attempt to dissect the virulence mechanisms of Yersinia ruckeri two adjacent genes, yrpA and yrpB, encoding putative peptidases belonging to the U32 family, were analyzed. Similar genes, with the same genetic organization were identified in genomic analysis of human-pathogenic yersiniae. RT-PCR studies indicated that these genes form an operon in Y. ruckeri. Transcriptional studies using an yrpB::lacZY fusion showed high levels of expression of these genes in the presence of peptone in the culture medium, as well as under oxygen-limited conditions. These two factors had a synergic effect on gene induction when both were present simultaneously during bacterial incubation, which indicates the important role that environmental conditions in the fish gut can play in the regulation of specific genes. LD 50 experiments using an yrpA insertional mutant strain demonstrated the participation of this gene in the virulence of Y. ruckeri.
Collapse
Affiliation(s)
- Roberto Navais
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - Jessica Méndez
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - David Pérez-Pascual
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - Desirée Cascales
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| | - José A Guijarro
- Área de Microbiología; Departamento de Biología Funcional; Facultad de Medicina; IUBA; Universidad de Oviedo; Oviedo, Spain
| |
Collapse
|
27
|
Li L, Mou X, Nelson DR. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol 2013; 13:271. [PMID: 24279474 PMCID: PMC4222444 DOI: 10.1186/1471-2180-13-271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis. RESULTS The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine, phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5-9 and at temperatures of 30-64°C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However, V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared to the wild type strain when used to infect rainbow trout. CONCLUSION The plp gene of V. anguillarum encoding a phospholipase with A2 activity is specific for phosphatidylcholine and, therefore, able to lyse fish erythrocytes, but not sheep erythrocytes. Mutation of plp does not affect the virulence of V. anguillarum in rainbow trout.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd,, Kingston, RI 02881, USA.
| | | | | |
Collapse
|
28
|
Frans I, Dierckens K, Crauwels S, Van Assche A, Leisner J, Larsen MH, Michiels CW, Willems KA, Lievens B, Bossier P, Rediers H. Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? PLoS One 2013; 8:e70477. [PMID: 23936439 PMCID: PMC3735585 DOI: 10.1371/journal.pone.0070477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays. METHODOLOGY/PRINCIPAL FINDINGS We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog's Phenotype MicroArray™ technology and some virulence factor assays. CONCLUSIONS/SIGNIFICANCE Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum.
Collapse
Affiliation(s)
- Ingeborg Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Jørgen Leisner
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne H. Larsen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Chris W. Michiels
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
| | - Kris A. Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- * E-mail:
| |
Collapse
|
29
|
H-NS is a negative regulator of the two hemolysin/cytotoxin gene clusters in Vibrio anguillarum. Infect Immun 2013; 81:3566-76. [PMID: 23836825 DOI: 10.1128/iai.00506-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemolysins produced by Vibrio anguillarum have been implicated in the development of hemorrhagic septicemia during vibriosis, a fatal fish disease. Previously, two hemolysin gene clusters responsible for the hemolysis and cytotoxicity of V. anguillarum were identified: the vah1-plp gene cluster and the rtxACHBDE gene cluster. In this study, we identified the hns gene, which encodes the H-NS protein and acts as a negative regulator of both gene clusters. The V. anguillarum H-NS protein shares strong homology with other bacterial H-NS proteins. An hns mutant exhibited increased hemolytic activity and cytotoxicity compared to the wild-type strain. Complementation of the hns mutation restored hemolytic activity and cytotoxicity levels to nearly wild-type levels. Furthermore, expression of rtxA, rtxH, rtxB, vah1, and plp increased in the hns mutant and decreased in the hns-complemented mutant strain compared to expression in the wild-type strain. Additionally, experiments using DNase I showed that purified recombinant H-NS protected multiple sites in the promoter regions of both gene clusters. The hns mutant also exhibited significantly attenuated virulence against rainbow trout. Complementation of the hns mutation restored virulence to wild-type levels, suggesting that H-NS regulates many genes that affect fitness and virulence. Previously, we showed that HlyU is a positive regulator of expression for both gene clusters. In this study, we demonstrate that upregulation by hlyU is hns dependent, suggesting that H-NS acts to repress or silence both gene clusters and HlyU acts to relieve that repression or silencing.
