1
|
Chen CX, Koskue V, Duan H, Gao L, Shon HK, Martin GJO, Chen GQ, Freguia S. Impact of nutrient deficiency on biological sewage treatment - Perspectives towards urine source segregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174174. [PMID: 38925384 DOI: 10.1016/j.scitotenv.2024.174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Human urine contains 9 g/L of nitrogen (N) and 0.7 g/L of phosphorus (P). The recovery of N and P from urine helps close the nutrient loop and increase resource circularity in the sewage treatment sector. Urine contributes an average of 80 % N and 50 % P in sewage, whereby urine source segregation could reduce the burden of nutrient removal in sewage treatment plants (STPs) but result in N and P deficiency and unintended negative consequences. This review examines the potential impacts of N and P deficiency on the removal of organic carbon and nutrients, sludge characteristics and greenhouse gas emissions in activated sludge processes. The details of how these impacts affect the operation of STPs were also included. This review helps foresee operational challenges that established STPs may face when dealing with nutrient-deficient sewage in a future where source separation of urine is the norm. The findings indicate that the requirement of nitrification-denitrification and biological P removal processes could shrink at urine segregation above 80 % and 100 %, respectively. Organic carbon, N and biological P removal processes can be severely affected under full urine segregation. The decrease in solid retention time due to urine segregation increases treatment capacity up to 48 %. Sludge flocculation and settleability would deteriorate due to changes in extracellular polymeric substances and induce various forms of bulking. Beneficially, N deficiency reduces nitrous oxide emissions. These findings emphasise the importance of considering and preparing for impacts caused by urine source segregation-induced nutrient deficiency in sewage treatment processes.
Collapse
Affiliation(s)
- Chee Xiang Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Veera Koskue
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Gao
- South East Water Corporation, 2268, Seaford, VIC 3198, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Broadway, NSW 2007, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Rivera-Galindo MA, Aguirre-Garrido F, Garza-Ramos U, Villavicencio-Pulido JG, Fernández Perrino FJ, López-Pérez M. Relevance of the Adjuvant Effect between Cellular Homeostasis and Resistance to Antibiotics in Gram-Negative Bacteria with Pathogenic Capacity: A Study of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:490. [PMID: 38927157 PMCID: PMC11200652 DOI: 10.3390/antibiotics13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action.
Collapse
Affiliation(s)
- Mildred Azucena Rivera-Galindo
- Doctorado en Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Ciudad de México, México Universidad Autónoma Metropolitana-Unidad Xochimilco Calz, del Hueso 1100, Coapa, Villa Quietud, Coyoacán CP 04960, Mexico;
| | - Félix Aguirre-Garrido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca CP 62100, Mexico;
| | - José Geiser Villavicencio-Pulido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma, México City CP 09340, Mexico;
| | - Marcos López-Pérez
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| |
Collapse
|
4
|
Dong Y, Zan J, Lin H. Bioleaching of heavy metals from metal tailings utilizing bacteria and fungi: Mechanisms, strengthen measures, and development prospect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118511. [PMID: 37418918 DOI: 10.1016/j.jenvman.2023.118511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Recovering key metals from secondary sources is an indispensable strategy for preventing metal shortages and reducing the risk of toxic releases into the environment. Metal mineral resources continue to be depleted and the global supply chain will face metal scarcity. The use of microorganisms for metal transformation plays an important role in the bioremediation of secondary resources. It shows great potential for development due to its compatibility with the environment and possible cost effectiveness. The results of the study show that the influence of bioleaching processes and effects are mainly analyzed from microorganisms, mineral properties and leaching environmental conditions. In this review article, we elucidate light on the role and mechanisms of fungi and bacteria involved in extracting different metals from tailings, including acidolysis, complexolysis, redoxolysis, and bioaccumulation. Key process parameters that affect the efficiency based bioleaching are discussed, providing referenceable pathways to improve leaching efficiency. The investigation concludes that exploitation of the functional genetic role of microorganisms and their optimal growth conditions can achieve efficient leaching of metals. It was found that the improvement of microbial performance was achieved at the level of mutagenesis breeding, mixed culture microorganisms, and genetics. Moreover, control of leaching system parameters and removal of passivation films can be achieved by adding biochar and surfactants in the leaching system as an effective means to improve tailings leaching. Knowledge about cells with minerals and their detailed interactions at the molecular level is still relatively scarce and the field could be deepened and this area needs to be further explored in the future. The challenges and the key issues associated with the bioleaching technology development are elaborated as a green and effective bioremediation strategy for the environment and prospects for imminent are also highlighted.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Mineral Processing, Beijing, 102628, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Jinyu Zan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
5
|
Jung H, Inaba Y, West AC, Banta S. Overexpression of quorum sensing genes in Acidithiobacillus ferrooxidans enhances cell attachment and covellite bioleaching. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00789. [PMID: 36923508 PMCID: PMC10009093 DOI: 10.1016/j.btre.2023.e00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Cell adhesion is generally a prerequisite to the microbial bioleaching of sulfide minerals, and surface biofilm formation is modulated via quorum sensing (QS) communication. We explored the impact of the overexpression of endogenous QS machinery on the covellite bioleaching capabilities of Acidithiobacillus ferrooxidans, a representative acidophilic chemolithoautotrophic bacterium. Cells were engineered to overexpress the endogenous qs-I operon or just the afeI gene under control of the tac promoter. Both strains exhibited increased transcriptional gene expression of afeI and improved cell adhesion to covellite, including increased production of extracellular polymeric substances and increased biofilm formation. Under low iron conditions, the improved bioleaching of covellite was more evident when afeI was overexpressed alone as compared to the native operon. These observations demonstrate the potential for the genetic modulation of QS as a mechanism for increasing the bioleaching efficiency of covellite, and potentially other copper sulfide minerals.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Alan C West
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| |
Collapse
|
6
|
