1
|
Buzón-Durán L, Sánchez-Hernández E, Sánchez-Báscones M, García-González MC, Hernández-Navarro S, Correa-Guimarães A, Martín-Ramos P. A Coating Based on Bioactive Compounds from Streptomyces spp. and Chitosan Oligomers to Control Botrytis cinerea Preserves the Quality and Improves the Shelf Life of Table Grapes. PLANTS (BASEL, SWITZERLAND) 2023; 12:577. [PMID: 36771661 PMCID: PMC9921524 DOI: 10.3390/plants12030577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Botrytis cinerea is the most harmful postharvest disease of table grapes. Among the strategies that can be envisaged for its control, the use of coatings based on natural products is particularly promising. The study presented herein focuses on the assessment of the antagonistic capacity of two Streptomyces species and their culture filtrates against B. cinerea. Firstly, the secondary metabolites were characterized by gas chromatography-mass spectrometry, with N1-(4-hydroxybutyl)-N3-methylguanidine acetate and 2R,3S-9-[1,3,4-trihydroxy-2-butoxymethyl]guanine acetate as the main compounds produced by S. lavendofoliae DSM 40217; and cyclo(leucyloprolyl) and cyclo(phenylalanylprolyl) as the most abundant chemical species for S. rochei DSM 41729. Subsequently, the capacity of S. lavendofoliae DSM 40217 and S. rochei DSM 41729 to inhibit the growth of the pathogen was tested in dual culture plate assays, finding 85-90% inhibition. In agar dilution tests, their culture filtrates resulted in effective concentration values (EC90) in the 246-3013 μg·mL-1 range. Upon the formation of conjugate complexes with chitosan oligomers (COS) to improve solubility and bioavailability, a synergistic behavior was observed, resulting in lower EC90 values, ranging from 201 to 953 μg·mL-1. Ex situ tests carried out on 'Timpson' and 'Red Globe' table grapes using the conjugate complexes as coatings were found to maintain the turgor of the grapes and delay the appearance of the pathogen by 10-15 days at concentrations in the 750-1000 µg·mL-1 range. Hence, the conjugate complexes of COS and the selected Streptomyces spp. culture filtrates may be put forward as promising protection treatments for the sustainable control of gray mold.
Collapse
Affiliation(s)
- Laura Buzón-Durán
- Department of Agroforestry Sciences, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Mercedes Sánchez-Báscones
- Department of Agroforestry Sciences, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Mari Cruz García-González
- Department of Agroforestry Sciences, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Salvador Hernández-Navarro
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Adriana Correa-Guimarães
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| |
Collapse
|
2
|
Khirennas O, Mokrani S, Behira B, Bouras N, Driche EH, Moumen O. Isolation, Identification and Screening of Saharan Actinomycete Strain Streptomyces fimbriatus AC31 Endowed with Antimicrobial Activity. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:51-69. [PMID: 37942257 PMCID: PMC10629725 DOI: 10.22088/ijmcm.bums.12.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 11/10/2023]
Abstract
The increasing global public health concern of antimicrobial resistance (AMR) necessitates exploration of natural antimicrobial agents as potential alternatives. This study aimed to investigate antimicrobial activities of Saharan actinomycetes, with specific focus on the strain Streptomyces fimbriatus AC31, that holds promising potential as an alternative to combat AMR. In this context, 32 actinomycetes were isolated from El Atteuf (Ghardaïa), Algeria. Isolates obtained were characterized morphologically and biochemically. Screened isolate was identified by 16S rRNA gene sequencing. Classification of actinomycete isolates was carried out by UPGMA (Unweighted Pair Group Method with Arithmetic Mean). Then, they were screened for their antimicrobial activity by cross-streak method. Identification of 32 isolates revealed 5 genera: Streptomyces (65.63%), Nocardia (9.38%), Streptosporangium (9.38%), Nocardiopsis (9.38%) and Actinomadura (6.25%). According to the biochemical and physiological characteristics, UPGMA classified the isolates in 4 phenons. A number of 24 (75.00%) isolates were active against Gram-positive bacteria, 21 (65.63%) isolates were effective against Gram-negative bacteria, and 25 (78.13%) isolates inhibited Candida albicans. Screened strain Streptomyces fimbriatus AC31 showed highest antagonistic activity and revealed an inhibition zones of 41, 38, 41, 42, and 44 mm, against B. subtilis (ATCC 6633), E. coli (ATCC 8739), S. typhimurium (ATCC 13331), S. aureus (ATCC 6538) and C. albicans (ATCC 10231), respectively. Phylogenetic identification of the AC 31 isolate using 16S rRNA gene sequence showed similarity of 100% with Streptomyces fimbriatus NBRC 15411T. Actinomycete isolates characterized in this study were endowed with antimicrobial activity against various pathogenic microorganisms that could be used efficiently in developing new antimicrobial substances.