Collapse
|
30
|
Pesek J, Krüger T, Krieg N, Schiel M, Norgauer J, Großkreutz J, Rhode H. Native chromatographic sample preparation of serum, plasma and cerebrospinal fluid does not comprise a risk for proteolytic biomarker loss. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 923-924:102-9. [DOI: 10.1016/j.jchromb.2013.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 01/04/2023]
|
31
|
Weber B, Lindell K, El Qaidi S, Hjerde E, Willassen NP, Milton DL. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum. MICROBIOLOGY-SGM 2011; 157:3324-3339. [PMID: 21948044 PMCID: PMC3352281 DOI: 10.1099/mic.0.051011-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.
Collapse
Affiliation(s)
- Barbara Weber
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
| | - Kristoffer Lindell
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
| | - Samir El Qaidi
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
| | - Erik Hjerde
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, Tromsø 9037, Norway
| | - Nils-Peder Willassen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, Tromsø 9037, Norway
| | - Debra L Milton
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
32
|
Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. JOURNAL OF FISH DISEASES 2011; 34:643-661. [PMID: 21838709 DOI: 10.1111/j.1365-2761.2011.01279.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vibrio anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is responsible for severe economic losses worldwide. Because of its high morbidity and mortality rates, substantial research has been carried out to elucidate the virulence mechanisms of this pathogen and to develop rapid detection techniques and effective disease-prevention strategies. This review summarizes the current state of knowledge pertaining to V. anguillarum, focusing on pathogenesis, known virulence factors, diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- I Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology, Department of Microbial and Molecular Systems, K.U. Leuven Association, Lessius Mechelen, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5' random amplification of cDNA ends (5'-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays.
Collapse
|
34
|
Abstract
Bacteria of the genus Vibrio are normal habitants of the aquatic environment but the some species are believed to be human pathogens. Pathogenic vibrios produce various pathogenic factors, and the proteases are also recognized to play pathogenic roles in the infection: the direct roles by digesting many kinds of host proteins or indirect roles by processing other pathogenic protein factors. Especially VVP from Vibrio vulnificus is thought to be a major pathogenic factor of the vibrio. Although HA/P, the V. cholerae hemagglutinin/protease, is not a direct toxic factor of cholera vibrio, its significance is an undeniable fact. Production of HA/P is regulated together with major pathogenic factors such as CT (cholera toxin) or TCP (toxin co-regulated pilus) by a quorum-sensing system. HA/P is necessary for full expression of pathogenicity of the vibrio by supporting growth and translocation in the digestive tract. Processing of protein toxins such as CT or El Tor hemolysin is also an important pathogenic role.
Collapse
Affiliation(s)
- Sumio Shinoda
- Faculty of Science, Okayama University of Science, Okayama University of Science, Ridai-cho, Okayama 700-005, Japan.
| | | |
Collapse
|
35
|
Natrah FMI, Defoirdt T, Sorgeloos P, Bossier P. Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:109-126. [PMID: 21246235 DOI: 10.1007/s10126-010-9346-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
Bacterial disease is one of the most critical problems in commercial aquaculture. Although various methods and treatments have been developed to curb the problem, yet they still have significant drawbacks. A novel and environmental-friendly approach in solving this problem is through the disruption of bacterial communication or quorum sensing (QS). In this communication scheme, bacteria regulate their own gene expression by producing, releasing, and sensing chemical signals from the environment. There seems to be a link between QS and diseases through the regulation of certain phenotypes and the induction of virulence factors responsible for pathogen-host association. Several findings have reported that numerous aquatic organisms such as micro-algae, macro-algae, invertebrates, or even other bacteria have the potential to disrupt QS. The mechanism of action varies from degradation of signals through enzymatic or chemical inactivation to antagonistic as well as agonistic activities. This review focuses on the existing marine organisms that are able to interfere with QS with potential application for aquaculture as bacterial control.
