1
|
Preclinical Safety Assessment of Bacillus subtilis BS50 for Probiotic and Food Applications. Microorganisms 2022; 10:microorganisms10051038. [PMID: 35630480 PMCID: PMC9144164 DOI: 10.3390/microorganisms10051038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the commercial rise of probiotics containing Bacillaceae spp., it remains important to assess the safety of each strain before clinical testing. Herein, we performed preclinical analyses to address the safety of Bacillus subtilis BS50. Using in silico analyses, we screened the 4.15 Mbp BS50 genome for genes encoding known Bacillus toxins, secondary metabolites, virulence factors, and antibiotic resistance. We also assessed the effects of BS50 lysates on the viability and permeability of cultured human intestinal epithelial cells (Caco-2). We found that the BS50 genome does not encode any known Bacillus toxins. The BS50 genome contains several gene clusters involved in the biosynthesis of secondary metabolites, but many of these antimicrobial metabolites (e.g., fengycin) are common to Bacillus spp. and may even confer health benefits related to gut microbiota health. BS50 was susceptible to seven of eight commonly prescribed antibiotics, and no antibiotic resistance genes were flanked by the complete mobile genetic elements that could enable a horizontal transfer. In cell culture, BS50 cell lysates did not diminish either Caco-2 viability or monolayer permeability. Altogether, BS50 exhibits a robust preclinical safety profile commensurate with commercial probiotic strains and likely poses no significant health risk to humans.
Collapse
|
2
|
Mezian L, Chincha AI, Vecchione A, Ghelardi E, Bonatto JMC, Marsaioli AJ, Campelo PH, Benamar I, Allah MA, Sant'Ana AS, Boumediene MB. Aerobic spore-forming bacteria in powdered infant formula: Enumeration, identification by MALDI-TOF mass spectrometry (MS), presence of toxin genes and rpoB gene typing. Int J Food Microbiol 2022; 368:109613. [DOI: 10.1016/j.ijfoodmicro.2022.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
|
3
|
Jessberger N, Diedrich R, Janowski R, Niessing D, Märtlbauer E. Presence and function of Hbl B', the fourth protein component encoded by the hbl operon in Bacillus cereus. Virulence 2022; 13:483-501. [PMID: 35291913 PMCID: PMC8932913 DOI: 10.1080/21505594.2022.2046951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genes hblC, hblD and hblA encode the components Hbl L2, L1 and B of the pore forming enterotoxin haemolysin BL of Bacillus cereus. Two variants of the operon existand the more common one additionally contains hblB downstream of hblCDA. Up to now, it was completely unclear whether the corresponding protein, Hbl B', is widely expressed among B. cereus strains and if it has a distinct function. In the present study, it was shown that the hblB gene is indeed expressed and the Hbl B' protein is secreted by nearly all analysed B. cereus strains. For the latter, a detection system was developed based on monoclonal antibody 11A5. Further, a distinct reduction of cytotoxic and haemolytic activity was observed when recombinant (r)Hbl B' was applied simultaneously with L2, L1 and B. This effect was due to direct interaction of rHbl B' with L1. D-6B. cereusAltogether, we present the first simple tool for the detection of Hbl B' in B. cereus culture supernatants. Moreover, an important regulatory function of Hbl B' in the mechanism of Hbl was determined, which is best described as an additional control of complex formation, balancing the amounts of Hbl B-L1 complexes and the corresponding free subunits.
Collapse
Affiliation(s)
- Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Richard Diedrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| |
Collapse
|
4
|
Wang Y, Chen J, Zhang L, Liao W, Tong Z, Liu J, Mao L, Gao Y. Electron beam irradiation inactivation of Bacillus atrophaeus on the PET bottle preform and HDPE bottle caps with different original colonies. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
6
|
|
7
|
Vandeweyer D, Lievens B, Van Campenhout L. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. NATURE FOOD 2020; 1:511-516. [PMID: 37128070 DOI: 10.1038/s43016-020-0120-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
With edible insects being increasingly produced, food safety authorities have called for the determination of microbiological challenges posed to human health. Here, we find that the bacterial endospore fraction in industrially reared mealworm and cricket samples is largely comprised of Bacillus cereus group members that can pose insect or human health risks. Hepatitis A virus, hepatitis E virus and norovirus genogroup II were not detected in the sample collection, indicating a low food safety risk from these viral pathogens.
Collapse
Affiliation(s)
- Dries Vandeweyer
- Lab4Food, Department of Microbial and Molecular Systems (M²S), KU Leuven, Geel, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, Belgium
| | - Leen Van Campenhout
- Lab4Food, Department of Microbial and Molecular Systems (M²S), KU Leuven, Geel, Belgium.
| |
Collapse
|
8
|
Shah MM, Miringu G, Wada A, Kaneko S, Ichinose Y. Case Report: Bacillus pumilus-Caused Bacteremia in a Patient with Food Poisoning. Am J Trop Med Hyg 2020; 100:688-690. [PMID: 30628569 DOI: 10.4269/ajtmh.18-0593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacillus pumilus has rarely been reported as a cause of human infections. We report a case of a B. pumilus causing food poisoning in an adult male. A 51-year-old Japanese man complained of severe abdominal cramps, fever with chills, diarrhea, dizziness, and loss of appetite after eating reheated rice with stewed minced meat purchased from a Kenyan restaurant. Bacillus pumilus was isolated from blood culture and was identified using a biochemical test and 16S rRNA gene sequencing analysis. The patient was treated with probiotics and ciprofloxacin and recovered after 3 days. To our knowledge, this is the first report describing the potential role of B. pumilus as a foodborne pathogen in Kenya and highlights the importance of good hygiene and food preparation practices.
