1
|
Ayuti SR, Khairullah AR, Al-Arif MA, Lamid M, Warsito SH, Moses IB, Hermawan IP, Silaen OSM, Lokapirnasari WP, Aryaloka S, Ferasyi TR, Hasib A, Delima M. Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Vet J 2024; 14:1313-1329. [PMID: 39055762 PMCID: PMC11268913 DOI: 10.5455/ovj.2024.v14.i6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Salmonellosis, caused by Salmonella species, is one of the most common foodborne illnesses worldwide with an estimated 93.8 million cases and about 155,00 fatalities. In both industrialized and developing nations, Salmonellosis has been reported to be one of the most prevalent foodborne zoonoses and is linked with arrays of illness syndromes such as acute and chronic enteritis, and septicaemia. The two major and most common Salmonella species implicated in both warm-blooded and cold-blooded animals are Salmonella bongori and Salmonella enterica. To date, more than 2400 S. enterica serovars which affect both humans and animals have been identified. Salmonella is further classified into serotypes based on three primary antigenic determinants: somatic (O), flagella (H), and capsular (K). The capacity of nearly all Salmonella species to infect, multiply, and survive in human host cells with the aid of their pathogenic and virulence arsenals makes them deadly and important public health pathogens. Primarily, food-producing animals such as poultry, swine, cattle, and their products have been identified as important sources of salmonellosis. Additionally, raw fruits and vegetables are among other food types that have been linked to the spread of Salmonella spp. Based on the clinical manifestation of human salmonellosis, Salmonella strains can be categorized as either non-typhoidal Salmonella (NTS) and typhoidal Salmonella. The detection of aseptically collected Salmonella in necropsies, environmental samples, feedstuffs, rectal swabs, and food products serves as the basis for diagnosis. In developing nations, typhoid fever due to Salmonella Typhi typically results in the death of 5%-30% of those affected. The World Health Organization (WHO) calculated that there are between 16 and 17 million typhoid cases worldwide each year, with scaring 600,000 deaths as a result. The contagiousness of a Salmonella outbreak depends on the bacterial strain, serovar, growth environment, and host susceptibility. Risk factors for Salmonella infection include a variety of foods; for example, contaminated chicken, beef, and pork. Globally, there is a growing incidence and emergence of life-threatening clinical cases, especially due to multidrug-resistant (MDR) Salmonella spp, including strains exhibiting resistance to important antimicrobials such as beta-lactams, fluoroquinolones, and third-generation cephalosporins. In extreme cases, especially in situations involving very difficult-to-treat strains, death usually results. The severity of the infections resulting from Salmonella pathogens is dependent on the serovar type, host susceptibility, the type of bacterial strains, and growth environment. This review therefore aims to detail the nomenclature, etiology, history, pathogenesis, reservoir, clinical manifestations, diagnosis, epidemiology, transmission, risk factors, antimicrobial resistance, public health importance, economic impact, treatment, and control of salmonellosis.
Collapse
Affiliation(s)
- Siti Rani Ayuti
- Doctoral Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Research Center of Aceh Cattle and Local Livestock, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mohammad Anam Al-Arif
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mirni Lamid
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sunaryo Hadi Warsito
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Center for Tropical Veterinary Studies-One Health Collaboration Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Mira Delima
- Department of Animal Husbandry, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
2
|
Chaidez C, Peraza-Garay FDJ, Medrano-Félix JA, Castro-Del Campo N, López-Cuevas O. Phenotypic traits of carbon source utilization in environmental Salmonella strains isolated from river water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1155-1163. [PMID: 33251827 DOI: 10.1080/09603123.2020.1849578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Salmonella in the environment have evolved genetically to maintain a stable cell metabolism. Nevertheless, a lack of common nutrients (such as glucose) causes these strains to metabolize alternative carbon sources. In this study, 21 strains of Salmonella Oranienburg isolated from subtropical river water were evaluated to compare their adaptation and preconditioning abilities for the consumption of environmental carbon sources (ECS). The results obtained in this study attributed important biological characteristics to the adaptation of the metabolism of Salmonella strains to diverse ECS; these characteristics include but are not limited to variations in plasticity and natural preconditioning in closely related microorganisms, such as environmental isolates belonging to the serotype Oranienburg.
Collapse
Affiliation(s)
- Cristóbal Chaidez
- The department is Environmental microbiology, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado, Culiacán, México
| | | | | | - Nohelia Castro-Del Campo
- The department is Environmental microbiology, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado, Culiacán, México
| | - Osvaldo López-Cuevas
- The department is Environmental microbiology, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado, Culiacán, México
| |
Collapse
|
3
|
Chen J, Karanth S, Pradhan AK. Quantitative microbial risk assessment for Salmonella: Inclusion of whole genome sequencing and genomic epidemiological studies, and advances in the bioinformatics pipeline. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2020; 2:100045. [DOI: 10.1016/j.jafr.2020.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho G, Kabisch J, Böhnlein C, Franz CMAP. Microbial quality and safety of milk and milk products in the 21st century. Compr Rev Food Sci Food Saf 2020; 19:2013-2049. [DOI: 10.1111/1541-4337.12568] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Vincenzina Fusco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Gyu‐Sung Cho
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Jan Kabisch
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Christina Böhnlein
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | | |
Collapse
|
5
|
Estrada-Acosta MD, Ramirez K, Medrano-Félix JA, Castro-Del Campo N, López-Moreno HS, Jimenez Edeza M, Martínez-Urtaza J, Chaidez C. Effect of river water exposition on adhesion and invasion abilities of Salmonella Oranienburg and Saintpaul. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:43-54. [PMID: 29249164 DOI: 10.1080/09603123.2017.1415308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study was performed to evaluate in vitro the adherence and invasiveness capacity of Salmonella Oranienburg and Saintpaul (isolated from river water) exposed to laboratory and river water growth conditions and inoculated into epithelial HEp-2 cell. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed lower ability to adhere and invade epithelial HEp-2 cells under both growth conditions as compared to Salmonella Typhimurium reference strain. S. Oranienburg adhesion capacity was not affected by the growth conditions, while S. Saintpaul exposed to river water significantly (p < 0.05) decreased its adhesion capacity by 75.7 %. On the contrary, S. Oranienburg exposed to river water reduced its invasion efficiency by 80 %, whereas S. Saintpaul showed no differences between growth conditions. In conclusion, this study suggests that the exposure to non-host conditions, such as river water, adversely affects the adhesion and invasiveness of Salmonella serotypes differently, impacting on their ability to re-enter a new host.