Collapse
Affiliation(s)
- F M I Natrah
- Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Rozier 44, 9000, Ghent, Belgium.
| | | | | | | |
Collapse
|
36
|
Seet Q, Zhang LH. Anti-activator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol Microbiol 2011; 80:951-65. [PMID: 21392132 DOI: 10.1111/j.1365-2958.2011.07622.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Quorum sensing (QS) in a bacterial population is activated when extracellular concentration of QS signal reaches a threshold, but how this threshold is determined remains largely unknown. In this study, we report the identification and characterization of a novel anti-activator encoded by qslA in Pseudomonas aeruginosa. The null mutation of qslA elevated AHL-dependent QS and PQS signalling, increased the expression of QS-dependent genes, and enhanced the virulence factor production and pathogenicity. We further present evidence that modulation of QS by QslA is due to protein-protein interaction with LasR, which prevents LasR from binding to its target promoter. QslA also influences the threshold concentration of QS signal needed for QS activation; in the absence of qslA, QS is activated by nine times less N-3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) than that in wild type. The findings from this study depict a new mechanism that governs the QS threshold in P. aeruginosa.
Collapse
Affiliation(s)
- Qihui Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | | |
Collapse
|
37
|
Tunsjø HS, Wiik-Nielsen CR, Grove S, Skjerve E, Sørum H, L'abée-Lund TM. Putative virulence genes in Moritella viscosa: activity during in vitro inoculation and in vivo infection. Microb Pathog 2011; 50:286-92. [PMID: 21334427 DOI: 10.1016/j.micpath.2011.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 11/30/2022]
Abstract
Moritella viscosa is considered to be the main aetiological agent of winter ulcer disease, primarily affecting farmed salmonid fish in cold marine waters. Transcription profiles of twelve M. viscosa genes, potentially involved in the pathogenesis, were studied during the course of an in vitro cell culture infection assay. Transcription of the same genes was compared in vivo, in head kidney and ulcer tissues of Atlantic salmon challenged with M. viscosa. During the in vitro infection, three putative toxins: a putative repeats in toxin gene (rtxA), a putative cytotoxic necrotizing factor (cnf) and a putative hemolysin increased their transcription significantly with time and coincident with cell rounding. Furthermore, the majority of the genes were stimulated by presence of fish cells and showed higher activity when adhered to fish cells compared to their planktonic counterpart. In vivo gene transcription studies revealed an up-regulation of a putative lateral flagellin in ulcer compared to head kidney tissues in the same individual. A similar trend was seen for cnf and a gene encoding a putative protease, indicating a role for these factors in colonization and tissue damage.
Collapse
Affiliation(s)
- Hege Smith Tunsjø
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, Pb 8146 Dep., 0033 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
38
|
Naka H, Crosa JH. Genetic Determinants of Virulence in the Marine Fish Pathogen Vibrio anguillarum. FISH PATHOLOGY 2011; 46:1-10. [PMID: 21625345 PMCID: PMC3103123 DOI: 10.3147/jsfp.46.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the most studied fish pathogens is Vibrio anguillarum. Development of the genetics and biochemistry of the mechanisms of virulence in this fish pathogen together with clinical and ecologic studies has permitted the intensive development of microbiology in fish diseases. It is the intention of this review to compile the exhaustive knowledge accumulated on this bacterium and its interaction with the host fish by reporting a complete analysis of the V. anguillarum virulence factors and the genetics of their complexity.