Sand W, Schippers A, Hedrich S, Vera M. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A. Appl Microbiol Biotechnol 2022; 106:6933-6952. [PMID: 36194263 PMCID: PMC9592645 DOI: 10.1007/s00253-022-12168-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Abstract Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides’ mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell–cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. Key points • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization
Collapse
Affiliation(s)
- Wolfgang Sand
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany. .,Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol Res 2022; 262:127102. [DOI: 10.1016/j.micres.2022.127102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
|
8
|
Insights into Adaptive Mechanisms of Extreme Acidophiles Based on Quorum Sensing/Quenching-Related Proteins. mSystems 2022; 7:e0149121. [PMID: 35400206 PMCID: PMC9040811 DOI: 10.1128/msystems.01491-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quorum sensing (QS) is a unique mechanism for microorganisms to coordinate their activities through intercellular communication, including four main types of autoinducer-1 (AI-1, namely, N-acyl homoserine lactone [AHL]), AI-2, AI-3, and diffusible signaling factor [DSF]) based on signaling molecules. Quorum quenching (QQ) enzymes can disrupt the QS phenomenon by inactivating signaling molecules. QS is proposed to regulate biofilm formation in extremely acidic environments, but the QS/QQ-related genomic features in most acidophilic bacteria are still largely unknown. Here, genome annotation of 83 acidophiles from the genera Acidithiobacillus, Leptospirillum, Sulfobacillus, and Acidiphilium altogether revealed the existence of AI-1, AI-3, DSF, and AhlD (AHL degradation enzyme). The conservative investigation indicated that some QS/QQ-related proteins harbored key residues or motifs, which were necessary for their activities. Phylogenetic analysis showed that LuxI/R (AI-1 synthase/receptor), QseE/F (two-component system of AI-3), and RpfC/G (two-component system of DSF) exhibited similar evolutionary patterns within each pair. Meanwhile, proteins clustered approximately according to the species taxonomy. The widespread Acidithiobacillus strains, especially A. ferrooxidans, processed AI-1, AI-3, and DSF systems as well as the AhlD enzyme, which were favorable for their mutual information exchange and collective regulation of gene expression. Some members of the Sulfobacillus and Acidiphilium without AHL production capacity contained the AhlD enzyme, which may evolve for niche competition, while DSF in Leptospirillum and Acidithiobacillus could potentially combine with the cyclic diguanylate (c-di-GMP) pathway for self-defense and niche protection. This work will shed light on our understanding of the extent of communication networks and adaptive evolution among acidophiles via QS/QQ coping with environmental changes. IMPORTANCE Understanding cell-cell communication QS is highly relevant for comprehending the regulatory and adaptive mechanisms among acidophiles in extremely acidic ecosystems. Previous studies focused on the existence and functionality of a single QS system in several acidophilic strains. Four representative genera were selected to decipher the distribution and role of QS and QQ integrated with the conservative and evolutionary analysis of related proteins. It was implicated that intra- or intersignaling circuits may work effectively based on different QS types to modulate biofilm formation and energy metabolism among acidophilic microbes. Some individuals could synthesize QQ enzymes for specific QS molecular inactivation to inhibit undesirable acidophile species. This study expanded our knowledge of the fundamental cognition and biological roles underlying the dynamical communication interactions among the coevolving acidophiles and provided a novel perspective for revealing their environmental adaptability.
Collapse
|
9
|
Freitas PNN, Rovida AFDS, Silva CR, Pileggi SAV, Olchanheski LR, Pileggi M. Specific quorum sensing molecules are possibly associated with responses to herbicide toxicity in a Pseudomonas strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117896. [PMID: 34358867 DOI: 10.1016/j.envpol.2021.117896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pesticides contribute to pest control and increase agricultural production; however, they are toxic to non-target organisms, and they contaminate the environment. The exposure of bacteria to these substances can lead to the need for physiological and structural changes for survival, which can be determined by genes whose expression is regulated by quorum sensing (QS). However, it is not yet clear whether these processes can be induced by herbicides. Thus, the aim of this work was to determine whether there is a QS response system in the Pseudomonas fluorescens CMA55 strain that is modulated by herbicides. This strain was isolated from water storage tanks used for washing pesticide packaging and was tested against herbicides containing saflufenacil, glyphosate, sulfentrazone, 2,4-D, and dicamba as active molecules. Our results showed that in the presence of herbicides containing saflufenacil and glyphosate (the latter was not present at the bacterial isolation site) the strain had a profile of QS signaling molecules that may be involved in controlling the production of reactive oxygen species. Alternatively, the same strain, in the presence of sulfentrazone (it was not present at the bacterial isolation site), 2,4-D and dicamba-containing herbicides, presented another profile of molecules that may be involved in different stages of biofilm formation. These findings, as a first screening, suggest that this strain used strategies to activate antioxidant enzymes and biofilm production under the signaling of QS molecules to respond to herbicides, regardless of previous contact, representing a model of phenotypic plasticity for adaptation to agricultural environments that can be used in studies of herbicide bioremediation.
Collapse
Affiliation(s)
- Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Luiz Ricardo Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
10
|
Jung H, Inaba Y, Banta S. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans. Trends Biotechnol 2021; 40:677-692. [PMID: 34794837 DOI: 10.1016/j.tibtech.2021.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
There are several natural and anthropomorphic environments where iron- and/or sulfur-oxidizing bacteria thrive in extremely acidic conditions. These acidophilic chemolithautotrophs play important roles in biogeochemical iron and sulfur cycles, are critical catalysts for industrial metal bioleaching operations, and have underexplored potential in future biotechnological applications. However, their unique growth conditions complicate the development of genetic techniques. Over the past few decades genetic tools have been successfully developed for Acidithiobacillus ferrooxidans, which serves as a model organism that exhibits both iron- and sulfur-oxidizing capabilities. Conjugal transfer of plasmids has enabled gene overexpression, gene knockouts, and some preliminary metabolic engineering. We highlight the development of genetic systems and recent genetic engineering of A. ferrooxidans, and discuss future perspectives.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
11
|
Diffusible signal factor signaling controls bioleaching activity and niche protection in the acidophilic, mineral-oxidizing leptospirilli. Sci Rep 2021; 11:16275. [PMID: 34381075 PMCID: PMC8357829 DOI: 10.1038/s41598-021-95324-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Bioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.