Collapse
Affiliation(s)
| | - Karina Ramirez
- b División de Estudios de Posgrado e Investigación , Instituto Tecnologico de Culiacan , Culiacan , Mexico
| | - José Andrés Medrano-Félix
- c Food Safety , CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. , Culiacán , Mexico
| | | | - Hector S López-Moreno
- e Facultad de Ciencias Quimico Biologicas , Universidad Autonoma de Sinaloa , Culiacan , Mexico
| | - Maribel Jimenez Edeza
- f Facultad de Ciencias Químico-Biológicas , Universidad Autónoma de Sinaloa , Culiacán , Mexico
| | | | - Cristóbal Chaidez
- d Food Safety , Centro de Investigación en Alimentación y Desarrollo , Culiacan , Mexico
| |
Collapse
|
6
|
Medrano-Félix A, Estrada-Acosta M, Peraza-Garay F, Castro-Del Campo N, Martínez-Urtaza J, Chaidez C. Differences in carbon source utilization of Salmonella Oranienburg and Saintpaul isolated from river water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:252-263. [PMID: 28565917 DOI: 10.1080/09603123.2017.1332349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.
Collapse
Affiliation(s)
- Andrés Medrano-Félix
- a CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. , Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria. Culiacán , Sinaloa , México
| | | | - Felipe Peraza-Garay
- c Centro de Investigación y Docencia en Ciencias de la Salud , Universidad Autónoma de Sinaloa , Sinaloa , México
| | - Nohelia Castro-Del Campo
- d Centro de Investigación en Alimentación y Desarrollo A.C. , Coordinación Regional Culiacán Laboratorio Nacional para la Investigación en Inocuidad Alimentaria. Culiacán , Sinaloa , México
| | | | - Cristóbal Chaidez
- d Centro de Investigación en Alimentación y Desarrollo A.C. , Coordinación Regional Culiacán Laboratorio Nacional para la Investigación en Inocuidad Alimentaria. Culiacán , Sinaloa , México
| |
Collapse
|
7
|
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology 2016; 496:255-276. [PMID: 27372181 DOI: 10.1016/j.virol.2016.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
8
|
Rodriguez-Rivera LD, Moreno Switt AI, Degoricija L, Fang R, Cummings CA, Furtado MR, Wiedmann M, den Bakker HC. Genomic characterization of Salmonella Cerro ST367, an emerging Salmonella subtype in cattle in the United States. BMC Genomics 2014; 15:427. [PMID: 24898914 PMCID: PMC4070546 DOI: 10.1186/1471-2164-15-427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/21/2014] [Indexed: 11/20/2023] Open
Abstract
Background Within the last decade, Salmonella enterica subsp. enterica serovar Cerro (S. Cerro) has become one of the most common serovars isolated from cattle and dairy farm environments in the northeastern US. The fact that this serovar is commonly isolated from subclinically infected cattle and is rarely associated with human disease, despite its frequent isolation from cattle, has led to the hypothesis that this emerging serovar may be characterized by reduced virulence. We applied comparative and population genomic approaches to (i) characterize the evolution of this recently emerged serovar and to (ii) gain a better understanding of genomic features that could explain some of the unique epidemiological features associated with this serovar. Results In addition to generating a de novo draft genome for one Salmonella Cerro strain, we also generated whole genome sequence data for 26 additional S. Cerro isolates, including 16 from cattle operations in New York (NY) state, 2 from human clinical cases from NY in 2008, and 8 from diverse animal sources (7 from Washington state and 1 from Florida). All isolates sequenced in this study represent sequence type ST367. Population genomic analysis showed that isolates from the NY cattle operations form a well-supported clade within S. Cerro ST367 (designated here “NY bovine clade”), distinct from isolates from Washington state, Florida and the human clinical cases. A molecular clock analysis indicates that the most recent common ancestor of the NY bovine clade dates back to 1998, supporting the recent emergence of this clone. Comparative genomic analyses revealed several relevant genomic features of S. Cerro ST367, that may be responsible for reduced virulence of S. Cerro, including an insertion creating a premature stop codon in sopA. In addition, patterns of gene deletion in S. Cerro ST367 further support adaptation of this clone to a unique ecological or host related niche. Conclusions Our results indicate that the increase in prevalence of S. Cerro ST367 is caused by a highly clonal subpopulation and that S. Cerro ST367 is characterized by unique genomic deletions that may indicate adaptation to specific ecological niches and possibly reduced virulence in some hosts. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-427) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Henk C den Bakker
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Turner D, Hezwani M, Nelson S, Salisbury V, Reynolds D. Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol 2012; 93:2046-2056. [PMID: 22694898 DOI: 10.1099/vir.0.043331-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage vB_SenS-Ent1 (Ent1) is a member of the family Siphoviridae of tailed bacteriophages and infects a broad range of serovars of the enteric pathogen Salmonella enterica. The virion particle is composed of an icosahedral head 64 nm in diameter and a flexible, non-contractile tail of 116 × 8.5 nm possessing terminal fibres. The adsorption rate constant at 37 °C is 6.73 × 10(-9) ml min(-1). Latent and eclipse periods are 25 and 20 min, respectively, and the burst size is 35 progeny particles per cell after 35 min at 37 °C. Sequencing revealed a circularly permuted, 42 391 bp dsDNA genome containing 58 ORFs organized into four major transcriptional units. Comparisons with the genome sequences of other bacteriophages revealed a high level of nucleotide sequence identity and shared orthologous proteins with the Salmonella phages SETP3, SE2 and KS7 (SS3e) and the Escherichia phages K1G, K1H, K1ind1 and K1ind3.
Collapse
Affiliation(s)
- Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Mohammed Hezwani
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Shona Nelson
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Vyv Salisbury
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Darren Reynolds
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
10
|
allB, allantoin utilisation and Salmonella enterica serovar Enteritidis and Typhimurium colonisation of poultry and mice. Folia Microbiol (Praha) 2011; 56:264-9. [PMID: 21611691 DOI: 10.1007/s12223-011-0034-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/28/2011] [Indexed: 01/23/2023]
Abstract
Natural variation in the presence or the absence of STM0517-0529 genes allowing allantoin utilisation has been described in field isolates of the multidrug resistant Salmonella enterica serovar Typhimurium belonging to the phage type DT104. Interestingly, S. enterica subspecies enterica serovar Typhimurium DT104 is quite frequent in pigs and cattle, but rarely present in egg-laying hens. Taking into account the different mode of allantoin metabolism in birds and mammals, we were interested in whether the absence of STM0517-0529 genes may disable this clone in poultry colonisation. We have therefore constructed the allB (also designated as STM0523) mutants in S. enterica subspecies enterica serovar Typhimurium and S. enterica subspecies enterica serovar Enteritidis, and with these, we infected mice, newly hatched chickens and adult egg-laying hens to show that the defect in allantoin utilisation does not influence S. enterica virulence for mice or adult hens, but slightly decreases virulence of S. enterica for chickens. The decrease in virulence of the allB mutant was relatively minor as it could be observed only after a mixed infection model, consistent with a lower prevalence, but not a total absence of such clones in poultry flocks.