Collapse
|
39
|
Saulnier D, De Decker S, Haffner P, Cobret L, Robert M, Garcia C. A large-scale epidemiological study to identify bacteria pathogenic to Pacific oyster Crassostrea gigas and correlation between virulence and metalloprotease-like activity. MICROBIAL ECOLOGY 2010; 59:787-798. [PMID: 20012275 DOI: 10.1007/s00248-009-9620-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/12/2009] [Indexed: 05/28/2023]
Abstract
A 4-year bacteriological survey (2003-2007) of four molluscs cultivated in France and faced with mortality episodes was performed by the French shellfish pathology network. The more abundant bacteria isolated during 92 mortality episodes, occurring mainly in Pacific oyster Crassostrea gigas, were identified by genotyping methods. It allowed us both to confirm the representativeness of Vibrio splendidus and Vibrio aestuarianus bacterial strains and to identify both a large number of Vibrio harveyi-related strains mainly detected during 2007 oyster mortality outbreaks and to a lesser extent bacterial strains identified as Shewanella colwelliana. Because metalloprotease has been reported to constitute a virulence factor in a few Vibrio strains pathogenic for C. gigas, several bacterial strains isolated in this study were screened to evaluate their pathogenicity in C. gigas spat by experimental infection and their ability to produce metalloprotease-like activity in the culture supernatant fluids. A high level (84%) of concordant results between azocaseinase activities and virulence of strains was obtained in this study. Because bacterial metalloprotease activities appeared as a common feature of pathogenic bacteria strains associated with mortality events of C. gigas reared in France, this phenotypic test could be useful for the evaluation of virulence in bacterial strains associated with such mortality episodes.
Collapse
Affiliation(s)
- Denis Saulnier
- Laboratoire de Génétique et Pathologie, IFREMER, BP 33, av. du Mus de Loup, 17390, La Tremblade, France.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Understanding mechanisms of bacterial pathogenesis is critical for infectious disease control and treatment. Infection is a sophisticated process that requires the participation of global regulators to coordinate expression of not only genes coding for virulence factors but also those involved in other physiological processes, such as stress response and metabolic flux, to adapt to host environments. RpoS is a key response regulator to stress conditions in Escherichia coli and many other proteobacteria. In contrast to its conserved well-understood role in stress response, effects of RpoS on pathogenesis are highly variable and dependent on species. RpoS contributes to virulence through either enhancing survival against host defense systems or directly regulating expression of virulence factors in some pathogens, while RpoS is dispensable, or even inhibitory, to virulence in others. In this review, we focus on the distinct and niche-dependent role of RpoS in virulence by surveying recent findings in many pathogens.
Collapse
|
41
|
Cheng S, Zhang WW, Zhang M, Sun L. Evaluation of the vaccine potential of a cytotoxic protease and a protective immunogen from a pathogenic Vibrio harveyi strain. Vaccine 2009; 28:1041-7. [PMID: 19897068 DOI: 10.1016/j.vaccine.2009.10.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/17/2009] [Accepted: 10/20/2009] [Indexed: 11/29/2022]
Abstract
Vibrio harveyi is an important aquaculture pathogen that can infect a number of fish species and marine invertebrates. A putative protease, Vhp1, was identified from a pathogenic V. harveyi strain isolated from diseased fish as a protein with secretion capacity. Vhp1 is 530 amino acids in length and shares high sequence identities with several extracellular serine proteases of the Vibrio species. In silico analysis identified a protease domain in Vhp1, which is preceded by a subtilisin-N domain and followed by a bacterial pre-peptidase C-terminal domain. Purified recombinant protein corresponding to the protease domain of Vhp1 exhibited apparent proteolytic activity that was relatively heat-stable and reached maximum at pH 8.0 and 50 degrees C. The activity of purified recombinant Vhp1 protease was enhanced by Ca(2+) and inhibited by Mn(2+) and ethylenedinitrilotetraacetic acid. Cytotoxicity analyses indicated that recombinant Vhp1 protease was toxic to cultured Japanese flounder cells and could cause complete cell lysis. Immunoprotective analysis using Japanese flounder as an animal model showed that purified recombinant Vhp1 in the form of a denatured and proteolytically inactive protein was an effective subunit vaccine. To improve the vaccine potential of Vhp1, an Escherichia coli strain that expresses and secrets a cytotoxically impaired Vhp1 was constructed, which, when used as a live vaccine, afforded a high level of protection upon the vaccinated fish against lethal V. harveyi challenge. Taken together, these results demonstrate that Vhp1 is a cytotoxic protease and an effective vaccine candidate against V. harveyi infection.
