1
|
Kumar V, Kumar P, Maity SK, Agrawal D, Narisetty V, Jacob S, Kumar G, Bhatia SK, Kumar D, Vivekanand V. Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:72. [PMID: 38811976 PMCID: PMC11137917 DOI: 10.1186/s13068-024-02508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Pankaj Kumar
- Department of Chemical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, 248005, India
| | - Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
2
|
Rigas Y, Treat BR, Shane J, Shanks RMQ, St. Leger AJ. Genetic Manipulation of Corynebacterium mastitidis to Better Understand the Ocular Microbiome. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 36799874 PMCID: PMC9942783 DOI: 10.1167/iovs.64.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Purpose Corynebacterium spp. are Gram-positive bacteria commonly associated with the ocular surface. Corynebacterium mastitidis was isolated from mouse eyes and was demonstrated to induce a beneficial immune response that can protect the eye from pathogenic infection. Because eye-relevant Corynebacterium spp. are not well described, we generated a C. mast transposon (Tn) mutant library to gain a better understanding of the nature of eye-colonizing bacteria. Methods Tn mutagenesis was performed with a custom Tn5-based transposon that incorporated a promoterless gene for the fluorescent protein mCherry. We screened our library using flow cytometry and enzymatic assays to identify useful mutants that demonstrate the utility of our approach. Results Fluorescence-activated cell sorting (FACS) of mCherry+ bacteria allowed us to identify a highly fluorescent mutant that was detectable on the murine ocular surface using microscopy. We also identified a functional knockout that was unable to hydrolyze urea, UreaseKO. Although uric acid is an antimicrobial factor produced in tears, UreaseKO bacterium maintained an ability to colonize the eye, suggesting that urea hydrolysis is not required for colonization. In vitro and in vivo, both mutants maintained the potential to stimulate protective immunity as compared to wild-type C. mast. Conclusions In sum, we describe a method to genetically modify an eye-colonizing microbe, C. mast. Furthermore, the procedures outlined here will allow for the continued development of genetic tools for modifying ocular Corynebacterium spp., which will lead to a more complete understanding of the interactions between the microbiome and host immunity at the ocular surface.
Collapse
Affiliation(s)
- Yannis Rigas
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Benjamin R. Treat
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Jackie Shane
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| | - Anthony J. St. Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, United States
| |
Collapse
|
3
|
Ray D, Anand U, Jha NK, Korzeniewska E, Bontempi E, Proćków J, Dey A. The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. ENVIRONMENTAL RESEARCH 2022; 213:113622. [PMID: 35710026 DOI: 10.1016/j.envres.2022.113622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Ever since its discovery in 1957, Corynebacterium glutamicum has become a well-established industrial strain and is known for its massive capability of producing various amino acids (like L-lysine and L-glutamate) and other value-added chemicals. With the rising demand for these bio-based products, the revelation of the whole genome sequences of the wild type strains, and the astounding advancements made in the fields of metabolic engineering and systems biology, our perspective of C. glutamicum has been revolutionized and has expanded our understanding of its strain development. With these advancements, a new era for C. glutamicum supremacy in the field of industrial biotechnology began. This led to remarkable progress in the enhancement of tailor-made over-producing strains and further development of the substrate spectrum of the bacterium, to easily accessible, economical, and renewable resources. C. glutamicum has also been metabolically engineered and used in the degradation/assimilation of highly toxic and ubiquitous environmental contaminant, arsenic, present in water or soil. Here, we review the history, current knowledge, progress, achievements, and future trends relating to the versatile metabolic factory, C. glutamicum. This review paper is devoted to C. glutamicum which is one of the leading industrial microbes, and one of the most promising and versatile candidates to be developed. It can be used not only as a platform microorganism to produce different value-added chemicals and recombinant proteins, but also as a tool for bioremediation, allowing to enhance specific properties, for example in situ bioremediation.
Collapse
Affiliation(s)
- Durga Ray
- Department of Microbiology, St. Aloysius' College, Jabalpur, Madhya Pradesh, 482001, India.