Collapse
Affiliation(s)
- Omar Khirennas
- Laboratory of Geo-Environment and Spatial Development (LGEDE), Faculty of Nature and Life Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
- Laboratory of Geomatics, Ecology and Environment (LGO2E), Faculty of Nature and Life Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
| | - Slimane Mokrani
- Laboratory of Research on Biological Systems and Geomatics, Faculty of Nature and Life Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
- Laboratory of Renewable Energies Management, Faculty of Natural and Life Sciences, University of Bejaia, Algeria.
| | - Belkacem Behira
- Laboratory of Geo-Environment and Spatial Development (LGEDE), Faculty of Nature and Life Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
- Laboratory of Geomatics, Ecology and Environment (LGO2E), Faculty of Nature and Life Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
| | - Noureddine Bouras
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria.
- Laboratoire de Valorisation et Conservation des Ecosystèmes Arides (LVCEA), Université de Ghardaia, Ghardaïa, Algeria.
| | - El Hadj Driche
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria.
- Laboratoire de Biologie Moléculaire, Génomique et Bio-Informatique (LBMGB), Faculté des Sciences de la Nature et de la Vie (SNV), Université Hassiba Benbouali de Chlef, Hay Salem, 02000 Chlef, Algeria.
| | - Ouahiba Moumen
- Laboratory of Geomatics, Ecology and Environment (LGO2E), Faculty of Nature and Life Sciences, University Mustapha Stambouli of Mascara, Mascara, Algeria.
| |
Collapse
|
3
|
Production of a broad spectrum streptothricin like antibiotic from halotolerant Streptomyces fimbriatus isolate G1 associated with marine sediments. Folia Microbiol (Praha) 2021; 66:639-649. [PMID: 33950512 DOI: 10.1007/s12223-021-00870-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Streptomyces have been reported as a remarkable source for bioactive secondary metabolites with complex structural and functional diversity. In this study, 35 isolates of genus Streptomyces were purified from rhizospheric and marine soils collected from previously unexplored habitats and screened for antimicrobial activities. One of these isolates, G1, when tested in vitro, was found highly active against wide range of microbes including Gram-positive, Gram-negative bacteria, and different fungal pathogens. It was identified as mesophilic, alkaliphilic, and moderately halotolerant as it showed optimum growth at temperature 30 °C, pH 8.0 in casein-starch-peptone-yeast extract-malt extract medium supplemented with 5% NaCl. Sequence analysis of the 16S rRNA gene indicated 100% identity of this isolate to Streptomyces fimbriatus. Moreover, maximum antimicrobial activity was achieved in starch nitrate medium supplemented with 1% glycerol as carbon and 0.03% soy meal as nitrogen source. The antimicrobial compounds produced by this isolate were extracted in methanol. Bioassay-guided fractionation through thin layer chromatography of methanolic extract resulted in the separation of a most active fraction with an Rf value of 0.46. This active fraction was characterized by FTIR and LCMS analysis and found similar to streptothricin D like antibiotic with m/z 758.42.