Collapse
|
12
|
Quorum Sensing Signaling Molecules Positively Regulate c-di-GMP Effector PelD Encoding Gene and PEL Exopolysaccharide Biosynthesis in Extremophile Bacterium Acidithiobacillus thiooxidans. Genes (Basel) 2021; 12:genes12010069. [PMID: 33430222 PMCID: PMC7825692 DOI: 10.3390/genes12010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023] Open
Abstract
Acidithiobacillus species are fundamental players in biofilm formation by acidophile bioleaching communities. It has been previously reported that Acidithiobacillus ferrooxidans possesses a functional quorum sensing mediated by acyl-homoserine lactones (AHL), involved in biofilm formation, and AHLs naturally produced by Acidithiobacillus species also induce biofilm formation in Acidithiobacillus thiooxidans. A c-di-GMP pathway has been characterized in Acidithiobacillus species but it has been pointed out that the c-di-GMP effector PelD and pel-like operon are only present in the sulfur oxidizers such as A. thiooxidans. PEL exopolysaccharide has been recently involved in biofilm formation in this Acidithiobacillus species. Here, by comparing wild type and ΔpelD strains through mechanical analysis of biofilm-cells detachment, fluorescence microscopy and qPCR experiments, the structural role of PEL exopolysaccharide and the molecular network involved for its biosynthesis by A. thiooxidans were tackled. Besides, the effect of AHLs on PEL exopolysaccharide production was assessed. Mechanical resistance experiments indicated that the loss of PEL exopolysaccharide produces fragile A. thiooxidans biofilms. qRT-PCR analysis established that AHLs induce the transcription of pelA and pelD genes while epifluorescence microscopy studies revealed that PEL exopolysaccharide was required for the development of AHL-induced biofilms. Altogether these results reveal for the first time that AHLs positively regulate pel genes and participate in the molecular network for PEL exopolysaccharide biosynthesis by A. thiooxidans.
Collapse
|
13
|
Kondratyeva LM, Shadrina OS, Litvinenko ZN, Golubeva EM, Konovalova NS. Microbial Biofilms in the Proshchal’naya Karst Cave (Far East, Russia). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Gao XY, Fu CA, Hao L, Gu XF, Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Lin JQ, Chen LX. The substrate-dependent regulatory effects of the AfeI/R system in Acidithiobacillus ferrooxidans reveals the novel regulation strategy of quorum sensing in acidophiles. Environ Microbiol 2020; 23:757-773. [PMID: 32656931 PMCID: PMC7984328 DOI: 10.1111/1462-2920.15163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
A LuxI/R‐like quorum sensing (QS) system (AfeI/R) has been reported in the acidophilic and chemoautotrophic Acidithiobacillus spp. However, the function of AfeI/R remains unclear because of the difficulties in the genetic manipulation of these bacteria. Here, we constructed different afeI mutants of the sulfur‐ and iron‐oxidizer A. ferrooxidans, identified the N‐acyl homoserine lactones (acyl‐HSLs) synthesized by AfeI, and determined the regulatory effects of AfeI/R on genes expression, extracellular polymeric substance synthesis, energy metabolism, cell growth and population density of A. ferrooxidans in different energy substrates. Acyl‐HSLs‐mediated distinct regulation strategies were employed to influence bacterial metabolism and cell growth of A. ferrooxidans cultivated in either sulfur or ferrous iron. Based on these findings, an energy‐substrate‐dependent regulation mode of AfeI/R in A. ferrooxidans was illuminated that AfeI/R could produce different types of acyl‐HSLs and employ specific acyl‐HSLs to regulate specific genes in response to different energy substrates. The discovery of the AfeI/R‐mediated substrate‐dependent regulatory mode expands our knowledge on the function of QS system in the chemoautotrophic sulfur‐ and ferrous iron‐oxidizing bacteria, and provides new insights in understanding energy metabolism modulation, population control, bacteria‐driven bioleaching process, and the coevolution between the acidophiles and their acidic habitats.
Collapse
Affiliation(s)
- Xue-Yan Gao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Chang-Ai Fu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guiyang, 550081, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Xiu-Feng Gu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China
| |
Collapse
|
15
|
Vargas-Straube MJ, Beard S, Norambuena R, Paradela A, Vera M, Jerez CA. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur. J Proteomics 2020; 225:103874. [PMID: 32569817 DOI: 10.1016/j.jprot.2020.103874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Acidithiobacillus ferrooxidans is an acidophilic bacterium able to grow in environments with high concentrations of metals. It is a chemolithoautotroph able to form biofilms on the surface of solid minerals to obtain its energy. The response of both planktonic and sessile cells of A. ferrooxidans ATCC 23270 grown in elemental sulfur and adapted to high copper concentration was analyzed by quantitative proteomics. It was found that 137 proteins varied their abundance when comparing both lifestyles. Copper effllux proteins, some subunits of the ATP synthase complex, porins, and proteins involved in cell wall modification increased their abundance in copper-adapted sessile lifestyle cells. On the other hand, planktonic copper-adapted cells showed increased levels of proteins such as: cupreredoxins involved in copper cell sequestration, some proteins related to sulfur metabolism, those involved in biosynthesis and transport of lipopolysaccharides, and in assembly of type IV pili. During copper adaptation a decreased formation of biofilms was measured as determined by epifluorescence microscopy. This was apparently due not only to a diminished number of sessile cells but also to their exopolysaccharides production. This is the first study showing that copper, a prevalent metal in biomining environments causes dispersion of A. ferrooxidans biofilms. SIGNIFICANCE: Copper is a metal frequently found in high concentrations at mining environments inhabitated by acidophilic microorganisms. Copper resistance determinants of A. ferrooxidans have been previously studied in planktonic cells. Although biofilms are recurrent in these types of environments, the effect of copper on their formation has not been studied so far. The results obtained indicate that high concentrations of copper reduce the capacity of A. ferrooxidans ATCC 23270 to form biofilms on sulfur. These findings may be relevant to consider for a bacterium widely used in copper bioleaching processes.