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, Punjab, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719, Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631, Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
4
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
5
|
Tenhaef N, Stella R, Frunzke J, Noack S. Automated Rational Strain Construction Based on High-Throughput Conjugation. ACS Synth Biol 2021; 10:589-599. [PMID: 33593066 DOI: 10.1021/acssynbio.0c00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular cloning is the core of synthetic biology, as it comprises the assembly of DNA and its expression in target hosts. At present, however, cloning is most often a manual, time-consuming, and repetitive process that highly benefits from automation. The automation of a complete rational cloning procedure, i.e., from DNA creation to expression in the target host, involves the integration of different operations and machines. Examples of such workflows are sparse, especially when the design is rational (i.e., the DNA sequence design is fixed and not based on randomized libraries) and the target host is less genetically tractable (e.g., not sensitive to heat-shock transformation). In this study, an automated workflow for the rational construction of plasmids and their subsequent conjugative transfer into the biotechnological platform organism Corynebacterium glutamicum is presented. The whole workflow is accompanied by a custom-made software tool. As an application example, a rationally designed library of transcription factor-biosensors based on the regulator Lrp was constructed and characterized. A sensor with an improved dynamic range was obtained, and insights from the screening provided evidence for a dual regulator function of C. glutamicum Lrp.
Collapse
Affiliation(s)
- Niklas Tenhaef
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Robert Stella
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
6
|
Liu W, Tang D, Wang H, Lian J, Huang L, Xu Z. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. Appl Microbiol Biotechnol 2019; 103:8911-8922. [PMID: 31583448 DOI: 10.1007/s00253-019-10118-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
Corynebacterium glutamicum is a versatile workhorse for producing industrially important commodities. The design of an optimal strain often requires the manipulation of metabolic and regulatory genes to different levels, such as overexpression, downregulation, and deletion. Unfortunately, few tools to achieve multiple functions simultaneously have been reported. Here, a dual-functional clustered regularly interspaced short palindromic repeats (CRISPR) (RE-CRISPR) system that combined genome editing and transcriptional repression was designed using a catalytically active Cas12a (a.k.a. Cpf1) in C. glutamicum. Firstly, gene deletion was achieved using Cas12a under a constitutive promoter. Then, via engineering of the guide RNA sequences, transcriptional repression was successfully achieved using a catalytically active Cas12a with crRNAs containing 15 or 16 bp spacer sequences, whose gene repression efficiency was comparable to that of the canonical system (deactivated Cas12a with full-length crRNAs). Finally, RE-CRISPR was developed to achieve genome editing and transcriptional repression simultaneously by transforming a single crRNA plasmid and Cas12a plasmid. The application of RE-CRISPR was demonstrated to increase the production of cysteine and serine for ~ 3.7-fold and 2.5-fold, respectively, in a single step. This study expands the application of CRISPR/Cas12a-based genome engineering and provides a powerful synthetic biology tool for multiplex metabolic engineering of C. glutamicum.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dandan Tang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haijiao Wang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
7
|
Mora-Lugo R, Stegmüller J, Mack M. Metabolic engineering of roseoflavin-overproducing microorganisms. Microb Cell Fact 2019; 18:146. [PMID: 31451111 PMCID: PMC6709556 DOI: 10.1186/s12934-019-1181-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Roseoflavin, a promising broad-spectrum antibiotic, is naturally produced by the bacteria Streptomyces davaonensis and Streptomyces cinnabarinus. The key enzymes responsible for roseoflavin biosynthesis and the corresponding genes were recently identified. In this study we aimed to enhance roseoflavin production in S. davaonensis and to synthesize roseoflavin in the heterologous hosts Bacillus subtilis and Corynebacterium glutamicum by (over)expression of the