Collapse
Affiliation(s)
- Mohammad Monir Shah
- Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Gabriel Miringu
- Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute Project, Nairobi, Kenya
| | - Akihiro Wada
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Satoshi Kaneko
- Department of Eco-Epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoshio Ichinose
- Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute Project, Nairobi, Kenya
| |
Collapse
|
9
|
Safety and Stability Assessment of Potential Probiotic Strains from Fermented Mango Brine Pickle. Probiotics Antimicrob Proteins 2019; 12:1039-1044. [PMID: 31709507 DOI: 10.1007/s12602-019-09617-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fermented foods are known to be rich source of valuable nutrients and probiotics. Previously, our study reported the isolation and characterization of eight potential probiotic strains from traditional mango brine pickle, which has been conventionally consumed for ages in raw form in Southern India. The present study reports on the safety assessment of these strains for the selection of prospective probiotic candidates. Hydrogen peroxide production, histidine decarboxylase activity (production of histamine), DNase activity, and presence of the virulence factor genes (assessed by PCR) were carried out to evaluate its safety. Bacillus licheniformis KT921419 and B. methylotrophicus KT921422 was found to show no adverse safety characteristics. These two strains were further assessed for their ability to survive in the native substrate (mango brine pickle) as single and mixed inoculums. Above strains maintained significant viability in mango brine pickle for a period of 6 months during storage at the room temperature. Results clearly proved the safety and stability of two of the potential probiotic strains, which can be further utilized in food applications under harsh conditions of high salt, low pH, and room temperature making these strains unique.
Collapse
|
10
|
Kelley DE, Hodo CL, Aceino A, Lawhon SD, Hinrichs K, Brinsko SP. Abortion due to
Bacillus safensis
in a mare. EQUINE VET EDUC 2019. [DOI: 10.1111/eve.13181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. E. Kelley
- Department of Large Animal Clinical Sciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| | - C. L. Hodo
- Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| | - A. Aceino
- Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| | - S. D. Lawhon
- Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| | - K. Hinrichs
- Department of Veterinary Pathobiology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
- Department of Veterinary Physiology and Pharmacology College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| | - S. P. Brinsko
- Department of Large Animal Clinical Sciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
| |
Collapse
|
11
|
Multifaceted toxin profile of Bacillus probiotic in newly isolated Bacillus spp. from soil rhizosphere. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00357-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Oves M, Rauf MA, Hussain A, Qari HA, Khan AAP, Muhammad P, Rehman MT, Alajmi MF, Ismail IIM. Antibacterial Silver Nanomaterial Synthesis From Mesoflavibacter zeaxanthinifaciens and Targeting Biofilm Formation. Front Pharmacol 2019; 10:801. [PMID: 31427961 PMCID: PMC6688106 DOI: 10.3389/fphar.2019.00801] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
Considering the significance of biological and eco-friendly nanomaterials, in the present study, we have synthesized silver nanoparticles from the exopolysaccharide of recently recovered bacterial strain CEES51 from the Red Sea coastal area of Jeddah, Saudi Arabia. 16S ribosomal RNA gene sequencing was used to characterize the isolated bacteria, and it was identified as Mesoflavibacter zeaxanthinifaciens and assigned an accession number MH707257.1 GenBank. The bacterial strain is an excellent exopolysaccharide producer and survived at hypersaline (30%) and high-temperature (50°C) conditions. The bacterial exopolysaccharides were employed for the fabrication of silver nanoparticles at room temperature. UV-visible spectrophotometer optimized the synthesized nanoparticles, and their size was determined by Nanophox particle size analyzer and dynamic light scattering. Additionally, the X-ray powder diffraction and Fourier-transform infrared spectroscopy studies also approved its crystalline nature and the involvement of organic functional groups in their formation. The synthesized nanomaterials were tested for their antibacterial and antibiofilm properties against pathogenic microorganisms Bacillus subtilis and methicillin-resistant Staphylococcus aureus. The antimicrobial property showed time, and dose-dependent response with a maximum of zone inhibition was observed at around 22 and 18 mm at a dose of 50 µg/well against B. subtilis and S. aureus and a minimum inhibitory concentration of 8 and 10 µg/ml, respectively. Furthermore, the synthesized silver nanoparticles possessed a substantial antibiofilm property and were also found to be biocompatible as depicted by red blood cell lysis assay and their interaction with peripheral blood mononuclear cells and human embryonic kidney 293 cells. Therefore, Mesoflavibacter zeaxanthinifaciens is found to be an excellent source for exopolysaccharide synthesis that assists in the silver nanoparticle production.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Ahmar Rauf
- International Joint Centre for Biomedical Innovation, Henan University, Kaifeng, China
| | - Afzal Hussain
- Department of Phamocognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Huda A Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Pir Muhammad
- International Joint Centre for Biomedical Innovation, Henan University, Kaifeng, China
| | - Md Tabish Rehman
- Department of Phamocognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Fahad Alajmi
- Department of Phamocognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal I M Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, King Abdulaziz, University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Binding to The Target Cell Surface Is The Crucial Step in Pore Formation of Hemolysin BL from Bacillus cereus. Toxins (Basel) 2019; 11:toxins11050281. [PMID: 31137585 PMCID: PMC6563250 DOI: 10.3390/toxins11050281] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
A major virulence factor involved in Bacillus cereus food poisoning is the three-component enterotoxin hemolysin BL. It consists of the binding component B and the two lytic components L1 and L2. Studying its mode of action has been challenging, as natural culture supernatants additionally contain Nhe, the second three-component enterotoxin, and purification of recombinant (r) Hbl components has been difficult. In this study, we report on pore-forming, cytotoxic, cell binding and hemolytic activity of recently generated rHbl components expressed in E. coli. It is known that all three Hbl components are necessary for cytotoxicity and pore formation. Here we show that an excess of rHbl B enhances, while an excess of rHbl L1 hinders, the velocity of pore formation. Most rapid pore formation was observed with ratios L2:L1:B = 1:1:10 and 10:1:10. It was further verified that Hbl activity is due to sequential binding of the components B - L1 - L2. Accordingly, all bioassays proved that binding of Hbl B to the cell surface is the crucial step for pore formation and cytotoxic activity. Binding of Hbl B took place within minutes, while apposition of the following L1 and L2 occurred immediately. Further on, applying toxin components simultaneously, it seemed that Hbl L1 enhanced binding of B to the target cell surface. Overall, these data contribute significantly to the elucidation of the mode of action of Hbl, and suggest that its mechanism of pore formation differs substantially from that of Nhe, although both enterotoxin complexes are sequentially highly related.