Collapse
|
4
|
Pishchany G, Kolter R. On the possible ecological roles of antimicrobials. Mol Microbiol 2020; 113:580-587. [PMID: 31975454 DOI: 10.1111/mmi.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic. Antibiotics, however, are not a human invention as most of them are either natural products produced by soil microorganisms or semisynthetic derivatives of natural products. Because we use antibiotics to inhibit the bacterial growth, it is generally assumed that growth inhibition is also their primary ecological function in the environment. Nevertheless, multiple studies point to diverse nonlethal effects that are exhibited at lower levels of antibiotics. Here we review accumulating evidence of antibiosis and of alternative functions of antibiotics exhibited at subinhibitory concentrations. We also speculate on how these effects might alter phenotypes, fitness, and community composition of microbes in the context of the environment and suggest directions for future research.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Hassan PA, Khider AK. Correlation of biofilm formation and antibiotic resistance among clinical and soil isolates of Acinetobacter baumannii in Iraq. Acta Microbiol Immunol Hung 2020; 67:161-170. [PMID: 31833386 DOI: 10.1556/030.66.2019.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that is reported as a major cause of nosocomial infections. The aim of this study was to investigate the biofilm formation by A. baumannii clinical and soil isolates, to display their susceptibility to 11 antibiotics and to study a possible relationship between formation of biofilm and multidrug resistance. During 8 months period, from June 2016 to January 2017, a total of 52 clinical and 22 soil isolates of A. baumannii were collected and identified through conventional phenotypic, chromo agar, biochemical tests, API 20E system, and confirmed genotypically by PCR for blaOXA-51-like gene. Antibiotic susceptibility of isolates was determined by standard disk diffusion method according to Clinical and Laboratory Standard Institute. The biofilm formation was studied using Congo red agar, test tube, and microtiter plate methods. The clinical isolates were 100% resistance to ciprofloxacin, ceftazidime, piperacillin, 96.15% to gentamicin, 96.15% to imipenem, 92.31% to meropenem, and 78.85% to amikacin. The soil A. baumannii isolates were 100% sensitive to imipenem, meropenem, and gentamicin, and 90.1% to ciprofloxacin. All A. baumannii isolates (clinical and soil) were susceptible to polymyxin B. The percentage of biofilm formation in Congo red agar, test tube, and microtiter plate assays was 10.81%, 63.51%, and 86.48%, respectively. More robust biofilm former population was mainly among non-MDR isolates. Isolates with a higher level of resistance tended to form weaker biofilms. The soil isolates exhibited less resistance to antibiotics than clinical isolates. However, the soil isolates produce stronger biofilms than clinical isolates.
Collapse
Affiliation(s)
- Pakhshan A. Hassan
- 1 Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Adel K. Khider
- 2 Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| |
Collapse
|
6
|
Buelow E, Bayjanov JR, Majoor E, Willems RJ, Bonten MJ, Schmitt H, van Schaik W. Limited influence of hospital wastewater on the microbiome and resistome of wastewater in a community sewerage system. FEMS Microbiol Ecol 2019; 94:4995906. [PMID: 29767712 DOI: 10.1093/femsec/fiy087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system.
Collapse
Affiliation(s)
- Elena Buelow
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Université Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eline Majoor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob Jl Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc Jm Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, University of Birmingham, UK
| |
Collapse
|
7
|
Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. INFECTION GENETICS AND EVOLUTION 2018; 65:55-64. [PMID: 30006047 DOI: 10.1016/j.meegid.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.
Collapse
|
8
|
Mir RA, Weppelmann TA, Johnson JA, Archer D, Morris JG, Jeong KC. Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. PLoS One 2016; 11:e0163279. [PMID: 27642751 PMCID: PMC5028047 DOI: 10.1371/journal.pone.0163279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities.
Collapse
Affiliation(s)
- Raies A. Mir
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Thomas A. Weppelmann
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States of America
| | - Judith A. Johnson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Douglas Archer
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - KwangCheol Casey Jeong
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Yagüe P, López-García MT, Rioseras B, Sánchez J, Manteca A. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives. FEMS Microbiol Lett 2013; 342:79-88. [PMID: 23496097 DOI: 10.1111/1574-6968.12128] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation.
Collapse
Affiliation(s)
- Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional, and IUBA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
10
|
Wellington EMH, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. THE LANCET. INFECTIOUS DISEASES 2013; 13:155-65. [PMID: 23347633 DOI: 10.1016/s1473-3099(12)70317-1] [Citation(s) in RCA: 627] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.
Collapse
|
11
|
Yagüe P, Lopez-Garcia MT, Rioseras B, Sanchez J, Manteca A. New insights on the development of Streptomyces and their relationships with secondary metabolite production. CURRENT TRENDS IN MICROBIOLOGY 2012; 8:65-73. [PMID: 24707121 PMCID: PMC3972883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Streptomycetes are very important industrial bacteria, which produce two thirds of all clinically relevant secondary metabolites. Furthermore, they produce large numbers of eukaryotic cell differentiation and apoptosis inducers. Streptomyces is a mycelial soil bacterium characterized by a complex developmental cycle that includes programmed cell death (PCD) phenomena and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. Recently, novel aspects concerning differentiation during the presporulation phases were described in solid and liquid cultures, as well as in natural soils. In this review, we analyze the status of knowledge regarding the above-named aspects of Streptomyces differentiation and their relationships with secondary metabolite production.