Collapse
Affiliation(s)
- M J Vargas-Straube
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - S Beard
- Fundación Ciencia y Vida, Santiago, Chile
| | - R Norambuena
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - A Paradela
- Proteomics Laboratory, National Biotechnology Center, CSIC, Madrid, Spain
| | - M Vera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.; Department of Hydraulic and Environmental Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile..
| |
Collapse
|
16
|
Novel Strategy for Improvement of the Bioleaching Efficiency of Acidithiobacillus ferrooxidans Based on the AfeI/R Quorum Sensing System. MINERALS 2020. [DOI: 10.3390/min10030222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acidithiobacillus ferrooxidans is an acidophilic and chemolithotrophic sulfur- and iron-oxidizing bacterium that has been widely used in the bioleaching process for extracting metals. Extracellular polymeric substances (EPS) are essential for bacteria-ore interactions, and the regulation of EPS synthesis could be an important way of influencing the efficiency of the bioleaching process. Therefore, exploring and utilizing the regulatory pathways of EPS synthesis to improve the bacterial bioleaching capability have posed a challenge in the study and application of bioleaching bacteria. Here, several engineering strains were constructed using genetic manipulation methods. And we revealed the regulatory function of the AfeI/R quorum sensing (QS) system in EPS synthesis and biofilm formation of A. ferrooxidans, and the AfeI/R-mediated EPS synthesis could influence bacteria-substrate interactions and the efficiency of bioleaching. Finally, an AfeI/R-mediated bioleaching model was proposed to illustrate the role of QS system in this process. This study provided new insights into and clues for developing highly efficient bioleaching bacteria and modulating the bioleaching process.
Collapse
|
17
|
Characterization and Transcriptome Studies of Autoinducer Synthase Gene from Multidrug Resistant Acinetobacter baumannii Strain 863. Genes (Basel) 2019; 10:genes10040282. [PMID: 30965610 PMCID: PMC6523755 DOI: 10.3390/genes10040282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 01/17/2023] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
Collapse
|
18
|
Moya-Beltrán A, Rojas-Villalobos C, Díaz M, Guiliani N, Quatrini R, Castro M. Nucleotide Second Messenger-Based Signaling in Extreme Acidophiles of the Acidithiobacillus Species Complex: Partition Between the Core and Variable Gene Complements. Front Microbiol 2019; 10:381. [PMID: 30899248 PMCID: PMC6416229 DOI: 10.3389/fmicb.2019.00381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Cyclic and linear nucleotides are key elements of the signal transduction networks linking perception of the environment to specific cellular behavior of prokaryotes. These molecular mechanisms are particularly important in bacteria exposed to different, and frequently simultaneous, types of extreme conditions. This is the case in acidithiobacilli, a group of extremophilic bacteria thriving in highly acidic biotopes, that must also cope with significant variations in temperature, osmotic potentials and concentrations of various transition metals and metalloids. Environmental cues sensed by bacteria are transduced into differential levels of nucleotides acting as intracellular second messengers, promoting the activation or inhibition of target components and eliciting different output phenotypes. Cyclic (c) di-GMP, one of the most common bacterial second messengers, plays a key role in lifestyle changes in many bacteria, including acidithiobacilli. The presence of functional c-di-GMP-dependent signal transduction pathways in representative strains of the best-known linages of this species complex has been reported. However, a comprehensive panorama of the c-di-GMP modulated networks, the cognate input signals and output responses, are still missing for this group of extremophiles. Moreover, little fundamental understanding has been gathered for other nucleotides acting as second messengers. Taking advantage of the increasing number of sequenced genomes of the taxon, here we address the challenge of disentangling the nucleotide-driven signal transduction pathways in this group of polyextremophiles using comparative genomic tools and strategies. Results indicate that the acidithiobacilli possess all the genetic elements required to establish functional transduction pathways based in three different nucleotide-second messengers: (p)ppGpp, cyclic AMP (cAMP), and c-di-GMP. The elements related with the metabolism and transduction of (p)ppGpp and cAMP appear highly conserved, integrating signals related with nutrient starvation and polyphosphate metabolism, respectively. In contrast, c-di-GMP networks appear diverse and complex, differing both at the species and strain levels. Molecular elements of c-di-GMP metabolism and transduction were mostly found scattered along the flexible genome of the acidithiobacilli, allowing the identification of probable control modules that could be critical for substrate colonization, biofilm development and intercellular interactions. These may ultimately convey increased endurance to environmental stress and increased potential for gene sharing and adaptation to changing conditions.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Camila Rojas-Villalobos
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Mauricio Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nicolás Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Matías Castro
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
19
|
Assessment of Bioleaching Microbial Community Structure and Function Based on Next-Generation Sequencing Technologies. MINERALS 2018. [DOI: 10.3390/min8120596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is widely known that bioleaching microorganisms have to cope with the complex extreme environment in which microbial ecology relating to community structure and function varies across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still a challenge. To address this challenge, numerous technologies have been developed. In recent years, high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial ecology. The next-generation sequencing technology allowing processing DNA sequences can produce available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high efficiency in quantifying the changing expression level of each transcript under different conditions. It has been demonstrated as a powerful tool for dissecting the relationship between genotype and phenotype, leading to interpreting functional elements of the genome and revealing molecular mechanisms of adaption. This review aims to describe the high-throughput sequencing approach for bioleaching environmental microorganisms, particularly focusing on its application associated with challenges.
Collapse
|
20
|
Marques CR. Extremophilic Microfactories: Applications in Metal and Radionuclide Bioremediation. Front Microbiol 2018; 9:1191. [PMID: 29910794 PMCID: PMC5992296 DOI: 10.3389/fmicb.2018.01191] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Metals and radionuclides (M&Rs) are a worldwide concern claiming for resilient, efficient, and sustainable clean-up measures aligned with environmental protection goals and global change constraints. The unique defense mechanisms of extremophilic bacteria and archaea have been proving usefulness towards M&Rs bioremediation. Hence, extremophiles can be viewed as microfactories capable of providing specific and controlled services (i.e., genetic/metabolic mechanisms) and/or products (e.g., biomolecules) for that purpose. However, the natural physiological plasticity of such extremophilic microfactories can be further explored to nourish different hallmarks of M&R bioremediation, which are scantly approached in the literature and were never integrated. Therefore, this review not only briefly describes major valuable extremophilic pathways for M&R bioremediation, as it highlights the advances, challenges and gaps from the interplay of ‘omics’ and biological engineering to improve extremophilic microfactories performance for M&R clean-up. Microfactories’ potentialities are also envisaged to close the M&R bioremediation processes and shift the classical idea of never ‘getting rid’ of M&Rs into making them ‘the belle of the ball’ through bio-recycling and bio-recovering techniques.