Collapse
|
14
|
Malakootikhah J, Rezayan AH, Negahdari B, Nasseri S, Rastegar H. Porous MnFe 2O 4@SiO 2 magnetic glycopolymer: A multivalent nanostructure for efficient removal of bacteria from aqueous solution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:277-284. [PMID: 30273851 DOI: 10.1016/j.ecoenv.2018.09.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The focuses of this research is to prepare an efficient magnetic glycopolymer for bacteria removal from aqueous solution. To perform this idea; porous MnFe2O4@SiO2 was functionalized with glucose and or maltose as an anchors to adhere onto bacteria cell surface. Aminopropyltriethoxysilane was employed to link the saccharides on magnetic nanoparticle surface. The hybrid materials were characterized with XRD, VSM, FT-IR, FESEM, TEM, zeta potential measurement and elemental mapping. Microscopic image showed that MnFe2O4 is in cluster form composed from tiny nanoparticles. After saccharide functionalization hybrid composite generate hyper-crosslinked porous structure as a result of polysilicate formation due to hydrolysis of silica source. Escherichia coli and bacillus subtilis were selected as sample pathogens to evaluate the bacteria capturing ability of the magnetic glycopolymer. At the optimum conditions (pH = 6, time of 20 min, dosage of 15 mg) removal efficiency was more than 99% using both saccharide.
Collapse
Affiliation(s)
- Javad Malakootikhah
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
15
|
Wang Y, Zhang J, Wang Y, Wang K, Wei H, Shen L. Isolation and characterization of the Bacillus cereus BC7 strain, which is capable of zearalenone removal and intestinal flora modulation in mice. Toxicon 2018; 155:9-20. [PMID: 30267721 DOI: 10.1016/j.toxicon.2018.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023]
Abstract
Zearalenone (ZEN) causes serious diseases in both animals and humans and thereby leads to substantial economic losses. The elimination of ZEN contamination from food and feed is an important concern worldwide. This study aimed to screen a bacterium that can efficiently detoxify ZEN both in vitro and in vivo. A bacterium (designated BC7) with high ZEN-removing capability was isolated from mouldy contaminated feeds and characterized as Bacillus cereus based on biochemical and 16S rRNA sequencing analyses. BC7 could remove 100% and 89.31% of 10 mg/L ZEN in Luria-Bertani (LB) medium and simulated gastric fluid (GSF), respectively, within 24 h at 37 °C. The effects of BC7 on ZEN detoxification and on the intestinal flora were further evaluated using four groups of mice that were intragastrically administered normal saline, BC7 culture (CFU = 3.45 × 108/mL), ZEN (10 mg/kg BW) or BC7 culture (CFU = 3.45 × 108/mL) + ZEN (10 mg/kg BW) for 2 weeks. ZEN showed distinct reproductive and hepatic toxicity, as characterized by increased weights of the uterus and liver, altered levels of oestradiol (E2) and luteinizing hormone (LH), increased secretion of the liver injury biomarkers alanine transaminase (ALT) and aspartate transaminase (AST), and abnormal histological phenotypes for the uterus, ovary and liver. However, BC7 could significantly reduce all the above-mentioned adverse effects caused by ZEN with no harmful effect on the reproductive system and liver in mice. Moreover, the addition of BC7 could efficiently renormalize the ZEN-induced perturbation of the gut microbiota and significantly increase the abundance of Lactobacillus to maintain the health of the intestinal flora in mice. In conclusion, Bacillus cereus BC7 could be used as a potential feed additive to efficiently remove ZEN in vitro or in vivo and to normalize the disordered gut microbiota in mice.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Jian Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yulu Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Kerong Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Hong Wei
- The Engineering Technology Research Center for Germ-free and Genome-editing animal, Huazhong Agricultural University,Wuhan, 430070, PR China; Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
16
|
Osman KM, Kappell AD, Orabi A, Al-Maary KS, Mubarak AS, Dawoud TM, Hemeg HA, Moussa IMI, Hessain AM, Yousef HMY, Hristova KR. Poultry and beef meat as potential seedbeds for antimicrobial resistant enterotoxigenic Bacillus species: a materializing epidemiological and potential severe health hazard. Sci Rep 2018; 8:11600. [PMID: 30072706 PMCID: PMC6072766 DOI: 10.1038/s41598-018-29932-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillus species in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereus and 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p < 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn't support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research.
Collapse
Affiliation(s)
- Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Anthony D Kappell
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khalid S Al-Maary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman S Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan A Hemeg
- Department of Clinical Laboratory sciences, college of Applied Medical sciences, Taibah University, Taibah, Saudi Arabia
| | - Ihab M I Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashgan M Hessain
- Department of Health Science, College of Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia
| | - Hend M Y Yousef
- Central Administration of Preventive Medicine, General Organization for Veterinary Service, Giza, Egypt.