Collapse
Affiliation(s)
- Shuang Cheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | |
Collapse
|
42
|
Zhang WW, Hu YH, Wang HL, Sun L. Identification and characterization of a virulence-associated protease from a pathogenic Pseudomonas fluorescens strain. Vet Microbiol 2009; 139:183-8. [PMID: 19464828 DOI: 10.1016/j.vetmic.2009.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 04/17/2009] [Accepted: 04/24/2009] [Indexed: 11/17/2022]
Abstract
Pseudomonas fluorescens is an aquaculture pathogen that can infect a number of fish species. The virulence mechanisms of aquatic P. fluorescens remain largely unknown. Many P. fluorescens strains are able to secrete an extracellular protease called AprX, yet no AprX-like proteins have been identified in pathogenic P. fluorescens associated with aquaculture. In this study, a gene encoding an AprX homologue was cloned from TSS, a pathogenic P. fluorescens strain isolated from diseased fish. In TSS, AprX is secreted into the extracellular milieu, and the production of AprX is controlled by growth phase and calcium. Mutation of aprX has multiple effects, which include impaired abilities in interaction with cultured host cells, adherence to host mucus, modulation of host immune response, and dissemination and survival in host tissues and blood. Purified recombinant AprX exhibits apparent proteolytic activity, which is optimal at pH 8.0 and 50 degrees C. The protease activity of recombinant AprX is enhanced by Ca2+ and Zn2+ and reduced by Co2+. Cytotoxicity analyses showed that purified recombinant AprX has profound toxic effect on cultured fish cells. These results demonstrate that AprX is an extracellular metalloprotease that is involved in bacterial virulence.
Collapse
Affiliation(s)
- Wei-wei Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | | | | | | |
Collapse
|
43
|
Bjornsdottir B, Fridjonsson OH, Magnusdottir S, Andresdottir V, Hreggvidsson GO, Gudmundsdottir BK. Characterisation of an extracellular vibriolysin of the fish pathogen Moritella viscosa. Vet Microbiol 2009; 136:326-34. [DOI: 10.1016/j.vetmic.2008.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/25/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
|
44
|
Xiao P, Mo ZL, Mao YX, Wang CL, Zou YX, Li J. Detection of Vibrio anguillarum by PCR amplification of the empA gene. JOURNAL OF FISH DISEASES 2009; 32:293-296. [PMID: 19236556 DOI: 10.1111/j.1365-2761.2008.00984.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- P Xiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
45
|
Yang H, Chen J, Yang G, Zhang XH, Liu R, Xue X. Protection of Japanese flounder (Paralichthys olivaceus) against Vibrio anguillarum with a DNA vaccine containing the mutated zinc-metalloprotease gene. Vaccine 2009; 27:2150-5. [PMID: 19356619 DOI: 10.1016/j.vaccine.2009.01.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 11/24/2022]
Abstract
Vibrio anguillarum is one of the causative agents of vibriosis, a systemic disease of fish characterized by acute hemorrhagic septicemia. The extracellular zinc metalloprotease (EmpA) is a putative virulence factor involved in pathogenicity of V. anguillarum. Here we described the results of immunization against V. anguillarum with the plasmid expressing the mutated EmpA (m-EmpA7), which had no protelytic activity or cytotoxicity. In vitro protein expression of m-empA7 gene was determined by fluorescent microscopy and Western-blot after transfection of Chinese hamster ovary (CHO) and human embryonic kidney (HEK293T) cell lines. All three groups of fish immunized with a single intramuscular (i.m.) injection of different doses of the m-EmpA7 DNA vaccine showed significant serum antibody levels after vaccination, compared with the fish injected with the control eukaryotic expression vector pEGFP-N1 and PBS. In addition, fish receiving the DNA vaccine developed a protective response to a live V. anguillarum challenge 4 weeks post-inoculation, as demonstrated by increased survival of vaccinated fish over the control and by decreased histological alterations in vaccinated fish. Furthermore, humoral immune responses and protective effects were significantly increased at higher vaccine doses using a single intramuscularly injection route.