Collapse
|
11
|
Genetic evolution of the Spanish multidrug-resistant Salmonella enterica 4,5,12:i:- monophasic variant. J Clin Microbiol 2010; 48:4563-6. [PMID: 20943866 DOI: 10.1128/jcm.00337-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed a collection of 60 Salmonella enterica 4,5,12:i:- phage type U302 multidrug-resistant monophasic variant strains, isolated in Spain between 2000 and 2007. Most strains showed resistance to ampicillin (A), chloramphenicol (C), sulfamethoxazole (Su), gentamicin (G), streptomycin (S), tetracycline (T), and co-trimoxazole (SxT) (an ACSuGSTSxT resistance pattern). Only one pulsed-field gel electrophoresis (PFGE) type was detected, with 19 subtypes (Simpson's index of diversity [SID]=0.89). Multiple-locus variable-number tandem-repeat analysis (MLVA) showed more variability, with 32 profiles (SID=0.97), but only showed diversity at the STTR5 and STTR6 loci. PCR and sequencing demonstrated all strains contained the same allantoin-glyoxylate pathway deletion. Four types of deletions were detected in the fljAB operon, all starting at the same position, at the STM2758 gene, and followed by an IS26 insertion. Furthermore, a representative set of strains of the four deletion types harbored plasmids with IS26. We propose that a Salmonella enterica serotype Typhimurium U302 multidrug-resistant (ACSuGSTSxT) strain, defective for the allantoin-glyoxylate pathway and containing IS26 at plasmid pU302L, could be the ancestor of the variant in Spain.
Collapse
|
12
|
Soyer Y, Alcaine SD, Schoonmaker-Bopp DJ, Root TP, Warnick LD, McDonough PL, Dumas NB, Gröhn YT, Wiedmann M. Pulsed-field gel electrophoresis diversity of human and bovine clinical Salmonella isolates. Foodborne Pathog Dis 2010; 7:707-17. [PMID: 20180633 DOI: 10.1089/fpd.2009.0424] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pulsed-field gel electrophoresis (PFGE) characterization of 335 temporally and spatially matched clinical, bovine, and human Salmonella enterica subsp. enterica isolates revealed 167 XbaI PFGE patterns. These isolates were previously classified into 51 serotypes and 73 sequence types, as determined by multilocus sequence typing. Discriminatory power of PFGE (Simpson's index, D = 0.991) was considerably higher than that of multilocus sequence typing (D = 0.920) or serotyping (D = 0.913). Although 128 PFGE types each only represented a single isolate, 8 PFGE types represented >4 isolates, including (i) three serotype Enteritidis and Heidelberg patterns that were only identified among human isolates, (ii) two PFGE patterns (each representing serotypes Bardo and Newport) that were significantly more common among bovine isolates as compared with human isolates; (iii) two PFGE types that each includes two serotypes (4,5,12:i:- and Typhimurium; Thompson and 1,7:-:1,5); and (iv) one PFGE type that includes eight Typhimurium isolates from humans and cattle. Characterization of isolates collected over multiple farm visits indicated that given specific PFGE types persisted over time on 11 farms. On an additional seven farms, isolates with a given sequence type represented multiple PFGE type, which typically only differed by <3 bands, suggesting PFGE type diversification during strain persistence. Sixteen PFGE types were isolated from 2 or more farms, including two widely distributed serotype Newport-associated PFGE types each found on 10 farms. In six instances two or three human isolates collected in the same county in the same or consecutive months represented the same subtypes, suggesting small human case clusters. PFGE-based characterization and surveillance of human and animal isolates can provide improved understanding of Salmonella diversity and epidemiology, including identification of possible host-associated and common, widely distributed PFGE types.
Collapse
Affiliation(s)
- Yeşim Soyer
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Betancor L, Yim L, Fookes M, Martinez A, Thomson NR, Ivens A, Peters S, Bryant C, Algorta G, Kariuki S, Schelotto F, Maskell D, Dougan G, Chabalgoity JA. Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates. BMC Microbiol 2009; 9:237. [PMID: 19922635 PMCID: PMC2784474 DOI: 10.1186/1471-2180-9-237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. RESULTS 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators.Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. CONCLUSION The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.
Collapse
Affiliation(s)
- Laura Betancor
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Lucia Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Maria Fookes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Araci Martinez
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alasdair Ivens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Peters
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gabriela Algorta
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Reserch Institute, Nairobi, Kenya
| | - Felipe Schelotto
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jose A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| |
Collapse
|
14
|
Chen F, Poppe C, Liu GR, Li YG, Peng YH, Sanderson KE, Johnston RN, Liu SL. A genome map of Salmonella enterica serovar Agona: numerous insertions and deletions reflecting the evolutionary history of a human pathogen. FEMS Microbiol Lett 2009; 293:188-95. [PMID: 19533840 DOI: 10.1111/j.1574-6968.2009.01539.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Salmonella enterica serovar Agona is an important zoonotic pathogen, causing serious human illness worldwide, but knowledge about its genetics and evolution, especially regarding the genomic events that might have contributed to the formation of S. Agona as an important pathogen, is lacking. As a first step toward understanding this pathogen and characterizing its genomic differences with other salmonellae, we constructed a physical map of S. Agona in strain SARB1 using I-CeuI, XbaI, AvrII and Tn10 insertions with pulsed-field gel electrophoresis techniques. On the 4815-kb genomic map, we located 82 genes, revealed one inversion of about 1000 kb and resolved seven deletions and seven insertions ranging from 10 to 67 kb relative to the genome of Salmonella typhimurium LT2. These genomic features clearly distinguish S. Agona from other previously analyzed salmonellae and provide clues to the molecular basis for its genomic divergence. Additionally, these kinds of physical maps, combined with emerging high-speed sequencing technologies, such as the Solexa or SOLiD techniques, which require a pre-existing high-resolution physical map such as the S. Agona map reported here, will play important roles in genomic comparative studies of bacteria involving large numbers of strains.