Collapse
Affiliation(s)
- P Yagüe
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - M T Lopez-Garcia
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - B Rioseras
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - J Sanchez
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - A Manteca
- Area de Microbiologia, Departamento de Biologia Funcional and IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 2011; 108:1955-60. [PMID: 21245311 DOI: 10.1073/pnas.1008441108] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Leaf-cutting ants cultivate the fungus Leucoagaricus gongylophorus, which serves as a major food source. This symbiosis is threatened by microbial pathogens that can severely infect L. gongylophorus. Microbial symbionts of leaf-cutting ants, mainly Pseudonocardia and Streptomyces, support the ants in defending their fungus gardens against infections by supplying antimicrobial and antifungal compounds. The ecological role of microorganisms in the nests of leaf-cutting ants can only be addressed in detail if their secondary metabolites are known. Here, we use an approach for the rapid identification of established bioactive compounds from microorganisms in ecological contexts by combining phylogenetic data, database searches, and liquid chromatography electrospray ionisation high resolution mass spectrometry (LC-ESI-HR-MS) screening. Antimycins A(1)-A(4), valinomycins, and actinomycins were identified in this manner from Streptomyces symbionts of leaf-cutting ants. Matrix-assisted laser desorption ionization (MALDI) imaging revealed the distribution of valinomycin directly on the integument of Acromyrmex echinatior workers. Valinomycins and actinomycins were also directly identified in samples from the waste of A. echinatior and A. niger leaf-cutting ants, suggesting that the compounds exert their antimicrobial and antifungal potential in the nests of leaf-cutting ants. Strong synergistic effects of the secondary meta-bolites produced by ant-associated Streptomyces were observed in the agar diffusion assay against Escovopsis weberi. Actinomycins strongly inhibit soil bacteria as well as other Streptomyces and Pseudonocardia symbionts. The antifungal antimycins are not only active against pathogenic fungi but also the garden fungus L. gongylophorus itself. In conclusion, secondary metabolites of microbial symbionts of leaf-cutting ants contribute to shaping the microbial communities within the nests of leaf-cutting ants.
Collapse
|
13
|
Laskaris P, Tolba S, Calvo-Bado L, Wellington EM, Wellington L. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 2010; 12:783-96. [PMID: 20067498 DOI: 10.1111/j.1462-2920.2009.02125.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.
Collapse
Affiliation(s)
- Paris Laskaris
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | |
Collapse
|
14
|
Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol 2009. [DOI: 10.1007/s10682-009-9319-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Manteca A, Sanchez J. Streptomyces development in colonies and soils. Appl Environ Microbiol 2009; 75:2920-4. [PMID: 19270137 PMCID: PMC2681692 DOI: 10.1128/aem.02288-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 02/20/2009] [Indexed: 11/20/2022] Open
Abstract
Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased.
Collapse
Affiliation(s)
- Angel Manteca
- Area de Microbiologia, Departamento de Biologia Funcional e IUBA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|
16
|
Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P, Wildi W, Vogel TM, Simonet P. Antibiotic-resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci U S A 2008; 105:3957-62. [PMID: 18292221 PMCID: PMC2268783 DOI: 10.1073/pnas.0800072105] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Indexed: 12/22/2022] Open
Abstract
Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-year culture of the transgenic Bt176 corn, which has a blaTEM marker gene, could have had on the soil bacterial community. The bla gene encoding resistance to ampicillin belongs to the beta-lactam antibiotic family, which is widely used in medicine but is readily compromised by bacterial antibiotic resistance. Our results indicate that soil bacteria are naturally resistant to a broad spectrum of beta-lactam antibiotics, including the third cephalosporin generation, which has a slightly stronger discriminating effect on soil isolates than other cephalosporins. These high resistance levels for a wide range of antibiotics are partly due to the polymorphism of bla genes, which occur frequently among soil bacteria. The blaTEM116 gene of the transgenic corn Bt176 investigated here is among those frequently found, thus reducing any risk of introducing a new bacterial resistance trait from the transgenic material. In addition, no significant differences were observed in bacterial antibiotic-resistance levels between transgenic and nontransgenic corn fields, although the bacterial populations were different.
Collapse
Affiliation(s)
- Sandrine Demanèche
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - Hervé Sanguin
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - John Poté
- University of Geneva, Forel Institute, 10 Route de Suisse, 1290 Versoix, Switzerland; and
| | - Elisabeth Navarro
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche 113 IRD, Université Montpellier 2, 34398 Montpellier, France
| | - Dominique Bernillon
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - Patrick Mavingui
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - Walter Wildi
- University of Geneva, Forel Institute, 10 Route de Suisse, 1290 Versoix, Switzerland; and
| | - Timothy M. Vogel
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - Pascal Simonet
- *Université de Lyon, Unité Mixte de Recherche 5557, Ecologie Microbienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| |
Collapse
|
17
|
Recent Advances in Functional Genomics and Proteomics of Plant Associated Microbes. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|