Collapse
Affiliation(s)
- Catarina R Marques
- Departamento de Biologia and Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Hart A, Cortés MP, Latorre M, Martinez S. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. PLoS One 2018; 13:e0195869. [PMID: 29742107 PMCID: PMC5942774 DOI: 10.1371/journal.pone.0195869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.
Collapse
Affiliation(s)
- Andrew Hart
- UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Macul, Santiago, Chile
- Universidad de O'Higgins, Instituto de Ciencias de la Ingeniería, Rancagua, Chile
- * E-mail: (ML); (SM)
| | - Servet Martinez
- Departamento de Ingeniería Matemática, UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
- * E-mail: (ML); (SM)
| |
Collapse
|
22
|
Acid Rock Drainage or Not—Oxidative vs. Reductive Biofilms—A Microbial Question. MINERALS 2018. [DOI: 10.3390/min8050199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018; 22:563-579. [PMID: 29696439 DOI: 10.1007/s00792-018-1024-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
The widely distributed Acidithiobacillus ferrooxidans (A. ferrooxidans) lives in extremely acidic conditions by fixing CO2 and nitrogen, and by obtaining energy from Fe2+ oxidation with either downhill or uphill electron transfer pathway and from reduced sulfur oxidation. A. ferrooxidans exists as different genomovars and its genome size is 2.89-4.18 Mb. The chemotactic movement of A. ferrooxidans is regulated by quorum sensing. A. ferrooxidans shows weak magnetotaxis due to formation of 15-70 nm magnetite magnetosomes with surface functional groups. The room- and low-temperature magnetic features of A. ferrooxidans are different from other magnetotactic bacteria. A. ferrooxidans has potential for removing sulfur from solids and gases, metals recycling from metal-bearing ores, electric wastes and sludge, biochemical production synthesizing, and metal workpiece machining.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China.
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| |
Collapse
|
24
|
Tang D, Duan J, Gao Q, Zhao Y, Li Y, Chen P, Zhou J, Wu Z, Xu R, Li H. Strand-specific RNA-seq analysis of the Acidithiobacillus ferrooxidans transcriptome in response to magnesium stress. Arch Microbiol 2018; 200:1025-1035. [PMID: 29637290 DOI: 10.1007/s00203-018-1503-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 12/24/2022]
Abstract
Bioleaching is a promising process for 350 million tons Jinchuan low-grade pentlandite. But, Jinchuan pentlandite has lots of magnesium and high concentration of Mg2+ is harmful to bioleaching microorganisms. Thus, finding a way to improve the adaption of microorganisms to Mg2+ is a key for bioleaching. In the study, we found that oxidizing activity, bioleaching ability and biofilm formation of A.f were inhibited by Mg2+ stress. In addition, we analyzed mRNA and small RNA (sRNA) of Acidithiobacillus ferrooxidans (A.f) under Mg2+ stress by strand-specific RNA-sequencing (ssRNA-seq). After the bioinformatics process, 2475 coding genes were obtained, and there were 33 differential expression genes (DEGs) in 0.1 M-VS-Con, including 28 down-regulated and 5 up-regulated, whereas 52 DEGs were obtained in 0.5 M-VS-Con, including 28 down-regulated and 24 up-regulated. Gene ontology analysis showed most of DEGs were involved in catalytic activity, metabolic process and single-organism process. Furthermore, we identified 636 sRNA and some differential expression sRNA that may respond to Mg2+ stress. Further analysis of DEGs suggested that Mg2+ stress reduced biofilm formation perhaps through inhibiting Type IV Pili-related gene expression and inhibited bacterial activity perhaps through affecting carbon fixation. The study provided the foundation to understand the mechanisms of Mg2+ resistance in A.f and may be helpful to improve bioleaching ability for pentlandit.
Collapse
Affiliation(s)
- Deping Tang
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, People's Republic of China.,The School of Chemical and Biological Engineering, Lanzhou Jiaotong University, West Anning Road No. 88, Lanzhou, 730070, People's Republic of China
| | - Jiangong Duan
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, People's Republic of China
| | - Qiyu Gao
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, People's Republic of China
| | - Yang Zhao
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, People's Republic of China
| | - Yang Li
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Peng Chen
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Jianping Zhou
- Institute of Biology, Gansu Academy of Sciences, South Dingxi Road No. 229, Lanzhou, 730000, People's Republic of China
| | - Zhengrong Wu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Ruixiang Xu
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Hongyu Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000, People's Republic of China. .,Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
25
|
Biofilm Formation by the Acidophile Bacterium Acidithiobacillus thiooxidans Involves c-di-GMP Pathway and Pel exopolysaccharide. Genes (Basel) 2018; 9:genes9020113. [PMID: 29466318 PMCID: PMC5852609 DOI: 10.3390/genes9020113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Acidophile bacteria belonging to the Acidithiobacillus genus are pivotal players for the bioleaching of metallic values such as copper. Cell adherence to ores and biofilm formation, mediated by the production of extracellular polymeric substances, strongly favors bioleaching activity. In recent years, the second messenger cyclic diguanylate (c-di-GMP) has emerged as a central regulator for biofilm formation in bacteria. C-di-GMP pathways have been reported in different Acidithiobacillus species; however, c-di-GMP effectors and signal transduction networks are still largely uncharacterized in these extremophile species. Here we investigated Pel exopolysaccharide and its role in biofilm formation by sulfur-oxidizing species Acidithiobacillusthiooxidans. We identified 39 open reading frames (ORFs) encoding proteins involved in c-di-GMP metabolism and signal transduction, including the c-di-GMP effector protein PelD, a structural component of the biosynthesis apparatus for Pel exopolysaccharide production. We found that intracellular c-di-GMP concentrations and transcription levels of pel genes were higher in At. thiooxidans biofilm cells compared to planktonic ones. By developing an At. thiooxidans ΔpelD null-mutant strain we revealed that Pel exopolysaccharide is involved in biofilm structure and development. Further studies are still necessary to understand how Pel biosynthesis is regulated in Acidithiobacillus species, nevertheless these results represent the first characterization of a c-di-GMP effector protein involved in biofilm formation by acidophile species.