roseoflavin biosynthesis genes. Results While expression of the roseoflavin biosynthesis genes from S. davaonensis was not observed in recombinant strains of B. subtilis, overexpression was successful in C. glutamicum and S. davaonensis. Under the culture conditions tested, a maximum of 1.6 ± 0.2 µM (ca. 0.7 mg/l) and 34.9 ± 5.2 µM (ca. 14 mg/l) roseoflavin was produced with recombinant strains of C. glutamicum and S. davaonensis, respectively. In S. davaonensis the roseoflavin yield was increased by 78%. Conclusions The results of this study provide a sound basis for the development of an economical roseoflavin production process. Electronic supplementary material The online version of this article (10.1186/s12934-019-1181-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Mora-Lugo
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Julian Stegmüller
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Matthias Mack
- Institute for Technical Microbiology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
8
|
Liu J, Wang Y, Zheng P, Sun J. CRISPR/Cas9-mediated ssDNA Recombineering in Corynebacterium glutamicum. Bio Protoc 2018; 8:e3038. [DOI: 10.21769/bioprotoc.3038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 11/02/2022] Open
|
9
|
Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact 2017; 16:205. [PMID: 29145843 PMCID: PMC5693361 DOI: 10.1186/s12934-017-0815-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Background Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Results Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. Conclusions In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels. Electronic supplementary material The online version of this article (10.1186/s12934-017-0815-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yujiao Lu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| |
Collapse
|
10
|
Huang Y, Li L, Xie S, Zhao N, Han S, Lin Y, Zheng S. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Sci Rep 2017; 7:7916. [PMID: 28801604 PMCID: PMC5554157 DOI: 10.1038/s41598-017-08352-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Gene manipulation is essential for metabolic engineering and synthetic biology, but the current general gene manipulation methods are not applicable to the non-model strain Corynebacterium glutamicum (C. glutamicum) ATCC14067, which is used for amino acid production. Here, we report an effective and sequential deletion method for C. glutamicum ATCC14067 using the exonuclease-recombinase pair RecE + RecT (RecET) for recombineering via a designed self-excisable linear double-strand DNA (dsDNA) cassette, which contains the Cre/loxP system, to accomplish markerless deletion. To the best of our knowledge, this is the first effective and simple strategy for recombination with markerless deletion in C. glutamicum ATCC14067. This strategy provides a simple markerless deletion strategy for C. glutamicum and builds a solid basis for producer construction.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lu Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shan Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
11
|
Seo H, Kim KJ. Structural basis for a novel type of cytokinin-activating protein. Sci Rep 2017; 7:45985. [PMID: 28374778 PMCID: PMC5379747 DOI: 10.1038/srep45985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
The Lonely Guy (LOG) protein has been identified as a crucial enzyme involved in the production of cytokinins, which are important phytohormones, in plants and plant-interacting organisms. However, C. glutamicum has an isoform (Cg1261) of LOG that contains an extended N-terminal region compared to those of known LOGs, and this type of isoforms are also found in a variety of organisms. Nevertheless, these proteins are considered as lysine decarboxylases, without their functional characterization. To investigate the function of Cg1261, we determined its crystal structure at a resolution of 1.95 Å. Unlike known dimeric LOGs, Cg1261 was found to form a hexamer. The overall shape of the hexamer resembles a trillium flower, in which a twisted dimer constitutes each petal. The dimeric petal is well superposed with known LOG dimers, and its active site conformation is similar to those of LOG dimers, suggesting that the hexameric LOG-like protein also acts as a LOG. Biochemical and in vivo cytokinin production studies on Cg1261 confirms that Cg1261 functions as a cytokinin-activating protein. Phylogenetic tree analysis using 123 LOG-like proteins suggest that the LOG-like proteins can be categorized to the dimeric type-I LOG and the hexameric type-II LOG.