| | | |
Collapse
|
17
|
Yadav AK, Sirohi P, Saraswat S, Rani M, Singh MP, Srivastava S, Singh NK. Inhibitory Mechanism on Combination of Phytic Acid with Methanolic Seed Extract of Syzygium cumini and Sodium Chloride over Bacillus subtilis. Curr Microbiol 2018; 75:849-856. [DOI: 10.1007/s00284-018-1457-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/15/2018] [Indexed: 01/25/2023]
|
18
|
Ryu MS, Yang HJ, Kim JW, Jeong SJ, Jeong SY, Eom JS, Jeong DY. Potential probiotics activity of Bacillus spp. from traditional soybean pastes and fermentation characteristics of Cheonggukjang. ACTA ACUST UNITED AC 2017. [DOI: 10.11002/kjfp.2017.24.8.1168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Ocampo-Suarez IB, López Z, Calderón-Santoyo M, Ragazzo-Sánchez JA, Knauth P. Are biological control agents, isolated from tropical fruits, harmless to potential consumers? Food Chem Toxicol 2017; 109:1055-1062. [DOI: 10.1016/j.fct.2017.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
|
21
|
Beyki MH, Ganjbakhsh SE, Minaeian S, Shemirani F. Clean approach to synthesis of graphene like CuFe2O4@polysaccharide resin nanohybrid: Bifunctional compound for dye adsorption and bacterial capturing. Carbohydr Polym 2017; 174:128-136. [DOI: 10.1016/j.carbpol.2017.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
22
|
Lee A, Cheng KC, Liu JR. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS One 2017; 12:e0182220. [PMID: 28763483 PMCID: PMC5538671 DOI: 10.1371/journal.pone.0182220] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/16/2017] [Indexed: 12/02/2022] Open
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium species, which has been shown to be associated with reproductive disorders in livestock, and to a lesser extent with hyperoestrogenic syndromes in humans. The aim of this study was to characterize a Bacillus amyloliquefaciens strain with ZEN removal ability. A pure culture of a strain designated LN isolated from moldy corn samples showed a high ZEN removal capability. Based on microscopic observations, biochemical characteristics, and phylogenetic analysis of the 16S rRNA gene sequence, LN was identified as B. amyloliquefaciens. After incubation of B. amyloliquefaciens LN in Luria-Bertani (LB) medium containing 3.5 ppm of ZEN, the ZEN concentration fell below the detection limit within 24 h. In ZEN-contaminated corn meal medium, B. amyloliquefaciens LN decreased ZEN concentration by 92% after 36 h of incubation. In phosphate-buffered saline (PBS) containing 5 ppm of ZEN, B. amyloliquefaciens LN reduced the ZEN concentration from 5 ppm to 3.28 ppm immediately after coming into contact with ZEN, and further reduced the ZEN concentration to 0.36 ppm after 4 h of incubation. The amounts of ZEN adsorbed by the cells of B. amyloliquefaciens LN did not increase with the extension of incubation time, indicating that B. amyloliquefaciens LN not only possessed ZEN adsorption ability, but also exhibited the ability to degrade ZEN. In addition, B. amyloliquefaciens LN was non-hemolytic, non-enterotoxin producing, and displayed probiotic characteristics including acidic tolerance, bile salt tolerance, and anti-pathogenic activities. These findings suggest that B. amyloliquefaciens LN has a potential to be used as a feed additive to reduce the concentrations of ZEN in feedstuffs.
Collapse
Affiliation(s)
- An Lee
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- * E-mail: (JRL); (KCC)
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (JRL); (KCC)
| |
Collapse
|
23
|
Glucose reinforced Fe3O4@cellulose mediated amino acid: Reusable magnetic glyconanoparticles with enhanced bacteria capture efficiency. Carbohydr Polym 2017; 170:190-197. [DOI: 10.1016/j.carbpol.2017.04.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
|
24
|
Cunha S, Mendes Â, Rego D, Meireles D, Fernandes R, Carvalho A, Costa PMD. Effect of competitive exclusion in rabbits using an autochthonous probiotic. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.4533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
<p>Animal nutrition has been severely challenged by the ban on antimicrobials as growth promoters. This has fostered the study of alternative methods to avoid colonisation by pathogenic bacteria as well as to improve the growth of animals and feed conversion efficiency. These new options should not alter the normal intestinal microbiota, or affect it as little as possible. The use of probiotics, which are live microorganisms that beneficially affect the host by improving its intestinal microbial balance, can be seen as a promising way to achieve that goal. In this study, New Zealand White rabbits were fed diets containing an autochthonous probiotic of Enterococcus spp., with the strains EaI, EfaI and EfaD, and Escherichia coli, with the strains ECI 1, ECI 2 and ECD, during a 25-d trial, to evaluate the impact of the probiotic on the faecal microbiota, including population dynamics and antimicrobial resistance profiles. A control group of rabbits, which was fed a diet containing a commonly used mixture of antimicrobials (colistin, oxytetracycline, and valnemulin), was also studied. To assess the colonisation ability of the mentioned probiotic, the faecal microbiota of the rabbits was characterised up to 10 d after the administration had ended. Isolates of enterococci and E. coli were studied for phylogenetic relationships using enterobacterial repetitive intergenic consensus (ERIC-PCR) and pulse-field gel electrophoresis (PFGE), respectively. Although partially affected by an unexpected clinical impairment suffered by the rabbits in the experimental group, our results showed the following. The difference between the growth rate of the animals treated with antimicrobials and those fed the probiotic was not statistically significant (P> 0.05). The competitive exclusion product was present in the faecal samples in a large proportion, but stopped being recovered by culture as soon as the administration ended and the housing conditions were changed. Multidrug-resistant strains of enterococci and E. coli were more commonly recovered from faecal samples of animals fed diets containing antimicrobials, than from rabbits fed diets with our probiotic formula. The use of E. coli probiotics to prevent infection by enteropathogenic strains must be carefully considered due to the possible occurrence of gastrointestinal signs. On the other hand, enterococci strains may be more effective, but lack the long-term colonisation ability.</p>
Collapse
|
25
|
Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel) 2017; 9:E130. [PMID: 28387743 PMCID: PMC5408204 DOI: 10.3390/toxins9040130] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| |
Collapse
|
26
|
Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS. Safety assesment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol Rep 2017; 4:62-71. [PMID: 28959626 PMCID: PMC5615088 DOI: 10.1016/j.toxrep.2016.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/10/2016] [Accepted: 12/19/2016] [Indexed: 10/31/2022] Open
Abstract
Probiotics are vital bacteria that colonize the intestine and modify its microflora with benefits for the host. Very few members of the Bacillus group are recognized as safe for use and hence only a few strains are available as commercial preparations for application in humans and animals. Acute and subacute studies in rats were conducted to establish safety of Bacillus clausii (B. clausii) UBBC07. In the acute toxicity study, the oral LD50 for B. clausii UBBC07 was found to be >5000 mg/kg (630 billion cfu/kg) body weight. The NOAEL for B. clausii UBBC07 was found to be 1000 (126 billion cfu) mg/kg body weight/day by oral route in the subacute toxicity study. There were no significant differences between control and treated groups in any of the endpoints assessed using an OECD443 or OECD407 protocol. B. clausii UBBC07 was found to be resistant to three antibiotics -clindamycin, erythromycin and chloramphenicol. Analysis of the whole genome sequence of B. clausii UBBC07 revealed that the antibiotic resistance genes are present in chromosomal DNA which is intrinsic and not transferable. Toxin genes were also found to be absent. These results suggest consumption of B. clausii UBBC07 is safe for humans.