Collapse
Affiliation(s)
- Fang Chen
- Department of Microbiology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Blondel CJ, Jiménez JC, Contreras I, Santiviago CA. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 2009; 10:354. [PMID: 19653904 PMCID: PMC2907695 DOI: 10.1186/1471-2164-10-354] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/04/2009] [Indexed: 12/31/2022] Open
Abstract
Background The recently described Type VI Secretion System (T6SS) represents a new paradigm of protein secretion in bacteria. A number of bioinformatic studies have been conducted to identify T6SS gene clusters in the available bacterial genome sequences. According to these studies, Salmonella harbors a unique T6SS encoded in the Salmonella Pathogenicity Island 6 (SPI-6). Since these studies only considered few Salmonella genomes, the present work aimed to identify novel T6SS loci by in silico analysis of every genome sequence of Salmonella available. Results The analysis of sequencing data from 44 completed or in progress Salmonella genome projects allowed the identification of 3 novel T6SS loci. These clusters are located in differentially-distributed genomic islands we designated SPI-19, SPI-20 and SPI-21, respectively. SPI-19 was identified in a subset of S. enterica serotypes including Dublin, Weltevreden, Agona, Gallinarum and Enteritidis. In the later, an internal deletion eliminated most of the island. On the other hand, SPI-20 and SPI-21 were restricted to S. enterica subspecies arizonae (IIIa) serotype 62:z4,z23:-. Remarkably, SPI-21 encodes a VgrG protein containing a C-terminal extension similar to S-type pyocins of Pseudomonas aeruginosa. This is not only the first evolved VgrG described in Salmonella, but also the first evolved VgrG including a pyocin domain described so far in the literature. In addition, the data indicate that SPI-6 T6SS is widely distributed in S. enterica and absent in serotypes Enteritidis, Gallinarum, Agona, Javiana, Paratyphi B, Virchow, IIIa 62:z4,z23:- and IIIb 61:1,v:1,5,(7). Interestingly, while some serotypes harbor multiple T6SS (Dublin, Weltvreden and IIIa 62:z4,z23:-) others do not encode for any (Enteritidis, Paratyphi B, Javiana, Virchow and IIIb 61:1,v:1,5,(7)). Comparative and phylogenetic analyses indicate that the 4 T6SS loci in Salmonella have a distinct evolutionary history. Finally, we identified an orphan Hcp-like protein containing the Hcp/COG3157 domain linked to a C-terminal extension. We propose to designate this and related proteins as "evolved Hcps". Conclusion Altogether, our data suggest that (i) the Salmonella T6SS loci were acquired by independent lateral transfer events and (ii) evolved to contribute in the adaptation of the serotypes to different lifestyles and environments, including animal hosts. Notably, the presence of an evolved VgrG protein related to pyocins suggests a novel role for T6SS in bacterial killing. Future studies on the roles of the identified T6SS loci will expand our knowledge on Salmonella pathogenesis and host specificity.
Collapse
Affiliation(s)
- Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
16
|
Andrews-Polymenis HL, Santiviago CA, McClelland M. Novel genetic tools for studying food-borne Salmonella. Curr Opin Biotechnol 2009; 20:149-57. [PMID: 19285855 PMCID: PMC2762399 DOI: 10.1016/j.copbio.2009.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.
Collapse
Affiliation(s)
- Helene L. Andrews-Polymenis
- Texas A&M University System Health Science Center, College of Medicine, 407 Joe H. Reynolds Medical Building, College Station, TX 77843-1114,
| | - Carlos A Santiviago
- Programa de Microbiologia y Micologia, Instituto de Ciencias Biome´dicas (ICBM), Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10905 Road to the Cure, San Diego CA 92121,
| |
Collapse
|
17
|
Poultry-associated Salmonella enterica subsp. enterica serovar 4,12:d:- reveals high clonality and a distinct pathogenicity gene repertoire. Appl Environ Microbiol 2008; 75:1011-20. [PMID: 19114530 DOI: 10.1128/aem.02187-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A European baseline survey during the years 2005 and 2006 has revealed that the monophasic Salmonella enterica subsp. enterica serovar 4,12:d:- was, with a prevalence of 23.6%, the most frequently isolated serovar in German broiler flocks. In Denmark and the United Kingdom, its serovar prevalences were 15.15% and 2.8%, respectively. Although poultry is a major source of human salmonellosis, serovar 4,12:d:- is rarely isolated in humans (approximately 0.09% per year). Molecular typing studies using pulsed-field gel electrophoresis and DNA microarray analysis show that the serovar is highly clonal and lacks genes with known contributions to pathogenicity. In contrast to other poultry-associated serovars, all strains were susceptible to 17 antimicrobial agents tested and did not encode any resistance determinant. Furthermore, serovar 4,12:d:- lacked the genes involved in galactonate metabolism and in the glycolysis and glyconeogenesis important for energy production in the cells. The conclusion of the study is that serovar 4,12:d:- seems to be primarily adapted to broilers and therefore causes only rare infections in humans.
Collapse
|
18
|
Scaria J, Palaniappan RU, Chiu D, Phan JA, Ponnala L, McDonough P, Grohn Y, Porwollik S, McClelland M, Chiou CS, Chu C, Chang YF. Microarray for molecular typing of Salmonella enterica serovars. Mol Cell Probes 2008; 22:238-43. [PMID: 18554865 PMCID: PMC2766089 DOI: 10.1016/j.mcp.2008.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/13/2008] [Accepted: 04/16/2008] [Indexed: 12/31/2022]
Abstract
We describe the development of a spotted array for the delineation of the most common 14 disease-causing Salmonella serovars in the United States. Our array consists of 414 70 mers targeting core genes of Salmonella enterica, subspecies I specific genes, fimbrial genes, pathogenicity islands, Gifsy elements and other variable genes. Using this array we were able to identify a unique gene presence/absence profile for each of the targeted serovar which was used as the serovar differentiating criteria. Based on this profile, we developed a Matlab programme that compares the profile of an unknown sample to all 14 reference serovar profiles and give out the closest serovar match. Since we have included probes targeting most of the virulence genes and variable genes in Salmonella, in addition to using for serovar detection this array could also be used for studying the virulence gene content and also for evaluating the genetic relation between different isolates of Salmonella.