Collapse
Affiliation(s)
- Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
12
|
Becker J, Wittmann C. Industrial Microorganisms: Corynebacterium glutamicum. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Judith Becker
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biotechnology; Campus A 15 66123 Saarbrücken Germany
| |
Collapse
|
13
|
Seo H, Kim S, Sagong HY, Son HF, Jin KS, Kim IK, Kim KJ. Structural basis for cytokinin production by LOG from Corynebacterium glutamicum. Sci Rep 2016; 6:31390. [PMID: 27507425 PMCID: PMC4979012 DOI: 10.1038/srep31390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023] Open
Abstract
"Lonely guy" (LOG) has been identified as a cytokinin-producing enzyme in plants and plant-interacting fungi. The gene product of Cg2612 from the soil-dwelling bacterium Corynebacterium glutamicum was annotated as an LDC. However, the facts that C. glutamicum lacks an LDC and Cg2612 has high amino acid similarity with LOG proteins suggest that Cg2612 is possibly an LOG protein. To investigate the function of Cg2612, we determined its crystal structure at a resolution of 2.3 Å. Cg2612 functions as a dimer and shows an overall structure similar to other known LOGs, such as LOGs from Arabidopsis thaliana (AtLOG), Claviceps purpurea (CpLOG), and Mycobacterium marinum (MmLOG). Cg2612 also contains a "PGGXGTXXE" motif that contributes to the formation of an active site similar to other LOGs. Moreover, biochemical studies on Cg2612 revealed that the protein has phosphoribohydrolase activity but not LDC activity. Based on these structural and biochemical studies, we propose that Cg2612 is not an LDC family enzyme, but instead belongs to the LOG family. In addition, the prenyl-binding site of Cg2612 (CgLOG) comprised residues identical to those seen in AtLOG and CpLOG, albeit dissimilar to those in MmLOG. The work provides structural and functional implications for LOG-like proteins from other microorganisms.
Collapse
Affiliation(s)
- Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sangwoo Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hyeoncheol Francis Son
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Jigok-ro 80, Pohang, Kyungbuk 790-784, Korea
| | - Il-Kwon Kim
- Biopoecess Research Depart. R&D Center, DAESANG Corp., Icheon-si, Gyeonggi-do, 467-810, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
14
|
Joo S, Kim S, Seo H, Kim KJ. Crystal Structure of Amylomaltase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5662-5670. [PMID: 27366969 DOI: 10.1021/acs.jafc.6b02296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amylomaltase is an essential enzyme in maltose utilization and maltodextrin metabolism, and it has been industrially used for the production of cyclodextrin and modification of starch. We determined the crystal structure of amylomaltase from Corynebacterium glutamicum (CgAM) at a resolution of 1.7 Å. Although CgAM forms a dimer without NaCl, it exists as a monomer in physiological concentration of NaCl. CgAM is composed of N- and C-terminal domains, which can be further divided into two and four subdomains, respectively. It exhibits a unique structural feature at the functionally unknown N-domain and also shows two striking differences at the C-domain compared to other amylomaltases. These differences at extended edge of the substrate-binding site might affect substrate specificity for large cyclodextrin formation. The bis-tris methane and sulfate molecules bound at the substrate-binding site of our current structure mimic the binding of the hydroxyl groups of glucose bound at subsites -1 and -2, respectively.
Collapse
Affiliation(s)
- Seongjoon Joo
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Sangwoo Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Republic of Korea
| | - Hogyun Seo
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
15
|
Wang C, Cai H, Chen Z, Zhou Z. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation. Biotechnol Lett 2016; 38:1791-7. [DOI: 10.1007/s10529-016-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 01/26/2023]
|
16
|
Cleto S, Jensen JVK, Wendisch VF, Lu TK. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi). ACS Synth Biol 2016; 5:375-85. [PMID: 26829286 PMCID: PMC4877668 DOI: 10.1021/acssynbio.5b00216] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Corynebacterium
glutamicum is an important organism for the
industrial production
of amino acids. Metabolic pathways in this organism are usually engineered
by conventional methods such as homologous recombination, which depends
on rare double-crossover events. To facilitate the mapping of gene
expression levels to metabolic outputs, we applied CRISPR interference
(CRISPRi) technology using deactivated Cas9 (dCas9) to repress genes
in C. glutamicum. We then determined the effects
of target repression on amino acid titers. Single-guide RNAs directing
dCas9 to specific targets reduced expression of pgi and pck up to 98%, and of pyk up
to 97%, resulting in titer enhancement ratios of l-lysine
and l-glutamate production comparable to levels achieved
by gene deletion. This approach for C. glutamicum metabolic engineering, which only requires 3 days, indicates that
CRISPRi can be used for quick and efficient metabolic pathway remodeling
without the need for gene deletions or mutations and subsequent selection.