Collapse
Key Words
- ALP, alanine amino phosphate
- ALT, alanine amino transferase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Acute toxicity
- Alb, albumin
- B. clausii UBBC07, Bacillus clausii UBBC07
- BUN, blood urea nitrogen
- Bacillus clausii UBBC07
- C, casts
- Creat, creatinine
- Cry, crystals
- EC, epithelial cells
- Ery, erythrocytes
- GC, granular casts
- Glob, globulin
- Glu, glucose
- Hct, hematocrit
- Hgb, hemoglobin
- Leu, leucocytes
- MCH, mean corpuscular hemoglobin
- MCHC, mean corpuscular hemoglobin concentration
- MCV, mean corpuscular volume
- NOAEL
- NOAEL, no observed adverse effect level
- Pro, protein
- RBC, red blood cell
- RET, reticulocyte
- SG, specific gravity
- Subacute toxicity
- T.Bil, total bilirubin
- T.chol, total cholesterol
- TP, total protein
- TPC, triple phosphate crystals
- Trig, triglycerides
- Vol, volume
- WBC, white blood cell
- Whole genome
Collapse
Affiliation(s)
- Suvarna G. Lakshmi
- Centre for Research and Development, Unique Biotech Limited, Hyderabad, India
| | - N. Jayanthi
- Centre for Research and Development, Unique Biotech Limited, Hyderabad, India
| | - M. Saravanan
- Vipragen Biosciences Pvt. Limited, Mysore, India
| | - M. Sudha Ratna
- Centre for Research and Development, Unique Biotech Limited, Hyderabad, India
| |
Collapse
|
27
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
28
|
Screening of Cytotoxic B. cereus on Differentiated Caco-2 Cells and in Co-Culture with Mucus-Secreting (HT29-MTX) Cells. Toxins (Basel) 2016; 8:toxins8110320. [PMID: 27827957 PMCID: PMC5127117 DOI: 10.3390/toxins8110320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
B. cereus is an opportunistic foodborne pathogen able to cause diarrhoea. However, the diarrhoeal potential of a B. cereus strain remains difficult to predict, because no simple correlation has yet been identified between the symptoms and a unique or a specific combination of virulence factors. In this study, 70 B. cereus strains with different origins (food poisonings, foods and environment) have been selected to assess their enterotoxicity. The B. cereus cell-free supernatants have been tested for their toxicity in vitro, on differentiated (21 day-old) Caco-2 cells, using their ATP content, LDH release and NR accumulation. The genetic determinants of the main potential enterotoxins and virulence factors (ces, cytK, entFM, entS, hbl, nhe, nprA, piplC and sph) have also been screened by PCR. This analysis showed that none of these genes was able to fully explain the enterotoxicity of B. cereus strains. Additionally, in order to assess a possible effect of the mucus layer in vitro, a cytotoxicity comparison between a monoculture (Caco-2 cells) and a co-culture (Caco-2 and HT29-MTX mucus-secreting cells) model has been performed with selected B. cereus supernatants. It appeared that, in these conditions, the mucus layer had no notable influence on the cytotoxicity of B. cereus supernatants.
Collapse
|
29
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Meng J, Gong Y, Qian P, Yu JY, Zhang XJ, Lu RR. Combined effects of ultra-high hydrostatic pressure and mild heat on the inactivation of Bacillus subtilis. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain. World J Microbiol Biotechnol 2016; 32:60. [PMID: 26925622 PMCID: PMC4771827 DOI: 10.1007/s11274-016-2027-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
Abstract
Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production.
Collapse
|
32
|
Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages. Probiotics Antimicrob Proteins 2016; 2:77-89. [PMID: 26781116 DOI: 10.1007/s12602-009-9030-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria. Among them, the enterococcal bacteriocin (enterocin) AS-48 stands for its peculiar characteristics and broad-spectrum antimicrobial activity. AS-48 belongs to the class of circular bacteriocins and has been studied in depth in several aspects: peptide structure, genetic determinants, and mode of action. Recently, a wealth of knowledge has accumulated on the antibacterial activity of this bacteriocin against foodborne pathogenic and spoilage bacteria in food systems, especially in vegetable foods and drinks. This work provides a general overview on the results from tests carried out with AS-48 in different vegetable food categories (such as fruit juices, ciders, sport and energy drinks, fresh fruits and vegetables, pre-cooked ready to eat foods, canned vegetables, and bakery products). Depending on the food substrate, the bacteriocin has been tested alone or as part of hurdle technology, in combination with physico-chemical treatments (such as mild heat treatments or high-intensity pulsed electric fields) and other antimicrobial substances (such as essential oils, phenolic compounds, and chemical preservatives). Since the work carried out on bacteriocins in preservation of vegetable foods and drinks is much more limited compared to meat and dairy products, the results reported for AS-48 may open new possibilities in the field of bacteriocin applications.
Collapse
|
33
|
Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD. The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Front Microbiol 2015; 6:1418. [PMID: 26733963 PMCID: PMC4685140 DOI: 10.3389/fmicb.2015.01418] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/30/2015] [Indexed: 01/14/2023] Open
Abstract
Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.
