1
|
Loop of Streptomyces Feruloyl Esterase Plays an Important Role in the Enzyme's Catalyzing the Release of Ferulic Acid from Biomass. Appl Environ Microbiol 2018; 84:AEM.02300-17. [PMID: 29150515 DOI: 10.1128/aem.02300-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022] Open
Abstract
Feruloyl esterases (FAEs) are key enzymes required for the production of ferulic acid from agricultural biomass. Previously, we identified and characterized R18, an FAE from Streptomyces cinnamoneus NBRC 12852, which showed no sequence similarity to the known FAEs. To determine the region involved in its catalytic activity, we constructed chimeric enzymes using R18 and its homolog (TH2-18) from S. cinnamoneus strain TH-2. Although R18 and TH2-18 showed 74% identity in their primary sequences, the recombinant proteins of these two FAEs (recombinant R18 [rR18] and rTH2-18) showed very different specific activities toward ethyl ferulate. By comparing the catalytic activities of the chimeras, a domain comprised of residues 140 to 154 was found to be crucial for the catalytic activity of R18. Furthermore, we analyzed the crystal structure of rR18 at a resolution of 1.5 Å to elucidate the relationship between its activity and its structure. rR18 possessed a typical catalytic triad, consisting of Ser-191, Asp-214, and His-268, which was characteristic of the serine esterase family. By structural analysis, the above-described domain was found to be present in a loop-like structure (the R18 loop), which possessed a disulfide bond conserved in the genus Streptomyces Moreover, compared to rTH2-18 of its parental strain, the TH2-18 mutant, in which Pro and Gly residues were inserted into the domain responsible for forming the R18 loop, showed markedly high kcat values using artificial substrates. We also showed that the FAE activity of TH2-18 toward corn bran, a natural substrate, was improved by the insertion of the Gly and Pro residues.IMPORTANCEStreptomyces species are widely distributed bacteria that are predominantly present in soil and function as decomposers in natural environments. They produce various enzymes, such as carbohydrate hydrolases, esterases, and peptidases, which decompose agricultural biomass. In this study, based on the genetic information on two Streptomyces cinnamoneus strains, we identified novel feruloyl esterases (FAEs) capable of producing ferulic acid from biomass. These two FAEs shared high similarity in their amino acid sequences but did not resemblance any known FAEs. By comparing chimeric proteins and performing crystal structure analysis, we confirmed that a flexible loop was important for the catalytic activity of Streptomyces FAEs. Furthermore, we determined that the catalytic activity of one FAE was improved drastically by inserting only 2 amino acids into its loop-forming domain. Thus, differences in the amino acid sequence of the loop resulted in different catalytic activities. In conclusion, our findings provide a foundation for the development of novel enzymes for industrial use.
Collapse
|
2
|
Kumagai Y, Yamashita K, Tagami T, Uraji M, Wan K, Okuyama M, Yao M, Kimura A, Hatanaka T. The loop structure of Actinomycete glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS J 2015; 282:4001-14. [PMID: 26257335 DOI: 10.1111/febs.13401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
Endo-β-1,4-mannanases from Streptomyces thermolilacinus (StMan) and Thermobifida fusca (TfMan) demonstrated different substrate specificities. StMan hydrolyzed galactosylmannooligosaccharide (GGM5; 6(III) ,6(IV) -α-d-galactosyl mannopentaose) to GGM3 and M2, whereas TfMan hydrolyzed GGM5 to GGM4 and M1. To determine the region involved in the substrate specificity, we constructed chimeric enzymes of StMan and TfMan and evaluated their substrate specificities. Moreover, the crystal structure of the catalytic domain of StMan (StMandC) and the complex structure of the inactive mutant StE273AdC with M6 were solved at resolutions of 1.60 and 1.50 Å, respectively. Structural comparisons of StMandC and the catalytic domain of TfMan lead to the identification of a subsite around -1 in StMandC that could accommodate a galactose branch. These findings demonstrate that the two loops (loop7 and loop8) are responsible for substrate recognition in GH5 actinomycete mannanases. In particular, Trp281 in loop7 of StMan, which is located in a narrow and deep cleft, plays an important role in its affinity toward linear substrates. Asp310 in loop8 of StMan specifically bound to the galactosyl unit in the -1 subsite.