Collapse
|
26
|
Govender-Opitz E, Kotsiopoulos A, Bryan CG, Harrison ST. Modelling microbial transport in simulated low-grade heap bioleaching systems: The hydrodynamic dispersion model. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Torres M, Uroz S, Salto R, Fauchery L, Quesada E, Llamas I. HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci Rep 2017; 7:943. [PMID: 28424524 PMCID: PMC5430456 DOI: 10.1038/s41598-017-01176-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
The screening of a metagenomic library of 250,000 clones generated from a hypersaline soil (Spain) allowed us to identify a single positive clone which confers the ability to degrade N-acyl homoserine lactones (AHLs). The sequencing of the fosmid revealed a 42,318 bp environmental insert characterized by 46 ORFs. The subcloning of these ORFs demonstrated that a single gene (hqiA) allowed AHL degradation. Enzymatic analysis using purified HqiA and HPLC/MS revealed that this protein has lactonase activity on a broad range of AHLs. The introduction of hqiA in the plant pathogen Pectobacterium carotovorum efficiently interfered with both the synthesis of AHLs and quorum-sensing regulated functions, such as swarming motility and the production of maceration enzymes. Bioinformatic analyses highlighted that HqiA showed no sequence homology with the known prototypic AHL lactonases or acylases, thus expanding the AHL-degrading enzymes with a new family related to the cysteine hydrolase (CHase) group. The complete sequence analysis of the fosmid showed that 31 ORFs out of the 46 identified were related to Deltaproteobacteria, whilst many intercalated ORFs presented high homology with other taxa. In this sense, hqiA appeared to be assigned to the Hyphomonas genus (Alphaproteobacteria), suggesting that horizontal gene transfer had occurred.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Stéphane Uroz
- UMR 1136 INRA-Université de Lorraine Interactions Arbres-Microorganismes, Centre INRA de Nancy, Champenoux, France
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Laure Fauchery
- UMR 1136 INRA-Université de Lorraine Interactions Arbres-Microorganismes, Centre INRA de Nancy, Champenoux, France
| | - Emilia Quesada
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain. .,Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.
| |
Collapse
|
28
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
29
|
Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog. Front Microbiol 2016; 7:1365. [PMID: 27683573 PMCID: PMC5021923 DOI: 10.3389/fmicb.2016.01365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.
Collapse
Affiliation(s)
- Sigde Mamani
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche ScientifiqueMarseille, France; Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de ChileSantiago, Chile
| | - Danielle Moinier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Yann Denis
- Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Laurent Soulère
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Yves Queneau
- Université Lyon, Institut National des Sciences Appliquées de Lyon, UMR 5246, Centre National de la Recherche Scientifique, Université Lyon 1, École Supérieure de Chimie Physique Electronique de Lyon, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires Villeurbanne, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Violaine Bonnefoy
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille, France
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universitad de Chile Santiago, Chile
| |
Collapse
|
30
|
Cárdenas JP, Quatrini R, Holmes DS. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Res Microbiol 2016; 167:529-38. [PMID: 27394987 DOI: 10.1016/j.resmic.2016.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed.
Collapse
Affiliation(s)
| | | | - David S Holmes
- Fundación Ciencia & Vida, Santiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
31
|
Jorge AB, Hazael R. Use ofShewanella oneidensisfor Energy Conversion in Microbial Fuel Cells. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A. Belen Jorge
- Materials Research Institute; School of Engineering and Materials Sciences; Queen Mary University of London; Mile End Rd E1 4NS United Kingdom
| | - Rachael Hazael
- Christopher Ingold Building; Department of Chemistry; University College London; 20 Gordon Street WC1H 0AJ United Kingdom
| |
Collapse
|
32
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
33
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Zhao Y, Chen P, Nan W, Zhi D, Liu R, Li H. The use of (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone for controlling acid mine drainage through the inhibition of Acidithiobacillus ferrooxidans biofilm formation. BIORESOURCE TECHNOLOGY 2015; 186:52-57. [PMID: 25802048 DOI: 10.1016/j.biortech.2015.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/06/2015] [Accepted: 02/08/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to determine whether acid mine drainage (AMD) production can be decreased by (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone (furanone C-30) in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans). The effects of furanone C-30 on A. ferrooxidans biofilm production were determined by crystal violet staining and confocal laser scanning microscopy (CLSM). Biofilm-related gene expression was investigated using real-time RT-PCR. Finally, the effects of furanone C-30 on AMD production were evaluated. The results show that furanone C-30 inhibits the production of extracellular polymeric substances (EPS) and biofilm formation and significantly down-regulates the expression of biofilm-related genes. The decreased EPS production led to reduced pentlandite attachment and biofilm formation on pentlandite. Furthermore, the dissolution of both nickel and copper were inhibited by furanone C-30 without new acid formation. This study provides a promising biochemical method to control AMD.
Collapse
Affiliation(s)
- Yang Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | - Peng Chen
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Wenbin Nan
- Department of Life Science and Technology, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, PR China
| | - Dejuan Zhi
- Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China
| | - Ronghui Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China
| | - Hongyu Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, PR China; Institute for Microbial and Biochemical Pharmacy, School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou 730020, PR China.
| |
Collapse
|
35
|
Castro M, Deane SM, Ruiz L, Rawlings DE, Guiliani N. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus. PLoS One 2015; 10:e0116399. [PMID: 25689133 PMCID: PMC4331095 DOI: 10.1371/journal.pone.0116399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023] Open
Abstract
An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.