Collapse
Affiliation(s)
- Sara Cleto
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jaide VK Jensen
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
- Genetics
of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Genetics
of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Timothy K. Lu
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Becker J, Gießelmann G, Hoffmann SL, Wittmann C. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:217-263. [DOI: 10.1007/10_2016_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Toyoda K, Inui M. Regulons of global transcription factors in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 100:45-60. [DOI: 10.1007/s00253-015-7074-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
|
19
|
Vertès AA. Protein Secretion Systems of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
The Biotechnological Potential of Corynebacterium glutamicum, from Umami to Chemurgy. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Suzuki N, Inui M. Genome Engineering of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
22
|
Teramoto H, Inui M. Regulation of Sugar Uptake, Glycolysis, and the Pentose Phosphate Pathway in Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Vertès AA, Inui M, Yukawa H. Postgenomic Approaches to Using Corynebacteria as Biocatalysts. Annu Rev Microbiol 2012; 66:521-50. [DOI: 10.1146/annurev-micro-010312-105506] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alain A. Vertès
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| |
Collapse
|
24
|
|
25
|
Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol 2011; 193:6096-7. [PMID: 21994927 DOI: 10.1128/jb.06074-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the genome sequence of Corynebacterium glutamicum S9114, an industrial producer widely used in production of glutamate in China. Preliminary comparison with the sequences of the Corynebacterium glutamicum strains ATCC 13032 and R revealed some notable mutagenesis that might be related to the high yield of glutamate.
Collapse
|
26
|
Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum. World J Microbiol Biotechnol 2011; 28:1035-43. [DOI: 10.1007/s11274-011-0902-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
27
|
Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 90:1721-9. [DOI: 10.1007/s00253-011-3190-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/24/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
28
|
Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H. Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol 2010; 87:1855-66. [DOI: 10.1007/s00253-010-2701-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 11/25/2022]
|
29
|
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol 2009; 75:3419-29. [PMID: 19346355 PMCID: PMC2687266 DOI: 10.1128/aem.02912-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 03/26/2009] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum ATCC 31831 grew on l-arabinose as the sole carbon source at a specific growth rate that was twice that on d-glucose. The gene cluster responsible for l-arabinose utilization comprised a six-cistron transcriptional unit with a total length of 7.8 kb. Three l-arabinose-catabolizing genes, araA (encoding l-arabinose isomerase), araB (l-ribulokinase), and araD (l-ribulose-5-phosphate 4-epimerase), comprised the araBDA operon, upstream of which three other genes, araR (LacI-type transcriptional regulator), araE (l-arabinose transporter), and galM (putative aldose 1-epimerase), were present in the opposite direction. Inactivation of the araA, araB, or araD gene eliminated growth on l-arabinose, and each of the gene products was functionally homologous to its Escherichia coli counterpart. Moreover, compared to the wild-type strain, an araE disruptant exhibited a >80% decrease in the growth rate at a lower concentration of l-arabinose (3.6 g liter(-1)) but not at a higher concentration of l-arabinose (40 g liter(-1)). The expression of the araBDA operon and the araE gene was l-arabinose inducible and negatively regulated by the transcriptional regulator AraR. Disruption of araR eliminated the repression in the absence of l-arabinose. Expression of the regulon was not repressed by d-glucose, and simultaneous utilization of l-arabinose and d-glucose was observed in aerobically growing wild-type and araR deletion mutant cells. The regulatory mechanism of the l-arabinose regulon is, therefore, distinct from the carbon catabolite repression mechanism in other bacteria.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | | | | | |
Collapse
|
30
|
Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl Microbiol Biotechnol 2009; 82:491-500. [DOI: 10.1007/s00253-008-1786-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