Collapse
Affiliation(s)
- Yuya Kumagai
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Keitaro Yamashita
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Misugi Uraji
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan
| | - Kun Wan
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS), Okayama, Japan
| |
Collapse
|
3
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
4
|
Kumagai Y, Usuki H, Yamamoto Y, Yamasato A, Arima J, Mukaihara T, Hatanaka T. Characterization of calcium ion sensitive region for β-Mannanase from Streptomyces thermolilacinus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1127-33. [DOI: 10.1016/j.bbapap.2011.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
5
|
Uesugi Y, Usuki H, Arima J, Iwabuchi M, Hatanaka T. Molecular dissection of Streptomyces trypsin on substrate recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1295-304. [PMID: 21767670 DOI: 10.1016/j.bbapap.2011.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
We recently identified residue 71 of two homologous serine proteases from Streptomyces omiyaensis (SOT) and Streptomyces griseus (SGT) as a crucial residue for differences in their topological specificities, i.e. recognition of a distinct three-dimensional structure. To study the role of this key residue in substrate recognition, we used surface plasmon resonance analysis to evaluate the affinities of inactive mutants, in which residues 71 of SOT and SGT were substituted respectively with Leu and Tyr, toward different types of collagens. We identified another amino acid residue involved in the interaction with collagens from analyses of inactive chimeras between SOT and SGT using an in vivo DNA shuffling system. Results showed that residue 72 contributes to collagen binding. By substituting Leu71 and Gln72 with Tyr and Arg, respectively, SGT mutant showed a change in topological specificity and high hydrolytic activity toward type IV collagen comparable to SOT. We demonstrated that the neighboring residues 71 and 72 in the N-terminal β-barrel domain of the enzyme synergistically play an important role in substrate recognition.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences, Okayama, Japan
| | | | | | | | | |
Collapse
|
6
|
Uesugi Y, Usuki H, Iwabuchi M, Hatanaka T. The role of Tyr71 in Streptomyces trypsin on the recognition mechanism of structural protein substrates. FEBS J 2009; 276:5634-46. [PMID: 19725878 DOI: 10.1111/j.1742-4658.2009.07256.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Studies of substrate recognition by serine proteases have focused on specificities at the primary S1-Sn sites, but topological specificities (i.e. recognition at distinct three-dimensional structural motifs) have not been established. This is the first report to identify the key amino acid residue conferring topological specificity. A serine protease from Streptomyces omiyaensis (SOT), which is a trypsin-like enzyme, was chosen as a model enzyme to clarify the recognition mechanism of structural protein substrates in serine proteases. We have found previously that the topological specificities of SOT and S. griseus trypsin (SGT) for high molecular mass substrates differ greatly, even though the enzymes have similar primary structures. In this study, we constructed chimeras between SOT and SGT using an in vivo DNA shuffling system and several mutants to identify the key residues involved in topological specificities. By comparing the substrate specificities of chimeras and mutants, we found that residue 71 of SOT, which is separate from the catalytic triad, contributes to the topological specificity. Using site-directed mutagenesis, residue 71 of SOT was also found to be crucial for catalytic efficiency and enzyme conformation.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences, Okayama, Japan
| | | | | | | |
Collapse
|
7
|
Hatanaka T, Uesugi Y, Arima J, Usuki H, Iwabuchi M. Biochemical characterization of a novel metalloendopeptidase from Streptomyces aureofaciens TH-3 with post-proline hydrolysis activity. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Usuki H, Uesugi Y, Iwabuchi M, Hatanaka T. Putative “acylaminoacyl” peptidases from Streptomyces griseus and S. coelicolor display “aminopeptidase” activities with distinct substrate specificities and sensitivities to reducing reagent. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:468-75. [DOI: 10.1016/j.bbapap.2008.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/28/2022]
|
9
|
Uesugi Y, Hatanaka T. Phospholipase D mechanism using Streptomyces PLD. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:962-9. [PMID: 19416643 DOI: 10.1016/j.bbalip.2009.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/19/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences (RIBS), Kaga-gun, Okayama, Japan
| | | |
Collapse
|
10
|
Uesugi Y, Arima J, Usuki H, Iwabuchi M, Hatanaka T. Two bacterial collagenolytic serine proteases have different topological specificities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:716-26. [DOI: 10.1016/j.bbapap.2008.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
11
|
Uraji M, Arima J, Uesugi Y, Iwabuchi M, Hatanaka T. Effect of salt on the activity of Streptomyces prolyl aminopeptidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1462-9. [PMID: 17916451 DOI: 10.1016/j.bbapap.2007.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 11/27/2022]
Abstract
A salt-tolerant prolyl aminopeptidase from Streptomyces aureofaciens TH-3 (TH-3PAP) was purified from a culture supernatant. The gene encoding TH-3PAP was cloned and sequenced. The primary structure of TH-3PAP showed 65% identity with that of PAP from Streptomyces lividans (SLPAP) and possessed a conserved catalytic motif, GxSxGG, which is conserved in the alpha/beta hydrolase fold family. The characterization of the recombinants TH-3PAP and SLPAP indicated a difference: in 4.0 M NaCl, TH-3PAP showed enzyme activity, whereas SLPAP was inactive. Next, we constructed chimeras between TH-3PAP and SLPAP using an in vivo DNA shuffling system and a sandwich chimera (sc-PAP), whose region from 63 to 78 amino acids of TH-3PAP was substituted with that of SLPAP. Comparison of the biochemical properties between TH-3PAP and the salt-sensitive sc-PAP suggested that the fine tuning of the N-terminal conformation of TH-3PAP by hydrophobic interaction is important for the salt tolerance mechanism of the enzyme.