Collapse
Affiliation(s)
- Joy Scaria
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Raghavan U.M. Palaniappan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - David Chiu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Julie Ann Phan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Center for Advanced Computing, Cornell University, Ithaca, New York 14853
| | - Patrick McDonough
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Yrjo Grohn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Steffen Porwollik
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, California 92121, USA
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, California 92121, USA
| | - Chien-Shun Chiou
- The Central Region Laboratory, Centers for Disease Control, Taiwan
| | - Chishih Chu
- Department of Microbiology and Immunology, National Chiayi University, Chiayi, Taiwan
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
19
|
Ross IL, Heuzenroeder MW. A comparison of three molecular typing methods for the discrimination of Salmonella enterica serovar Infantis. ACTA ACUST UNITED AC 2008; 53:375-84. [PMID: 18625012 DOI: 10.1111/j.1574-695x.2008.00435.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seventy-six epidemiologically unrelated Salmonella enterica serovar Infantis (S. Infantis) isolates were typed by pulsed-field gel electrophoresis (PFGE), multiple amplification of phage loci typing (MAPLT) and multiple-locus variable-number tandem-repeat analysis (MLVA). PFGE, using the restriction endonuclease XbaI, generated 23 different profiles for the 76 isolates (DI=0.848). MAPLT was undertaken using a combination of 11 primer sets based on bacteriophage sequences and generated 28 different profiles (DI=0.938). By contrast, MLVA only produced nine profiles (DI=0.668) with 13 different primer sets, including the five primer sets routinely used for S. Typhimurium typing. Reducing the number of MAPLT primer sets to four still provided a diversity index of 0.838. All three typing methods revealed two distinct lineages of S. Infantis, with most isolates demonstrating genetic traits of either lineage but not both. The results demonstrate that MAPLT can potentially provide greater discrimination and separation of S. Infantis isolates than both PFGE and MLVA. Furthermore, MAPLT data can be generated much more rapidly and with reduced labour input than PFGE and without the need for expensive PFGE electrophoresis equipment, nor does it require capillary sequencing of PCR fragments to accurately determine PCR fragment lengths as is the case with MLVA.
Collapse
Affiliation(s)
- Ian L Ross
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Adelaide, SA, Australia
| | | |
Collapse
|
20
|
Rychlík I, Hradecka H, Malcova M. Salmonella enterica serovar Typhimurium typing by prophage-specific PCR. MICROBIOLOGY-SGM 2008; 154:1384-1389. [PMID: 18451047 DOI: 10.1099/mic.0.2007/015156-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent data from microarray analysis have shown that integrated prophages are the most frequent sources of genomic variation between different strains of Salmonella enterica serovar Typhimurium (S. Typhimurium). This led us to hypothesize that PCR detection of the integrated prophages might be an efficient typing tool that could be used as an alternative to PFGE. In this study, we optimized four triplex PCRs specific for 12 target sequences of mostly prophage origin, and tested them in 102 field strains. The same set of strains was also characterized by PFGE. Among the strains, 22 different multiplex PCR, and 25 different PFGE profiles, were identified. Despite the fact that the PFGE was slightly more discriminatory, multiplex PCR typing, owing to its simplicity and potential of simple data sharing between laboratories, represents an interesting user-friendly alternative to PFGE typing of S. Typhimurium.
Collapse
Affiliation(s)
- Ivan Rychlík
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Helena Hradecka
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Marcela Malcova
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
21
|
Murphy BP, Buckley JF, O’Connor EM, Gilroy D, Fanning S. Comparison of Salmonella species recovered from Irish liquid milk production holdings with temporal clinical veterinary isolates. Int J Hyg Environ Health 2008; 211:283-91. [DOI: 10.1016/j.ijheh.2007.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 03/30/2007] [Accepted: 05/03/2007] [Indexed: 11/25/2022]
|
22
|
Andrysiak AK, Olson AB, Tracz DM, Dore K, Irwin R, Ng LK, Gilmour MW. Genetic characterization of clinical and agri-food isolates of multi drug resistant Salmonella enterica serovar Heidelberg from Canada. BMC Microbiol 2008; 8:89. [PMID: 18538029 PMCID: PMC2438365 DOI: 10.1186/1471-2180-8-89] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/06/2008] [Indexed: 11/23/2022] Open
Abstract
Background Salmonella enterica serovar Heidelberg ranks amongst the most prevalent causes of human salmonellosis in Canada and an increase in resistance to extended spectrum cephalosporins (ESC) has been observed by the Canadian Integrated Program for Antimicrobial Resistance Surveillance. This study examined the genetic relationship between S. Heidelberg isolates from livestock, abattoir, retail meat, and clinical human specimens to determine whether there was a link between the emergence of MDR S. Heidelberg in chicken agri-food sources and the simultaneous increase of MDR S. Heidelberg in human clinical samples. Results Chromosomal genetic homogeneity was observed by pulsed-field gel electrophoresis (PFGE), DNA sequence-based typing (SBT) and DNA microarray-based comparative genomic hybridization (CGH). Sixty one percent of isolates were indistinguishable by PFGE conducted using XbaI and BlnI restriction enzymes. An additional 15% of isolates had PFGE patterns that were closely related to the main cluster. SBT did not identify DNA polymorphisms and CGH revealed only genetic differences between the reference S. Typhimurium strain and S. Heidelberg isolates. Genetic variation observed by CGH between S. Heidelberg isolates could be attributed to experimental variation. Alternatively, plasmid content was responsible for differences in antimicrobial susceptibility, and restriction fragment length polymorphism (RFLP) analyses followed by replicon typing identified two divergent plasmid types responsible for ESC resistance. Conclusion Due to the overall limited genetic diversity among the isolates, it was not possible to identify variable traits that would be suitable for source tracking between human and agri-food isolates of S. Heidelberg in Canada.
Collapse
Affiliation(s)
- Ashleigh K Andrysiak
- Bacteriology and Enteric Diseases Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Salmonella serovar identification using PCR-based detection of gene presence and absence. J Clin Microbiol 2008; 46:2581-9. [PMID: 18524964 DOI: 10.1128/jcm.02147-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are more than 2,500 known Salmonella serovars, and some of these can be further subclassified into groups of strains that differ profoundly in their gene content. We refer to these groups of strains as "genovars." A compilation of comparative genomic hybridization data on 291 Salmonella isolates, including 250 S. enterica subspecies I strains from 32 serovars (52 genovars), was used to select a panel of 384 genes whose presence and absence among serovars and genovars was of potential taxonomic value. A subset of 146 genes was used for real-time PCR to successfully identify 12 serovars (16 genovars) in 24 S. enterica strains. A further subset of 64 genes was used to identify 8 serovars (9 genovars) in 12 multiplex PCR mixes on 11 S. enterica strains. These gene panels distinguish all tested S. enterica subspecies I serovars and their known genovars, almost all by two or more informative markers. Thus, a typing methodology based on these predictive genes would generally alert users if there is an error, an unexpected polymorphism, or a potential new genovar.