31
|
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 2008; 81:459-64. [DOI: 10.1007/s00253-008-1668-y] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
32
|
Tsuchida Y, Kimura S, Suzuki N, Inui M, Yukawa H. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl Microbiol Biotechnol 2008; 81:1107-15. [PMID: 18936936 DOI: 10.1007/s00253-008-1746-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
A new plasmid pCASE1 was isolated from Gram-positive Corynebacterium casei JCM 12072. It comprised a 2.4-kb nucleotide sequence with three ORFs, two of which were indispensable for autonomous replication in Corynebacterium glutamicum. Homology search identified these two ORFs as repA and repB, areas coding proteins involved in plasmid replication. repA sequence showed high similarity to theta-replicating Escherichia coli ColE2-P9 plasmids and even higher similarity to plasmids derived from Gram-positive bacteria belonging to a subfamily of this ColE2-P9 group. An E. coli-C. glutamicum shuttle vector was constructed with pCASE1 fragment including repA and repB to transform C. glutamicum and showed compatibility with corynebacterial plasmids from different plasmid families. The copy number of the shuttle vector in C. glutamicum was 13 and the vector showed stability for 102 generations with no selective pressure.
Collapse
Affiliation(s)
- Yoshiki Tsuchida
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
33
|
Vertès AA, Inui M, Yukawa H. Technological options for biological fuel ethanol. J Mol Microbiol Biotechnol 2008; 15:16-30. [PMID: 18349547 DOI: 10.1159/000111989] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The current paradigm to produce biotechnological ethanol is to use the yeast Saccharomyces cerevisiae to ferment sugars derived from starch or sugar crops such as maize, sugar cane or sugar beet. Despite its current success, the global impact of this manufacturing model is restricted on the one hand by limits on the availability of these primary raw materials, and on the other hand by the maturity of baker's yeast fermentation technologies. Revisiting the technical, economic, and value chain aspects of the biotechnological ethanol industry points to the need for radical innovation to complement the current manufacturing model. Implementation of lignocellulosic materials is clearly a key enabler to the billion-ton biofuel vision. However, realization of the full market potential of biofuels will be facilitated by the availability of an array of innovative technological options, as the flexibility generated by these alternative processes will not only enable the exploitation of heretofore untapped local market opportunities, but also it will confer to large biorefinery structures numerous opportunities for increased process integration as well as optimum reactivity to logistic and manufacturing challenges. In turn, all these factors will interplay in synergy to contribute in shifting the economic balance in favor of the global implementation of biotechnological ethanol.
Collapse
Affiliation(s)
- Alain A Vertès
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan.
| | | | | |
Collapse
|
34
|
Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 77:871-8. [DOI: 10.1007/s00253-007-1215-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/12/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
|
35
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Park SD, Lee JY, Sim SY, Kim Y, Lee HS. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng 2007; 9:327-36. [PMID: 17604670 DOI: 10.1016/j.ymben.2007.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/01/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserine dehydrogenase by threonine and a deletion of the thrB gene (delta thrB) to abolish threonine synthesis. The constructed C. glutamicum MH20-22B/hom(FBR)/delta thrB strain accumulated 2.9 g/l of methionine by batch fermentation and showed resistance to methionine analogue ethionine at concentrations up to 30 mM. The growth of the strain was apparently impaired as a result of the accumulation of methionine biosynthetic intermediate, homocysteine. Production assays also revealed that the accumulation of methionine in the growth medium was transient and declined as the carbon source was depleted. During the period of methionine disappearance, the methionine biosynthetic genes were completely repressed in the engineered strains but not in the parental strain. After all, we have not only successfully constructed a methionine-producing C. glutamicum strain by genetic manipulation, but also revealed cellular constraints in attaining high yield and productivity.