Collapse
Affiliation(s)
- Matías Castro
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Lina Ruiz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Douglas E. Rawlings
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Nicolas Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
36
|
Bellenberg S, Barthen R, Boretska M, Zhang R, Sand W, Vera M. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species. Appl Microbiol Biotechnol 2014; 99:1435-49. [PMID: 25381488 DOI: 10.1007/s00253-014-6180-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
In this study, the process of pyrite colonization and leaching by three iron-oxidizing Acidithiobacillus species was investigated by fluorescence microscopy, bacterial attachment, and leaching assays. Within the first 4-5 days, only the biofilm subpopulation was responsible for pyrite dissolution. Pyrite-grown cells, in contrast to iron-grown cells, were able to oxidize iron(II) ions or pyrite after 24 h iron starvation and incubation with 1 mM H₂O₂, indicating that these cells were adapted to the presence of enhanced levels of reactive oxygen species (ROS), which are generated on metal sulfide surfaces. Acidithiobacillus ferrivorans SS3 and Acidithiobacillus ferrooxidans R1 showed enhanced pyrite colonization and biofilm formation compared to A. ferrooxidans (T). A broad range of factors influencing the biofilm formation on pyrite were also identified, some of them were strain-specific. Cultivation at non-optimum growth temperatures or increased ionic strength led to a decreased colonization of pyrite. The presence of iron(III) ions increased pyrite colonization, especially when pyrite-grown cells were used, while the addition of 20 mM copper(II) ions resulted in reduced biofilm formation on pyrite. This observation correlated with a different extracellular polymeric substance (EPS) composition of copper-exposed cells. Interestingly, the addition of 1 mM sodium glucuronate in combination with iron(III) ions led to a 5-fold and 7-fold increased cell attachment after 1 and 8 days of incubation, respectively, in A. ferrooxidans (T). In addition, sodium glucuronate addition enhanced pyrite dissolution by 25%.
Collapse
Affiliation(s)
- Sören Bellenberg
- Fakultät für Chemie, Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen Universitätsstr 5, 45141, Essen, Germany,
| | | | | | | | | | | |
Collapse
|
37
|
Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Res Microbiol 2014; 165:773-81. [PMID: 25172572 DOI: 10.1016/j.resmic.2014.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022]
Abstract
Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes.
Collapse
|
38
|
Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 2014; 98:8481-95. [DOI: 10.1007/s00253-014-6005-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
|
39
|
Travisany D, Cortés MP, Latorre M, Di Genova A, Budinich M, Bobadilla-Fazzini RA, Parada P, González M, Maass A. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res Microbiol 2014; 165:743-52. [PMID: 25148779 DOI: 10.1016/j.resmic.2014.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
Abstract
Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments.
Collapse
Affiliation(s)
- Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Mauricio Latorre
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | | | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | - Mauricio González
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
40
|
Ossa Henao DM, Vicentini R, Rodrigues VD, Bevilaqua D, Ottoboni LMM. Differential gene expression in Acidithiobacillus ferrooxidans LR planktonic and attached cells in the presence of chalcopyrite. J Basic Microbiol 2014; 54:650-7. [PMID: 24523248 DOI: 10.1002/jobm.201300871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/25/2013] [Indexed: 11/06/2022]
Abstract
Acidithiobacillus ferrooxidans is commonly used in bioleaching operations to recover copper from sulfide ores. It is commonly accepted that A. ferrooxidans attaches to mineral surfaces by means of extracellular polymeric substances (EPS), however the role of type IV pili and tight adherence genes in this process is poorly understood. Genes related to the formation of type IV pili and tight adherence were identified in the genome of the bacterium, and in this work, we show that A. ferrooxidans actively expresses these genes, as demonstrated by quantitative real-time PCR analysis using cells incubated with chalcopyrite for 2 h. Significant differences in gene expression were observed between planktonic and adhered cells, with the level of expression being much greater in planktonic cells. These results might indicate that planktonic cells can actively adhere to the substrate. A bioinformatics analysis of interaction networks of the tight adherence and type IV pilus assembly genes revealed a strong relationship between conjugation systems (tra operon) and regulatory systems (PilR, PilS).
Collapse
Affiliation(s)
- Diana Marcela Ossa Henao
- Departamento de Bioquímica e Química Tecnológica, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Araraquara, SP, Brazil; Laboratorio de Gestión Ambiental, Departamento de Ingeniería Industrial, Universidad Autónoma del Caribe - UAC, Barranquilla, Colombia
| | | | | | | | | |
Collapse
|
41
|
Anand S, Singh D, Avadhanula M, Marka S. Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Compr Rev Food Sci Food Saf 2013; 13:18-33. [PMID: 33412692 DOI: 10.1111/1541-4337.12048] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/13/2013] [Indexed: 12/13/2022]
Abstract
Membrane fouling is a major operational problem that leads to reduced membrane performance and premature replacement of membranes. Bacterial biofilms developed on reverse osmosis membranes can cause severe flux declines during whey processing. Various types of biological, physical, and chemical factors regulate the formation of biofilms. Extracellular polymeric substances produced by constitutive microflora provide an effective barrier for the embedded cells. Cultural and microscopic techniques also revealed the presence of biofilms with attached bacterial cells on membrane surfaces. Presence of biofilms, despite regular cleaning processes, reflects ineffectiveness of cleaning agents. Cleaning efficiency depends upon factors such as pH of the cleaning agent, temperature, pressure, cleaning agent dose, optimum cleaning time, and cross-flow velocity during cleaning. Among different cleaning agents, surfactants help to prevent bacterial attachment to surfaces by reducing the surface tension of water and interfacial tension between the layers. Enzymes mixed with surfactants and chelating agents can be used to penetrate the biofilm matrix formed by microbes. Recent studies have shown the role of quorum-sensing-based cell-to-cell signaling, which provides communication within bacterial cells to form a mature biofilm, and also the role of applying quorum inhibitors to prevent biofilm formation. Major cleaning applications are also summarized in Table .