Collapse
|
24
|
Mohler V, Heithoff D, Mahan M, Walker K, Hornitzky M, Shum L, Makin K, House J. Cross-protective immunity conferred by a DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in calves challenged with Salmonella serovar Newport. Vaccine 2008; 26:1751-8. [DOI: 10.1016/j.vaccine.2008.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
|
25
|
Heithoff DM, Shimp WR, Lau PW, Badie G, Enioutina EY, Daynes RA, Byrne BA, House JK, Mahan MJ. Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol 2008; 74:1757-66. [PMID: 18245251 PMCID: PMC2268321 DOI: 10.1128/aem.02740-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/19/2008] [Indexed: 12/18/2022] Open
Abstract
The global trend toward intensive livestock production has led to significant public health risks and industry-associated losses due to an increased incidence of disease and contamination of livestock-derived food products. A potential factor contributing to these health concerns is the prospect that selective pressure within a particular host may give rise to bacterial strain variants that exhibit enhanced fitness in the present host relative to that in the parental host from which the strain was derived. Here, we assessed 184 Salmonella enterica human and animal clinical isolates for their virulence capacities in mice and for the presence of the Salmonella virulence plasmid encoding the SpvB actin cytotoxin required for systemic survival and Pef fimbriae, implicated in adherence to the murine intestinal epithelium. All (21 of 21) serovar Typhimurium clinical isolates derived from animals were virulent in mice, whereas many (16 of 41) serovar Typhimurium isolates derived from human salmonellosis patients lacked this capacity. Additionally, many (10 of 29) serovar Typhimurium isolates derived from gastroenteritis patients did not possess the Salmonella virulence plasmid, in contrast to all animal and human bacteremia isolates tested. Lastly, among serovar Typhimurium isolates that harbored the Salmonella virulence plasmid, 6 of 31 derived from human salmonellosis patients were avirulent in mice, which is in contrast to the virulent phenotype exhibited by all the animal isolates examined. These studies suggest that Salmonella isolates derived from human salmonellosis patients are distinct from those of animal origin. The characterization of these bacterial strain variants may provide insight into their relative pathogenicities as well as into the development of treatment and prophylactic strategies for salmonellosis.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Callister SJ, McCue LA, Turse JE, Monroe ME, Auberry KJ, Smith RD, Adkins JN, Lipton MS. Comparative bacterial proteomics: analysis of the core genome concept. PLoS One 2008; 3:e1542. [PMID: 18253490 PMCID: PMC2213561 DOI: 10.1371/journal.pone.0001542] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/09/2008] [Indexed: 11/25/2022] Open
Abstract
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.
Collapse
Affiliation(s)
- Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lee Ann McCue
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua E. Turse
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kenneth J. Auberry
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
27
|
Hyytiä-Trees EK, Cooper K, Ribot EM, Gerner-Smidt P. Recent developments and future prospects in subtyping of foodborne bacterial pathogens. Future Microbiol 2007; 2:175-85. [PMID: 17661654 DOI: 10.2217/17460913.2.2.175] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infections caused by foodborne bacterial pathogens continue to be a major public health issue around the world. During the past decade, pulsed-field gel electrophoresis (PFGE) has become the gold standard for molecular subtyping and source tracking of most foodborne bacteria. Owing to problems inherent in PFGE technology, new methods have been developed focusing on DNA sequence-based subtyping. This review discusses the feasibility of using multilocus sequence typing, multiple-locus variable-number tandem repeat analysis, single nucleotide polymorphisms, microarrays, whole genome sequencing and mass spectrometry for subtyping foodborne bacterial pathogens.
Collapse
|
28
|
Ojha S, Kostrzynska M. Examination of animal and zoonotic pathogens using microarrays. Vet Res 2007; 39:4. [DOI: 10.1051/vetres:2007042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/27/2007] [Indexed: 01/13/2023] Open
|
29
|
Tominaga A, Kutsukake K. Expressed and cryptic flagellin genes in the H44 and H55 type strains of Escherichia coli. Genes Genet Syst 2007; 82:1-8. [PMID: 17396015 DOI: 10.1266/ggs.82.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial H antigens are specified by flagellin molecules, which constitute the flagellar filament. Escherichia coli 781-55 and E2987-73 are the type strains for H44 and H55 antigens, respectively. Unlike E. coli K-12, they possess two flagellin genes, fliC and fllA, on their chromosomes. However, they are monophasic, expressing exclusively the fllA genes, which specify the type antigens. In this study, the flagellin genes were cloned from these strains and their structure and expression were analyzed. It was found that the fliC genes encode apparently intact flagellin subunits but possess inefficient sigma28-dependent promoters, which may result in these genes being silent. The chromosomal locations of the fllA genes are approximately, but not exactly, identical with that of the phase-2 flagellin gene, fljB, of diphasic Salmonella strains. However, unlike the Salmonella fljB gene, the invertible H segment and the fljA gene responsible for the control of flagellar phase variation are both absent from the fllA loci. The fllA genes are highly homologous to the E. coli fliC gene but distantly related to the Salmonella fljB gene. These results suggest a hypothesis that the fllA genes may have emerged by an intra-species lateral transfer of the fliC gene. This hypothesis is further supported by the observation that the fllA genes are flanked by several IS elements and located within cryptic prophage elements.
Collapse
Affiliation(s)
- Akira Tominaga
- Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University, Japan
| | | |
Collapse
|
30
|
Keymer DP, Miller MC, Schoolnik GK, Boehm AB. Genomic and phenotypic diversity of coastal Vibrio cholerae strains is linked to environmental factors. Appl Environ Microbiol 2007; 73:3705-14. [PMID: 17449702 PMCID: PMC1932678 DOI: 10.1128/aem.02736-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.
Collapse
Affiliation(s)
- Daniel P Keymer
- Department of Civil Engineering, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | |
Collapse
|
31
|
Miller MC, Keymer DP, Avelar A, Boehm AB, Schoolnik GK. Detection and transformation of genome segments that differ within a coastal population of Vibrio cholerae strains. Appl Environ Microbiol 2007; 73:3695-704. [PMID: 17449699 PMCID: PMC1932674 DOI: 10.1128/aem.02735-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is an autochthonous member of diverse aquatic ecosystems around the globe. Collectively, the genomes of environmental V. cholerae strains comprise a large repository of encoded functions which can be acquired by individual V. cholerae lineages through uptake and recombination. To characterize the genomic diversity of environmental V. cholerae, we used comparative genome hybridization to study 41 environmental strains isolated from diverse habitats along the central California coast, a region free of endemic cholera. These data were used to classify genes of the epidemic V. cholerae O1 sequenced strain N16961 as conserved, variably present, or absent from the isolates. For the most part, absent genes were restricted to large mobile elements and have known functions in pathogenesis. Conversely, genes present in some, but not all, California isolates were in smaller contiguous clusters and were less likely to be near genes with functions in DNA mobility. Two such clusters of variable genes encoding different selectable metabolic phenotypes (mannose and diglucosamine utilization) were transformed into the genomes of environmental isolates by chitin-dependent competence, indicating that this mechanism of general genetic exchange is conserved among V. cholerae. The transformed DNA had an average size of 22.7 kbp, demonstrating that natural competence can mediate the movement of large chromosome fragments. Thus, whether variable genes arise through the acquisition of new sequences by horizontal gene transfer or by the loss of preexisting DNA though deletion, natural transformation provides a mechanism by which V. cholerae clones can gain access to the V. cholerae pan-genome.