Collapse
Affiliation(s)
- Soo-Dong Park
- Graduate School of Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology (Reading) 2007; 153:1042-1058. [PMID: 17379713 DOI: 10.1099/mic.0.2006/003657-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete genome sequence of Corynebacterium glutamicum strain R was determined to allow its comparative analysis with other corynebacteria. The biology of corynebacteria was explored by refining the definition of the subset of genes that constitutes the corynebacterial core as well as those characteristic of saprophytic and pathogenic ecological niches. In addition, the relative scarcity of corynebacterial sigma factors and the plasticity of their two-component system machinery reflect their relatively exacting nutritional requirements and reduced membrane-associated and secreted proteins. The conservation of key genes and pathways between corynebacteria, mycobacteria and Nocardia validates the use of C. glutamicum to study fundamental processes that are conserved in slow-growing mycobacteria, including pathogenesis-associated mechanisms. The discovery of 39 novel genes in C. glutamicum R that have not been previously reported in other corynebacteria supports the rationale for sequencing additional corynebacterial genomes to better define the corynebacterial pan-genome and identify previously undetected metabolic pathways in these organisms.
Collapse
Affiliation(s)
- Hideaki Yukawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Crispinus A Omumasaba
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Hiroshi Nonaka
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Péter Kós
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Naoko Okai
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Nobuaki Suzuki
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Masako Suda
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Yota Tsuge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Junko Watanabe
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Yoko Ikeda
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Alain A Vertès
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Soraku, Kyoto 619-0292, Japan
| |
Collapse
|
38
|
Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 2006; 72:3418-28. [PMID: 16672486 PMCID: PMC1472363 DOI: 10.1128/aem.72.5.3418-3428.2006] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/08/2006] [Indexed: 11/20/2022] Open
Abstract
The aerobic microorganism Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar xylose, which is commonly found in agricultural residues and other lignocellulosic biomass. We demonstrated the functionality of the corynebacterial xylB gene encoding xylulokinase and constructed two recombinant C. glutamicum strains capable of utilizing xylose by cloning the Escherichia coli gene xylA encoding xylose isomerase, either alone (strain CRX1) or in combination with the E. coli gene xylB (strain CRX2). These genes were provided on a high-copy-number plasmid and were under the control of the constitutive promoter trc derived from plasmid pTrc99A. Both recombinant strains were able to grow in mineral medium containing xylose as the sole carbon source, but strain CRX2 grew faster on xylose than strain CRX1. We previously reported the use of oxygen deprivation conditions to arrest cell replication in C. glutamicum and divert carbon source utilization towards product production rather than towards vegetative functions (M. Inui, S. Murakami, S. Okino, H. Kawaguchi, A. A. Vertès, and H. Yukawa, J. Mol. Microbiol. Biotechnol. 7:182-196, 2004). Under these conditions, strain CRX2 efficiently consumed xylose and produced predominantly lactic and succinic acids without growth. Moreover, in mineral medium containing a sugar mixture of 5% glucose and 2.5% xylose, oxygen-deprived strain CRX2 cells simultaneously consumed both sugars, demonstrating the absence of diauxic phenomena relative to the new xylA-xylB construct, albeit glucose-mediated regulation still exerted a measurable influence on xylose consumption kinetics.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
39
|
Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 2006; 9:268-74. [PMID: 16617034 DOI: 10.1016/j.mib.2006.03.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 03/24/2006] [Indexed: 11/22/2022]
Abstract
Industrial microorganisms have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. Rational strain development by metabolic engineering is crucial to successful processes, and is based on efficient genetic tools and detailed knowledge of metabolic pathways and their regulation. This review summarizes recent advances in metabolic engineering of the industrial model bacteria Escherichia coli and Corynebacterium glutamicum that led to efficient recombinant biocatalysts for the production of acetate, pyruvate, ethanol, d- and l-lactate, succinate, l-lysine and l-serine.
Collapse
Affiliation(s)
- Volker F Wendisch
- Institute of Molecular Microbiology and Biotechnology, Westfalian Wilhelms University Münster, 48149 Münster, Germany.
| | | | | |
Collapse
|