Collapse
Affiliation(s)
- Nidhi Gopal
- Teagasc Food Research CentreCork, Ireland
- School of Microbiology, University College CorkCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | - Paul R. Ross
- College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | | | | | - Paul D. Cotter
- Teagasc Food Research CentreCork, Ireland
- APC Microbiome InstituteCork, Ireland
| |
Collapse
|
34
|
Sadiq FA, Li Y, Liu T, Flint S, Zhang G, He G. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China. Int J Food Microbiol 2015; 217:200-8. [PMID: 26555161 DOI: 10.1016/j.ijfoodmicro.2015.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/03/2015] [Accepted: 10/31/2015] [Indexed: 11/26/2022]
Abstract
Aerobic spore forming bacteria are potential milk powder contaminants and are viewed as indicators of poor quality. A total of 738 bacteria, including both mesophilic and thermophilic, isolated from twenty-five powdered milk samples representative of three types of milk powders in China were analyzed based on the random amplified polymorphic DNA (RAPD) protocol to provide insight into species diversity. Bacillus licheniformis was found to be the most prevalent bacterium with greatest diversity (~43% of the total isolates) followed by Geobacillus stearothermophilus (~21% of the total isolates). Anoxybacillus flavithermus represented only 8.5% of the total profiles. Interestingly, actinomycetes represented a major group of the isolates with the predominance of Laceyella sacchari followed by Thermoactinomyces vulgaris, altogether comprising of 7.3% of the total isolates. Out of the nineteen separate bacterial species (except five unidentified groups) recovered and identified from milk powders, twelve proved to belong to novel or previously unreported species in milk powders. Assessment and characterization of the harmful effects caused by this particular micro-flora on the quality and safety of milk powders will be worth doing in the future.
Collapse
Affiliation(s)
- Faizan A Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yun Li
- Department of Biology, Hanshan Normal University, Chaozhou 521041, China
| | - TongJie Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Steve Flint
- School of Food and Nutrition, Massey University, Private Bag 11 222, Palmerston-North, New Zealand
| | - Guohua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - GuoQing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Rønning HT, Madslien EH, Asp TN, Granum PE. Identification and quantification of lichenysin - a possible source of food poisoning. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:2120-30. [PMID: 26414385 DOI: 10.1080/19440049.2015.1096967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lichenysin produced by 53 different Bacillus licheniformis strains has been structurally examined with a qualitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using quadrupole-time-of-flight mass spectrometry. The same lichenysin isoforms are produced from all strains, indicating that the growth conditions have a stronger influence on the lipopeptide production than the genotype. A rapid method for the quantification of lichenysin from bacterial cell cultures with LC-MS/MS after a simple methanol extraction has been refined. For the first time commercially available lichenysin has been used as calibrant, making quantification more accurate. The trueness for C15-lichenysin has been improved to 94% using matrix-matched calibration with lichenysin compared with 30% using solvent calibration with surfactin. The quantitative method was fully validated based on Commission Decision 2002/657/EC. The LOD of the method was below 1 µg g(-1) and the repeatability ranged from 10% to 16%.
Collapse
Affiliation(s)
| | - Elisabeth Henie Madslien
- b Forsvarets forskningsinstitutt FFI , Norwegian Defence Research Establishment , Kjeller , Norway
| | - Tone Normann Asp
- a School of Veterinary Science , Norwegian University of Life Sciences , Oslo , Norway
| | - Per Einar Granum
- a School of Veterinary Science , Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
36
|
Isolation and Characterization of Phages Infecting Bacillus subtilis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:179597. [PMID: 26273592 PMCID: PMC4529890 DOI: 10.1155/2015/179597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
Abstract
Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages) or noncontractile (ARπ phage) tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0) and alkaline (9.0 and 10.0) pH.
Collapse
|
37
|
Tewari A, Abdullah S. Bacillus cereus food poisoning: international and Indian perspective. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:2500-11. [PMID: 25892750 PMCID: PMC4397285 DOI: 10.1007/s13197-014-1344-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Food borne illnesses result from eating food or drinking beverages that are contaminated with chemical matter, heavy metals, parasites, fungi, viruses and Bacteria. Bacillus cereus is one of the food-borne disease causing Bacteria. Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. Their spores may be present on various types of raw and cooked foods, and their ability to survive high cooking temperatures requires that cooked foods be served hot or cooled rapidly to prevent the growth of this bacteria. Bacillus cereus is well known as a cause of food poisoning, and much more is now known about the toxins produced by various strains of this species, so that its significance in such episodes are clearer. However, it is still unclear why such cases are so rarely reported worldwide.