Collapse
Affiliation(s)
- Hui Yang
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 2008; 8:149. [PMID: 18793453 PMCID: PMC2551610 DOI: 10.1186/1471-2180-8-149] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 09/16/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. RESULTS Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. CONCLUSION Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs.
Collapse
Affiliation(s)
- Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Identification and characterization of Epp, the secreted processing protease for the Vibrio anguillarum EmpA metalloprotease. J Bacteriol 2008; 190:6589-97. [PMID: 18689477 DOI: 10.1128/jb.00535-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc metalloprotease EmpA is a virulence factor for the fish pathogen Vibrio anguillarum. Previous studies demonstrated that EmpA is secreted as a 46-kDa proenzyme that is activated extracellularly by the removal of an approximately 10-kDa propeptide. We hypothesized that a specific protease is responsible for processing secreted pro-EmpA into mature EmpA. To identify the protease responsible for processing pro-EmpA, a minitransposon mutagenesis (using mini-Tn10Km) clone bank of V. anguillarum was screened for reduced protease activity due to insertions in undescribed genes. One mutant with reduced protease activity was identified. The region containing the mini-Tn10Km was cloned, sequenced, and found to contain epp, an open reading frame encoding a putative protease. Further characterization of epp was done using strain M101, created by single-crossover insertional mutagenesis. Protease activity was absent in M101 cultures even when empA protease activity was induced by salmon gastrointestinal mucus. When the epp mutation was complemented with a wild-type copy of epp (M102), protease activity was restored. Western blot analysis of sterile filtered culture supernatants from wild-type (M93Sm) cells, M101 cells, and M102 cells revealed that only pro-EmpA was present in M101supernatants; both pro-EmpA and mature EmpA were detected in M93Sm and M102 supernatants. When sterile filtered culture supernatants from the empA mutant strain (M99) and M101 were mixed, protease activity was restored. Western blot analysis revealed that pro-EmpA in M101 culture supernatant was processed to mature EmpA only after mixing with M99 culture supernatant. These data show that Epp is the EmpA-processing protease.
Collapse
|
48
|
Sussman M, Willis BL, Victor S, Bourne DG. Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS One 2008; 3:e2393. [PMID: 18560584 PMCID: PMC2409975 DOI: 10.1371/journal.pone.0002393] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/02/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND White Syndrome (WS), a general term for scleractinian coral diseases with acute signs of advancing tissue lesions often resulting in total colony mortality, has been reported from numerous locations throughout the Indo-Pacific, constituting a growing threat to coral reef ecosystems. METHODOLOGY/PRINCIPAL FINDINGS Bacterial isolates were obtained from corals displaying disease signs at three ws outbreak sites: Nikko Bay in the Republic of Palau, Nelly Bay in the central Great Barrier Reef (GBR) and Majuro Atoll in the Republic of the Marshall Islands, and used in laboratory-based infection trials to satisfy Henle-Koch's postulates, Evan's rules and Hill's criteria for establishing causality. Infected colonies produced similar signs to those observed in the field following exposure to bacterial concentrations of 1x10(6) cells ml(-1). Phylogenetic 16S rRNA gene analysis demonstrated that all six pathogens identified in this study were members of the gamma-Proteobacteria family Vibrionacae, each with greater than 98% sequence identity with the previously characterized coral bleaching pathogen Vibrio coralliilyticus. Screening for proteolytic activity of more than 150 coral derived bacterial isolates by a biochemical assay and specific primers for a Vibrio family zinc-metalloprotease demonstrated a significant association between the presence of isolates capable of proteolytic activity and observed disease signs. CONCLUSION/SIGNIFICANCE This is the first study to provide evidence for the involvement of a unique taxonomic group of bacterial pathogens in the aetiology of Indo-Pacific coral diseases affecting multiple coral species at multiple locations. Results from this study strongly suggest the need for further investigation of bacterial proteolytic enzymes as possible virulence factors involved in Vibrio associated acute coral infections.