Collapse
Affiliation(s)
- Michael C Miller
- Department of Medicine, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | | | |
Collapse
|
32
|
Drahovská H, Mikasová E, Szemes T, Ficek A, Sásik M, Majtán V, Turna J. Variability in occurrence of multiple prophage genes in Salmonella Typhimurium strains isolated in Slovak Republic. FEMS Microbiol Lett 2007; 270:237-44. [PMID: 17355601 DOI: 10.1111/j.1574-6968.2007.00674.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lysogenic bacteriophages are a significant source of variability in closely related Salmonella strains. In this study, screening for diversity of 152 Salmonella Typhimurium strains was performed using PCR detection of selected prophage regions derived from phages P22, Gifsy-1, Gifsy-2, Fels-1, ST104 and SopEPhi. A high degree of variability was observed in the presence of specific genes. Based on the presence of particular prophage genes, we divided strains into 37 different PCR-prophage profiles; 20 of them were represented by only a single strain. Using multilocus variable number tandem repeats analysis (MLVA), 152 Salmonella strains were separated into 82 MLVA strings. Similar grouping of Salmonella strains was observed in the case of PCR-prophage detection and MLVA and the results corresponded well with the phage type of strains. However, several Salmonella strains were detected, which were closely related according to MLVA; yet, they differed in PCR phage profiles. The observations support a view that integration/excision of bacteriophages in Salmonella strains are frequent events shaping the bacterial genome.
Collapse
Affiliation(s)
- Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kropinski AM, Sulakvelidze A, Konczy P, Poppe C. Salmonella phages and prophages--genomics and practical aspects. Methods Mol Biol 2007; 394:133-75. [PMID: 18363236 DOI: 10.1007/978-1-59745-512-1_9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous bacteriophages specific to Salmonella have been isolated or identified as part of host genome sequencing projects. Phylogenetic analysis of the sequenced phages, based on related protein content using CoreGenes, reveals that these viruses fall into five groupings (P27-like, P2-like, lambdoid, P22-like, and T7-like) and three outliers (epsilon15, KS7, and Felix O1). The P27 group is only represented by ST64B; the P2 group contains Fels-2, SopEphi, and PSP3; the lambdoid Salmonella phages include Gifsy-1, Gifsy-2, and Fels-1. The P22-like viruses include epsilon34, ES18, P22, ST104, and ST64T. The only member of the T7-like group is SP6. The properties of each of these phages are discussed, along with their role as agents of genetic exchange and as therapeutic agents and their involvement in phage typing.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Host and Pathogen Determinants, Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario
| | | | | | | |
Collapse
|
34
|
Matiasovicova J, Adams P, Barrow PA, Hradecka H, Malcova M, Karpiskova R, Budinska E, Pilousova L, Rychlik I. Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1. Arch Microbiol 2006; 187:415-24. [PMID: 17180672 DOI: 10.1007/s00203-006-0205-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The origin of multidrug-resistant Salmonella enterica serovar typhimurium (S. typhimurium) harboring the Salmonella Genomic Island 1 (SGI1), which was detected for the first time in the mid-1980s is unknown. In this study, we performed microarray genomotyping of four multidrug-resistant SGI1 positive strains and found that unlike the S. typhimurium LT2 strain, the multidrug-resistant strains lacked genes STM0517-0529 allowing the utilization of allantoin as a sole nitrogen source. We extended this observation by PCR screening of additional 120 S. typhimurium field strains and found that this locus was absent in all SGI1 positive and also in 24% of SGI1 negative strains, which were proposed to be the original recipients of SGI1. To prove this hypothesis, we compared the STM0517-0529 negative strains (with or without the SGI1) by PFGE and PCR prophage typing and found that 8 out of 11 of the SGI1 negative strains and 17 out of 22 SGI1 positive strains were of identical PFGE pattern and PCR prophage pattern, while this specific pattern was never observed among STM0517-0529 positive strains. We therefore propose that a lineage of the S. typhimurium DT104 sensitive strain first lost the ability to metabolize allantoin and then acquired SGI1.
Collapse
Affiliation(s)
- J Matiasovicova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Badie G, Heithoff DM, Sinsheimer RL, Mahan MJ. Altered levels of Salmonella DNA adenine methylase are associated with defects in gene expression, motility, flagellar synthesis, and bile resistance in the pathogenic strain 14028 but not in the laboratory strain LT2. J Bacteriol 2006; 189:1556-64. [PMID: 17172341 PMCID: PMC1855711 DOI: 10.1128/jb.01580-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative genomic analysis has revealed limited strain diversity between Salmonella pathogenic and nonpathogenic isolates. Thus, some of the relative virulence and host-immune response disparities may be credited to differential gene regulation rather than gross differences in genomic content. Here we show that altered levels of Salmonella DNA adenine methylase (Dam) resulted in acute defects in virulence-associated gene expression, motility, flagellin synthesis, and bile resistance in the Salmonella pathogenic strain 14028 but not in avirulent laboratory strain LT2. The defects in motility exhibited by 14028 in response to altered Dam levels was not dependent on the presence of the regulatory protein, RpoS. The transitioning between flagellar types (phase variation) was also differentially regulated in 14028 versus LT2 in response to dam levels, resulting in distinct differences in flagellin expression states. These data suggest that differential gene regulation may contribute to the relative virulence disparities observed between Salmonella serovars that are closely related at the DNA level.
Collapse
Affiliation(s)
- Golnaz Badie
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
36
|
Ehrenreich A. DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 2006; 73:255-73. [PMID: 17043830 DOI: 10.1007/s00253-006-0584-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
DNA microarrays have found widespread use as a flexible tool to investigate bacterial metabolism. Their main advantage is the comprehensive data they produce on the transcriptional response of the whole genome to an environmental or genetic stimulus. This allows the microbiologist to monitor metabolism and to define stimulons and regulons. Other fields of application are the identification of microorganisms or the comparison of genomes. The importance of this technology increases with the number of sequenced genomes and the falling prices for equipment and oligonucleotides. Knowledge of DNA microarrays is of rising relevance for many areas in microbiological research. Much literature has been published on various specific aspects of this technique that can be daunting to the casual user and beginner. This article offers a comprehensive outline of microarray technology for transcription analysis in microbiology. It shortly discusses the types of DNA microarrays available, the printing of custom arrays, common labeling strategies for targets, hybridization, scanning, normalization, and clustering of expression data.