Collapse
Affiliation(s)
- Anita Tewari
- />School of Public Health & Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004 India
| | - Swaid Abdullah
- />Veterinary Parasitology & Ecology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
38
|
Nguyen A, Nguyen D, Tran M, Nguyen L, Nguyen A, Phan TN. Isolation and characterization of Bacillus subtilis
CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers. Lett Appl Microbiol 2015; 60:580-8. [DOI: 10.1111/lam.12411] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Affiliation(s)
- A.T.V. Nguyen
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - D.V. Nguyen
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| | - M.T. Tran
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
- ANABIO Research & Development JSC; Ha Dong Hanoi Vietnam
| | - L.T. Nguyen
- DABACO Center for Veterinary Diagnostics; Khac Niem Industrial Zone; Bac Ninh Vietnam
| | - A.H. Nguyen
- ANABIO Research & Development JSC; Ha Dong Hanoi Vietnam
| | - T.-N. Phan
- Key Laboratory of Enzyme and Protein Technology; VNU University of Science; Hanoi Vietnam
| |
Collapse
|
39
|
Potential probiotic attributes of a new strain of Bacillus coagulans CGMCC 9951 isolated from healthy piglet feces. World J Microbiol Biotechnol 2015; 31:851-63. [DOI: 10.1007/s11274-015-1838-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
40
|
Artíguez ML, Martínez de Marañón I. Inactivation of spores and vegetative cells of Bacillus subtilis and Geobacillus stearothermophilus by pulsed light. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Singh AK, Sun X, Bai X, Kim H, Abdalhaseib MU, Bae E, Bhunia AK. Label-free, non-invasive light scattering sensor for rapid screening of Bacillus colonies. J Microbiol Methods 2015; 109:56-66. [DOI: 10.1016/j.mimet.2014.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
|
42
|
Analysis of emetic toxin production by Bacillus species using cellular cytotoxicity, molecular, and chromatographic assays. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0574-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Branquinho R, Sousa C, Lopes J, Pintado ME, Peixe LV, Osório H. Differentiation of Bacillus pumilus and Bacillus safensis using MALDI-TOF-MS. PLoS One 2014; 9:e110127. [PMID: 25314655 PMCID: PMC4196992 DOI: 10.1371/journal.pone.0110127] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/17/2014] [Indexed: 11/29/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) despite being increasingly used as a method for microbial identification, still present limitations in which concerns the differentiation of closely related species. Bacillus pumillus and Bacillus safensis, are species of biotechnological and pharmaceutical significance, difficult to differentiate by conventional methodologies. In this study, using a well-characterized collection of B. pumillus and B. safensis isolates, we demonstrated the suitability of MALDI-TOF-MS combined with chemometrics to accurately and rapidly identify them. Moreover, characteristic species-specific ion masses were tentatively assigned, using UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases and primary literature. Delineation of B. pumilus (ions at m/z 5271 and 6122) and B. safensis (ions at m/z 5288, 5568 and 6413) species were supported by a congruent characteristic protein pattern. Moreover, using a chemometric approach, the score plot created by partial least square discriminant analysis (PLSDA) of mass spectra demonstrated the presence of two individualized clusters, each one enclosing isolates belonging to a species-specific spectral group. The generated pool of species-specific proteins comprised mostly ribosomal and SASPs proteins. Therefore, in B. pumilus the specific ion at m/z 5271 was associated with a small acid-soluble spore protein (SASP O) or with 50S protein L35, whereas in B. safensis specific ions at m/z 5288 and 5568 were associated with SASP J and P, respectively, and an ion at m/z 6413 with 50S protein L32. Thus, the resulting unique protein profile combined with chemometric analysis, proved to be valuable tools for B. pumilus and B. safensis discrimination, allowing their reliable, reproducible and rapid identification.
Collapse
Affiliation(s)
- Raquel Branquinho
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Clara Sousa
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- CEB, Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - João Lopes
- REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- CBQF, Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela E. Pintado
- Departmento de Tecnologia Farmacêutica, Faculdade Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa V. Peixe
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Hugo Osório
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
44
|
Branquinho R, Meirinhos-Soares L, Carriço JA, Pintado M, Peixe LV. Phylogenetic and clonality analysis of Bacillus pumilus isolates uncovered a highly heterogeneous population of different closely related species and clones. FEMS Microbiol Ecol 2014; 90:689-98. [PMID: 25230950 DOI: 10.1111/1574-6941.12426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus is a Gram-positive bacterium with a wide range of attributed applications, namely as a plant growth promoting rhizobacteria (PGPR), animal, and human probiotic. However, a rare putative role in human diseases has been reported, namely in food poisoning or as anthrax-like cutaneous infectious agent. This species is difficult to distinguish from its closely related species on the basis of phenotypic or biochemical characteristics and 16S rRNA gene sequences. In this study, the phylogenetic analysis of gyrB and rpoB gene sequences of a collection of isolates previously identified as B. pumilus, assigned most of them (93%, 38 of 41 isolates) to B. safensis or to the new recently described B. invictae. Moreover, we extended the previously reported recognized habitats of these species and unveiled a human health or biotechnological relevance (e.g. as implicated in food poisoning or PGPR) for them. Additionally, we demonstrated that both B. safensis and B. invictae species encompass a clonally diverse population, which can justify their great adaptation ability to different niches, with evidence of clonal-host specificity.
Collapse
Affiliation(s)
- Raquel Branquinho
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, REQUIMTE, Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
45
|
Bäuerl C, Collado MC, Zúñiga M, Blas E, Pérez Martínez G. Changes in cecal microbiota and mucosal gene expression revealed new aspects of epizootic rabbit enteropathy. PLoS One 2014; 9:e105707. [PMID: 25147938 PMCID: PMC4141808 DOI: 10.1371/journal.pone.0105707] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Epizootic Rabbit Enteropathy (ERE) is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial for the development of the disease. Microbial dynamics and host responses during the disease were studied. Cecal microbiota was characterized in three rabbit groups (ERE-affected, healthy and healthy pretreated with antibiotics), followed by transcriptional analysis of cytokines and mucins in the cecal mucosa and vermix by q-rtPCR. In healthy animals, cecal microbiota with or without antibiotic pretreatment was very similar and dominated by Alistipes and Ruminococcus. Proportions of both genera decreased in ERE rabbits whereas Bacteroides, Akkermansia and Rikenella increased, as well as Clostridium, γ-Proteobacteria and other opportunistic and pathogenic species. The ERE group displayed remarkable dysbiosis and reduced taxonomic diversity. Transcription rate of mucins and inflammatory cytokines was very high in ERE rabbits, except IL-2, and its analysis revealed the existence of two clearly different gene expression patterns corresponding to Inflammatory and (mucin) Secretory Profiles. Furthermore, these profiles were associated to different bacterial species, suggesting that they may correspond to different stages of the disease. Other data obtained in this work reinforced the notion that ERE morbidity and mortality is possibly caused by an overgrowth of different pathogens in the gut of animals whose immune defence mechanisms seem not to be adequately responding.