Collapse
Affiliation(s)
- Meir Sussman
- ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James Cook University, Townsville, Australia.
| | | | | | | |
Collapse
|
49
|
Weber B, Croxatto A, Chen C, Milton DL. RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT. MICROBIOLOGY-SGM 2008; 154:767-780. [PMID: 18310023 DOI: 10.1099/mic.0.2007/014167-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In vibrios, regulation of the Vibrio harveyi-like LuxR transcriptional activators occurs post-transcriptionally via small regulatory RNAs (sRNAs) that destabilize the luxR mRNA at a low cell population, eliminating expression of LuxR. Expression of the sRNAs is modulated by the vibrio quorum-sensing phosphorelay systems. However, vanT mRNA, which encodes a LuxR homologue in Vibrio anguillarum, is abundant at low and high cell density, indicating that VanT expression may be regulated via additional mechanisms. In this study, Western analyses showed that VanT was expressed throughout growth with a peak of expression during late exponential growth. VanO induced partial destabilization of vanT mRNA via activation of at least one Qrr sRNA. Interestingly, the sigma factor RpoS significantly stabilized vanT mRNA and induced VanT expression during late exponential growth. This induction was in part due to RpoS repressing expression of Hfq, an RNA chaperone. RpoS is not part of the quorum-sensing regulatory cascade since RpoS did not regulate expression or activity of VanO, and RpoS was not regulated by VanO or VanT. VanT and RpoS were needed for survival following UV irradiation and for pigment and metalloprotease production, suggesting that RpoS works with the quorum-sensing systems to modulate expression of VanT, which regulates survival and stress responses.
Collapse
Affiliation(s)
- Barbara Weber
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Antony Croxatto
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Chang Chen
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Debra L Milton
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
50
|
Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun 2008; 76:2620-32. [PMID: 18378637 DOI: 10.1128/iai.01308-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum is the causative agent of vibriosis in fish. Hemolysins of V. anguillarum have been considered virulence factors during infection. One hemolysin gene, vah1, has been previously identified but does not account for all hemolytic activity. The mini-Tn10Km mutagenesis performed with a vah1 mutant resulted in a hemolysin-negative mutant. The region surrounding the mutation was cloned and sequenced, revealing a putative rtx operon with six genes (rtxACHBDE), where rtxA encodes an exotoxin, rtxC encodes an RtxA activator, rtxH encodes a conserved hypothetical protein, and rtxBDE encode the ABC transporters. Single mutations in rtx genes did not result in a hemolysin-negative phenotype. However, strains containing a mutation in vah1 and a mutation in an rtx gene resulted in a hemolysin-negative mutant, demonstrating that the rtx operon is a second hemolysin gene cluster in V. anguillarum M93Sm. Reverse transcription-PCR analysis revealed that the rtxC and rtxA genes are cotranscribed, as are the rtxBDE genes. Additionally, Vah1 and RtxA each have cytotoxic activity against Atlantic salmon kidney (ASK) cells. Single mutations in vah1 or rtxA attenuate the cytotoxicity of V. anguillarum M93Sm. A vah1 rtxA double mutant is no longer cytotoxic. Moreover, Vah1 and RtxA each have a distinct cytotoxic effect on ASK cells, Vah1 causes cell vacuolation, and RtxA causes cell rounding. Finally, wild-type and mutant strains were tested for virulence in juvenile Atlantic salmon. Only strains containing an rtxA mutation had reduced virulence, suggesting that RtxA is a major virulence factor for V. anguillarum.
Collapse
|