Collapse
Affiliation(s)
- Sanjeev Anand
- Midwest Dairy Foods Research Center, Dairy Science Dept., South Dakota State Univ., Brookings, SD 57007, U.S.A
| | - Diwakar Singh
- Midwest Dairy Foods Research Center, Dairy Science Dept., South Dakota State Univ., Brookings, SD 57007, U.S.A
| | - Mallika Avadhanula
- Midwest Dairy Foods Research Center, Dairy Science Dept., South Dakota State Univ., Brookings, SD 57007, U.S.A
| | - Sowmya Marka
- Midwest Dairy Foods Research Center, Dairy Science Dept., South Dakota State Univ., Brookings, SD 57007, U.S.A
| |
Collapse
|
42
|
An N-acyl homoserine lactone synthase in the ammonia-oxidizing bacterium Nitrosospira multiformis. Appl Environ Microbiol 2013; 80:951-8. [PMID: 24271173 DOI: 10.1128/aem.03361-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemolithoautotrophic bacterium Nitrosospira multiformis is involved in affecting the process of nitrogen cycling. Here we report the existence and characterization of a functional quorum sensing signal synthase in N. multiformis. One gene (nmuI) playing a role in generating a protein with high levels of similarity to N-acyl homoserine lactone (AHL) synthase protein families was identified. Two AHLs (C14-AHL and 3-oxo-C14-AHL) were detected using an AHL biosensor and liquid chromatography-mass spectrometry (LC-MS) when nmuI, producing a LuxI homologue, was introduced into Escherichia coli. However, by extracting N. multiformis culture supernatants with acidified ethyl acetate, no AHL product was obtained that was capable of activating the biosensor or being detected by LC-MS. According to reverse transcription-PCR, the nmuI gene is transcribed in N. multiformis, and a LuxR homolog (NmuR) in this ammonia-oxidizing strain showed great sensitivity to long-chain AHL signals by solubility assay. A degradation experiment demonstrated that the absence of AHL signals might be attributed to the possible AHL-inactivating activities of this strain. To summarize, an AHL synthase gene (nmuI) acting as a long-chain AHL producer has been found in a chemolithotrophic ammonia-oxidizing microorganism, and the results provide an opportunity to complete the knowledge of the regulatory networks in N. multiformis.
Collapse
|
43
|
Banderas A, Guiliani N. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans. Int J Mol Sci 2013; 14:16901-16. [PMID: 23959118 PMCID: PMC3759942 DOI: 10.3390/ijms140816901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022] Open
Abstract
The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.
Collapse
Affiliation(s)
- Alvaro Banderas
- Authors to whom correspondence should be addressed; E-Mails: (A.B.); (N.G.); Tel.: +49-06221-546846 (A.B.); +56-2-2978-7241 (N.G.)
| | - Nicolas Guiliani
- Laboratory of Bacterial Communication, Department of Biology, Faculty of Sciences, University of Chile, Santiago 780-0024, Chile
| |
Collapse
|
44
|
Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 2013; 97:7529-41. [DOI: 10.1007/s00253-013-4954-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 01/31/2023]
|
45
|
Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster. Appl Environ Microbiol 2013; 79:4421-32. [PMID: 23686262 DOI: 10.1128/aem.00635-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN.
Collapse
|
46
|
Vera M, Krok B, Bellenberg S, Sand W, Poetsch A. Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 2013; 13:1133-44. [PMID: 23319327 DOI: 10.1002/pmic.201200386] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic, mesophilic Gram-negative bacterium able to oxidize ferrous iron, sulfur, and metal sulfides. It forms monolayer biofilms where extracellular polymeric substances are essential for cell attachment and metal sulfide leaching. High-throughput proteomics has been applied to study the early process of biofilm formation on pyrite by At. ferrooxidans ATCC 23270. After 24 h contact with the mineral, planktonic and sessile (biofilm) cell subpopulations were separated and proteins extracted. In total, 1319 proteins were detected in both samples. Sixty-two of these were found to be increased in biofilms. Additionally, 25 proteins were found to be decreased in the biofilm cell subpopulation. Three transcriptional factors were found to be increased or decreased among both cell subpopulations, suggesting their potential involvement in the regulation of these processes. Although no significant differences were observed for the known proteins related to ferrous iron and sulfur oxidation pathways among both cell subpopulations, the results presented here show that the early steps of At. ferrooxidans biofilm formation consist of a set of metabolic adaptations following cell attachment to the mineral surface. Functions such as extracellular polymeric substances biosynthesis seem to be pivotal. This first high-throughput proteomic study may also contribute to the annotation of several unknown At. ferrooxidans proteins found.
Collapse
Affiliation(s)
- Mario Vera
- Biofilm Centre, University of Duisburg-Essen, Duisburg-Essen, Germany
| | | | | | | | | |
Collapse
|
47
|
González A, Bellenberg S, Mamani S, Ruiz L, Echeverría A, Soulère L, Doutheau A, Demergasso C, Sand W, Queneau Y, Vera M, Guiliani N. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 2012; 97:3729-37. [PMID: 22752316 DOI: 10.1007/s00253-012-4229-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 01/22/2023]
Abstract
Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.
Collapse
Affiliation(s)
- Alex González
- Laboratory of Bacterial Communication, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brune KD, Bayer TS. Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 2012; 3:203. [PMID: 22679443 PMCID: PMC3367458 DOI: 10.3389/fmicb.2012.00203] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/17/2012] [Indexed: 01/28/2023] Open
Abstract
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.
Collapse
Affiliation(s)
- Karl D Brune
- Centre for Synthetic Biology and Innovation, Division of Molecular Biosciences, Imperial College London, London, UK
| | | |
Collapse
|
49
|
Quorum quenching revisited--from signal decays to signalling confusion. SENSORS 2012; 12:4661-96. [PMID: 22666051 PMCID: PMC3355433 DOI: 10.3390/s120404661] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 12/12/2022]
Abstract
In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing), others are interrupting the communication (quorum quenching), thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.
Collapse
|
50
|
Ruiz LM, Castro M, Barriga A, Jerez CA, Guiliani N. The extremophile Acidithiobacillus ferrooxidans possesses a c-di-GMP signalling pathway that could play a significant role during bioleaching of minerals. Lett Appl Microbiol 2011; 54:133-9. [PMID: 22098310 DOI: 10.1111/j.1472-765x.2011.03180.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The primary goal of this study was to characterize the existence of a functional c-di-GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans. METHODS AND RESULTS A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c-di-GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c-di-GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c-di-GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells. CONCLUSIONS At. ferrooxidans possesses a functional c-di-GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first global study about the c-di-GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro-organisms during the bioleaching process.
Collapse
Affiliation(s)
- L M Ruiz
- Laboratorio de Comunicaciones Bacterianas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|