Collapse
Affiliation(s)
- Christine Bäuerl
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (Spanish National Research Council) (CSIC), Valencia, Spain
| | - M. Carmen Collado
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (Spanish National Research Council) (CSIC), Valencia, Spain
| | - Manuel Zúñiga
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (Spanish National Research Council) (CSIC), Valencia, Spain
| | - Enrique Blas
- Animal Nutrition Research Group, Institute of Animal Science and Technology, Polytechnic University of Valencia (UPV), Valencia, Spain
| | - Gaspar Pérez Martínez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (Spanish National Research Council) (CSIC), Valencia, Spain
- * E-mail:
| |
Collapse
|
46
|
Shobharani P, Halami PM. Cellular fatty acid profile and H(+)-ATPase activity to assess acid tolerance of Bacillus sp. for potential probiotic functional attributes. Appl Microbiol Biotechnol 2014; 98:9045-58. [PMID: 25125040 DOI: 10.1007/s00253-014-5981-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
Abstract
The present study has been focused widely on comparative account of probiotic qualities of Bacillus spp. for safer usage. Initially, 170 heat resistant flora were isolated and selected for non-pathogenic cultures devoid of cytK, hblD, and nhe1 virulence genes. Subsequently, through biochemical tests along with 16S rRNA gene sequencing and fatty acid profiling, the cultures were identified as Bacillus megaterium (AR-S4), Bacillus subtilis (HR-S1), Bacillus licheniformis (Csm1-1a and HN-S1), and Bacillus flexus (CDM4-3c and CDM3-1). The selected cultures showed 70-80 % survival under simulated gastrointestinal condition which was also confirmed through H(+)-ATPase production. The amount of H(+)-ATPase increased by more than 2-fold when grown at pH 2 which support for the acid tolerance ability of Bacillus isolates. The study also examined the influence of acidic pH on cellular fatty acid composition of Bacillus spp. A remarkable shift in the fatty acid profile was observed at acidic pH through an increased amount of even numbered fatty acid (C16 and C18) in comparison with odd numbered (C15 and C17). Additionally, the cultures exhibited various probiotic functional properties. Overall, the study increases our understanding of Bacillus spp. and will allow both industries and consumers to choose for well-defined probiotic with possible health benefits.
Collapse
Affiliation(s)
- P Shobharani
- Food Microbiology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | | |
Collapse
|
47
|
Blanch AR, Méndez J, Castel S, Reina M. Comparison of procedures for the extraction of supernatants and cytotoxicity tests in Vero cells, applied to assess the toxigenic potential of Bacillus spp. and Lactobacillus spp., intended for use as probiotic strains. J Microbiol Methods 2014; 103:64-9. [PMID: 24938520 DOI: 10.1016/j.mimet.2014.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022]
Abstract
Interest in using Bacillus strains as probiotic components of animal feeds has grown in recent years. However, some of these strains, especially those taxonomically related to the Bacillus cereus group, may have enterotoxigenic activity. Assessment of their toxigenic potential by well-established and robust protocols is required before authorizing their use in animal nutrition. Three methods of extraction and concentration of supernatants of Bacillus and Lactobacillus strains (methanol extraction, ammonium sulphate and ultrafiltration concentration) and three cytotoxic tests in Vero cells (WST-1, LDH and protein synthesis inhibition assays) for the assessment of the cytotoxicity activity of Lactobacillus strains (as probiotic strains in human and animal nutrition) and Bacillus toyonensis BCT-7112(T) (as animal probiotic strain in animal nutrition-Toyocerin®-) were evaluated in this study. Methanol extraction was not useful under any circumstances. The other two concentration methods (ammonium sulphate and ultrafiltration) were feasible, with slightly greater sensitivity achieved by ultrafiltration. The probiotic strain B. toyonensis BCT-7112(T) proved to be a non-cytotoxic strain in all the protocols tested. However, some Lactobacillus strains showed cytotoxicity activity, regardless of the protocols applied.
Collapse
Affiliation(s)
- Anicet R Blanch
- Department of Microbiology, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Javier Méndez
- Department of Microbiology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Susana Castel
- Celltec-UB, Department of Cell Biology, University of Barcelona, Catalonia, Spain
| | - Manuel Reina
- Celltec-UB, Department of Cell Biology, University of Barcelona, Catalonia, Spain
| |
Collapse
|
48
|
Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3665] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Argun Kıvanç S, Kıvanç M, Güllülü G. Automated ribotyping and antibiotic resistance determining of Bacillus spp from conjunctiva of diabetic patients. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:138-44. [PMID: 24711899 PMCID: PMC3976753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/05/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE(S) We aimed to characterize the phenotype and genotype of Bacillus spp isolated from diabetic patients' eyes, by studying the drug sensitivity patterns with a disc-diffusion method. MATERIALS AND METHODS Fifty eyes of 25 patients with type II diabetes mellitus, with at least 10 years of diabetes history, were included in the study. We analyzed the eyes for the presence of Bacillus spp.; presumptive isolates were identified by morphological, and biochemical tests, and confirmed by the VITEK system. Automated EcoRI ribotyping was performed with a RiboPrinter(®) Microbial Characterization System. We determined the antibiotic resistance of the isolates by the Kirby-Bauer disc diffusion test. RESULTS Seven out of 25 patients were on insulin treatment; 7 on oral anti-diabetic medication; and 11 on combination therapy of insulin and oral medications. Among the 28 Bacillus spp isolates, 14 were B. cereus, 11 were B. pumilus, 2 were B. mojavensis and 1 was B. subtilis. Almost all the strains were either resistant or multiresistant, particularly towards cefuroxime, methicillin, and ceftazidime. CONCLUSION Diabetic patients seem to be more prone to B. cereus infections than healthy individuals. It would be greatly beneficial to understand and recognize the prevalence of microorganisms and their resistance patterns for better outcome in ocular surgeries.
Collapse
Affiliation(s)
- Sertaç Argun Kıvanç
- Erzurum Region Education and Research Hospital, Department of Ophthalmology, Erzurum, Turkey
| | - Merih Kıvanç
- Anadolu University, Faculty of Science, Department of Biology, Eskisehir Turkey
| | | |
Collapse
|
50
|
Lücking G, Stoeckel M, Atamer Z, Hinrichs J, Ehling-Schulz M. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage. Int J Food Microbiol 2013; 166:270-9. [DOI: 10.1016/j.ijfoodmicro.2013.07.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 11/30/2022]
|