Collapse
Affiliation(s)
- Misugi Uraji
- Research Institute for Biological Sciences (RIBS), Okayama, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | | | |
Collapse
|
12
|
Ogino C, Daido H, Ohmura Y, Takada N, Itou Y, Kondo A, Fukuda H, Shimizu N. Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:671-8. [PMID: 17499030 DOI: 10.1016/j.bbapap.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/21/2022]
Abstract
The gene that encodes phospholipase D (PLD) from Streptoverticillium cinnamoneum contains three consensus regions (Region I, II and IV as shown in Fig. 1A) that are conserved among the PLD superfamily. The glycine-glycine (GG) motif in Region I and the glycine-serine (GS) motif in Region IV are also conserved in the PLD superfamily. These (GG and GS) motifs are located 7 residues downstream from each HKD motif. In an investigation of fifteen GG/GS motif mutants, generated as fusion proteins with maltose-binding protein (MBP-PLDs), three highly active mutants were identified. Three of the mutants (G215S, G216S, and G216S-S489G) contained a serine residue in the GG motif, and exhibited approximately a 9-27-fold increased transphosphatidylation activity to DPPC compared with recombinant wild type MBP-PLD. When heat stability was compared between three mutants and the recombinant wild type, only G216S-S489G showed heat labile properties. It appears that the 489th serine residue in the GS motif also contributes to the thermal stability of the enzyme. In addition, the GG/GS motif was very close to the active center residue, including two HKD motifs, as shown by computer modeling. The findings suggest that the GG/GS motif of PLD is a key motif that affects catalytic function and enzymatic stability.
Collapse
Affiliation(s)
- Chiaki Ogino
- The Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Recently, we identified Ala426 and Lys438 of phospholipase D from Streptomyces septatus TH-2 (TH-2PLD) as important residues for activity, stability and selectivity in transphosphatidylation. These residues are located in a C-terminal flexible loop separate from two catalytic HxKxxxxD motifs. To study the role of these residues in substrate recognition, we evaluated the affinities of inactive mutants, in which these residues were substituted with Phe and His, toward several phospholipids by SPR analysis. By substituting Ala426 and Lys438 with Phe and His, respectively, the inactive mutant showed a much stronger interaction with phosphatidylcholine and a weaker interaction with phosphatidylglycerol than the inactive TH-2PLD mutant. We demonstrated that Ala426 and Lys438 of TH-2PLD play a role in sensing the head group of phospholipids.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences (RIBS), Okayama, Japan
| | | | | | | |
Collapse
|
14
|
Uesugi Y, Arima J, Iwabuchi M, Hatanaka T. C-terminal loop of Streptomyces phospholipase D has multiple functional roles. Protein Sci 2006; 16:197-207. [PMID: 17189478 PMCID: PMC2203283 DOI: 10.1110/ps.062537907] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences-Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | |
Collapse
|
15
|
Arima J, Uesugi Y, Uraji M, Yatsushiro S, Tsuboi S, Iwabuchi M, Hatanaka T. Modulation of Streptomyces Leucine Aminopeptidase by Calcium. J Biol Chem 2006; 281:5885-94. [PMID: 16407307 DOI: 10.1074/jbc.m509025200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptomyces griseus leucine aminopeptidase (SGAP), which has two zinc atoms in its active site, is clinically important as a model for understanding the structure and mechanism of action of other metallopeptidases. SGAP is a calcium-activated and calcium-stabilized enzyme, and its activation by calcium correlates with substrate specificity. In our previous study, we found a non-calcium-modulated leucine aminopeptidase secreted by Streptomyces septatus, the primary structure of which showed 71% identity with SGAP. In this study, we constructed chimeras of SGAP and S. septatus aminopeptidase by using an in vivo DNA shuffling system and several mutant enzymes by site-directed mutagenesis to identify the key residues in this modulation by calcium. We identified the key residues Asp-173 and Asp-174 of SGAP associated with both SGAP activation and stabilization by calcium. We also showed that the known calcium-binding site, which is composed of Asp-3, Ile-4, Asp-262, and Asp-266 of SGAP, only contributes to SGAP stabilization by calcium. Furthermore, we identified an important residue, Glu-196, that functions in cooperation with Asp-173, Asp-174, and calcium to increase the catalytic activity of SGAP.
Collapse
Affiliation(s)
- Jiro Arima
- Research Institute for Biological Sciences, Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Uesugi Y, Mori K, Arima J, Iwabuchi M, Hatanaka T. Recognition of phospholipids in Streptomyces phospholipase D. J Biol Chem 2005; 280:26143-51. [PMID: 15899903 DOI: 10.1074/jbc.m414319200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences, Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | | | |
Collapse
|