Collapse
Affiliation(s)
- Armin Ehrenreich
- Institute of Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| |
Collapse
|
37
|
Malorny B, Bunge C, Guerra B, Prietz S, Helmuth R. Molecular characterisation of Salmonella strains by an oligonucleotide multiprobe microarray. Mol Cell Probes 2006; 21:56-65. [PMID: 17029709 DOI: 10.1016/j.mcp.2006.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 07/26/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
A DNA microarray has been developed for the simultaneous characterisation and typing of Salmonella enterica subsp. enterica isolates. One-hundred and nine 35-40 mer oligonucleotides probes detect flagellar and somatic antigen encoding genes (serogroup or serotype specific), important virulence genes located within or outside the pathogenicity islands, phage-associated genes and antibiotic resistance determinants. The probes were printed on glass slides and whole genomic Cy5-labelled Salmonella DNA was hybridised to the substrate. A set of 19 different Salmonella strains and one Escherichia coli strain has been selected as positive and negative controls for each probe. The validity of the results is confirmed by gene-specific PCRs or phenotypic methods (serotyping, MIC determination for various antimicrobial agents). Of 2071 data points generated, an agreement of 97.4% has been obtained between microarray and PCR/phenotypic results. Twenty-six data points (1.3%) were classified as uncertain and, similarly, 1.3% showed a discordant result. The microarray described here is a new tool to study the epidemiology of Salmonella strains on the genotypic level and might become a powerful method in risk assessment studies.
Collapse
Affiliation(s)
- Burkhard Malorny
- National Salmonella Reference Laboratory, Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
Hermans APHM, Beuling AM, van Hoek AHAM, Aarts HJM, Abee T, Zwietering MH. Distribution of prophages and SGI-1 antibiotic-resistance genes among different Salmonella enterica serovar Typhimurium isolates. MICROBIOLOGY-SGM 2006; 152:2137-2147. [PMID: 16804187 DOI: 10.1099/mic.0.28850-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, the authors identified Salmonella enterica serovar Typhimurium (S. Typhimurium) definitive type (DT)104-specific sequences of mainly prophage origin by genomic subtractive hybridization. In the present study, the distribution of the prophages identified, ST104 and ST64B, and the novel prophage remnant designated prophage ST104B, was tested among 23 non-DT104 S. Typhimurium isolates of different phage types and 19 isolates of the DT104 subtypes DT104A, DT104B low and DT104L, and the DT104-related type U302. The four S. Typhimurium prophages Gifsy-1, Gifsy-2, Fels-1 and Fels-2 were also included. Analysis of prophage distribution in different S. Typhimurium isolates may supply additional information to enable development of a molecular method as an alternative to phage typing. Furthermore, the presence of the common DT104 antibiotic resistance genes for the penta-resistance type ACSSuT, aadA2, floR, pse-1, sul1 and tet(G), was also studied because of the authors' focus on this emerging type. Based on differences in prophage presence within their genome, it was possible to divide S. Typhimurium isolates into 12 groups. Although no clear relationship was found between different phage type and prophage presence, discrimination could be made between the different DT104 subtypes based on diversity in the presence of prophages ST104, ST104B and ST64B. The novel prophage remnant ST104B, which harbours a homologue of the Escherichia coli O157 : H7 HldD LPS assembly-related protein, was identified only in the 14 DT104L isolates and in the DT104-related U302 isolate. In conclusion, the presence of the genes for penta-resistance type ACSSuT, the HldD homologue containing ST104 prophage remnant and phage type DT104L are most likely common features of the emerging subtype of S. Typhimurium DT104.
Collapse
Affiliation(s)
- Armand P H M Hermans
- Laboratory of Food Microbiology, Agrotechnology and Food Sciences Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
- RIKILT Institute of Food Safety, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Annelien M Beuling
- Laboratory of Food Microbiology, Agrotechnology and Food Sciences Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
- RIKILT Institute of Food Safety, PO Box 230, 6700 AE Wageningen, The Netherlands
| | | | - Henk J M Aarts
- RIKILT Institute of Food Safety, PO Box 230, 6700 AE Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Agrotechnology and Food Sciences Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| | - Marcel H Zwietering
- Laboratory of Food Microbiology, Agrotechnology and Food Sciences Group, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands
| |
Collapse
|
39
|
Garaizar J, Rementeria A, Porwollik S. DNA microarray technology: a new tool for the epidemiological typing of bacterial pathogens? ACTA ACUST UNITED AC 2006; 47:178-89. [PMID: 16831204 DOI: 10.1111/j.1574-695x.2006.00081.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genomic hybridization on whole genome arrays detects the presence or absence of similar DNA regions in sufficiently related microorganisms, allowing genome-wide comparison of their genetic contents. A whole genome array is based on a sequenced bacterial isolate, and is a collection of DNA probes fixed on a solid support. In a single hybridization experiment, the absence/presence status of all genes of the sequenced microbe in the queried isolate can be examined. The objective of this minireview is to summarize the past usage of DNA microarray technology for microbial strain characterizations, and to estimate its future utilization in epidemiological studies and molecular typing of bacterial pathogens. The studies reviewed here confirm the usefulness of microarray technology for the detection of genetic polymorphisms. However, the construction or purchase of DNA microarrays and the performance of strain to strain hybridization experiments are still prohibitively expensive for routine application. Future use of arrays in epidemiology is likely to depend on the development of more cost-effective protocols, more robust and simplified formats, and the adequate evaluation of their performance (efficacy) and convenience (efficiency) compared with other genotyping methods. It seems more likely that a more focused assay, concentrating on genomic regions of variability previously detected by genome-wide microarrays, will find broad application in routine bacterial epidemiology.
Collapse
Affiliation(s)
- Javier Garaizar
- Department of Immunology, Microbiology, and Parasitology, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain.
| | | | | |
Collapse
|
40
|
Kutsukake K, Nakashima H, Tominaga A, Abo T. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 2006; 188:950-7. [PMID: 16428399 PMCID: PMC1347348 DOI: 10.1128/jb.188.3.950-957.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.
Collapse
Affiliation(s)
- Kazuhiro Kutsukake
- Department of Biology, Faculty of Science, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|