1
|
Vilca-Machaca LS, Calvay-Sanchez KD, Zarate-Sulca Y, Jimenez-Vasquez V, Ramirez P, Mendoza-Mujica G. Baculovirus-Assisted Production of Bartonella bacilliformis Proteins: A Potential Strategy for Improving Serological Diagnosis of Carrion's Disease. Pathogens 2024; 13:690. [PMID: 39204290 PMCID: PMC11357310 DOI: 10.3390/pathogens13080690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/03/2024] Open
Abstract
Carrion's disease, caused by Bartonella bacilliformis, is a neglected tropical disease prevalent in the Andean region of South America. Without antimicrobial treatment, this disease has a mortality rate of up to 88% in infected patients. The most common method for diagnosing B. bacilliformis infection is serological testing. However, the current serological assays are limited in sensitivity and specificity, underscoring the need for the development of novel and more accurate diagnostic tools. Recombinant proteins have emerged as promising candidates to improve the serological diagnosis of Carrion's disease. So, we focused on evaluating the conditions for producing two previously predicted proteins of B. bacilliformis using the baculovirus-insect cell expression system, mainly the flashBAC ULTRA technology. We assessed various parameters to identify the conditions that yield the highest protein production, including cell lines, temperature, and hours post-infection (hpi). The results showed that the expression conditions for achieving the highest yields of the Prot_689 and Prot_504 proteins were obtained using High Five™ cells at 21 °C and harvesting at 120 hpi. Subsequently, the seroreactivity of recombinant proteins was evaluated using positive sera from patients diagnosed with Carrion's disease. These findings offer valuable insights into the production conditions of B. bacilliformis recombinant proteins using the baculovirus system, which could significantly contribute to developing more precise diagnostic tools for Carrion's disease. Therefore, this research provides implications for improving diagnostics and potentially developing therapeutic strategies.
Collapse
Affiliation(s)
- Lizbeth Sally Vilca-Machaca
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | | | - Yanina Zarate-Sulca
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | - Victor Jimenez-Vasquez
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | - Pablo Ramirez
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Giovanna Mendoza-Mujica
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| |
Collapse
|
2
|
Guo X, Sun M, Guo Y, Wu Y, Yan X, Liu M, Li J, Sun X, Fan X, Zhang H, Sun S, Wang J, Yin D. Production and evaluation of anti-BP26 monoclonal antibodies for the serological detection of animal brucellosis. Front Vet Sci 2024; 11:1389728. [PMID: 38957801 PMCID: PMC11217538 DOI: 10.3389/fvets.2024.1389728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Brucella BP26 proves to be a highly immunogenic antigen with excellent specificity in brucellosis detection. In China, the authorized use of the Bp26-deleted vaccine M5ΔBP26 for preventing small ruminant brucellosis highlights the importance of developing accurate detection methods targeting BP26, particularly for the diagnosis of differentiation between infected and vaccinated animals (DIVA). Using the traditional mouse hybridoma technique, we successfully obtained 12 monoclonal antibodies (mAbs) targeting BP26. The efficacy of these mAbs in detecting various animal brucellosis cases using the competitive ELISA method was evaluated. Among them, only the E10 mAb exhibited significant efficiency, being inhibited by 100, 97.62, and 100% of brucellosis-positive sera from cattle, small ruminants, and canines, respectively. The E10-based competitive enzyme-linked immunosorbent assay (cELISA) outperformed the BP26-based indirect enzyme-linked immunosorbent assay (iELISA) in accuracy, particularly for cattle and small ruminant brucellosis, with cELISA sensitivity reaching 97.62% compared to 64.29% for iELISA for small ruminants. Although cELISA showed slightly lower specificity than iELISA, it still maintained high accuracy in canine brucellosis detection. The epitope of mAb E10 was identified in the amino acid sequence QPIYVYPDDKNNLKEPTITGY, suggesting its potential as a diagnostic antigen for brucellosis. In conclusion, the E10-based cELISA presents an effective means of detecting animal brucellosis, particularly significant for DIVA diagnosis in China, where the BP26-mutant vaccine is widely used.
Collapse
Affiliation(s)
- Xiaohan Guo
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mingjun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Yu Guo
- Testing Laboratory, Inner Mongolia Animal Disease Control Center, Hohhot, China
| | - Yao Wu
- College of Animal Science and Technology, Shandong Agriculture University, Taian, China
| | - Xin Yan
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Mengda Liu
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiaqi Li
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiangxiang Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaoxu Fan
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Haobo Zhang
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Shufang Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Jianlong Wang
- Testing Laboratory, Inner Mongolia Animal Disease Control Center, Hohhot, China
| | - Dehui Yin
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Luciani M, Krasteva I, Di Febo T, Perletta F, D'Onofrio F, De Massis F, D'Alterio N, Sacchini F, Tittarelli M. Proteomics and bioinformatics investigations to improve serological diagnosis of canine brucellosis. Proteomics Clin Appl 2023; 17:e2200116. [PMID: 37532634 DOI: 10.1002/prca.202200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Brucella canis is pathogenic for dogs and humans. Serological diagnosis is a cost-effective approach for disease surveillance, but a major drawback of current serological tests is the cross-reactivity with other bacteria that results in false positive reactions. Development of indirect tests with improved sensitivity and specificity that use selected B. canis proteins instead of the whole antigen remain a priority. EXPERIMENTAL DESIGN A western blotting assay was developed to define the serum antibody patterns associated to infection using a panel of positive and negative dog sera. B. canis positive sera recognized immunogenic bands ranging from 7 to 30 kDa that were then submitted to ESI-LC-MS/MS and analyzed by bioinformatics tools. RESULTS A total of 398 B. canis proteins were identified. Bioinformatics tools identified 16 non cytoplasmic immunogenic proteins predicted as non-homologous with the most important Brucella cross-reactive bacteria and nine B. canis proteins non-homologous to B. ovis; among the latter, one resulted non-homologous to B. melitensis. Data are available via ProteomeXchange with identifier PXD042682. CONCLUSIONS AND CLINICAL RELEVANCE The western blotting test developed was able to distinguish between infected and non-infected animals and may serve as a confirmatory test for the serological diagnosis of B. canis. The mass spectrometry and in silico results lead to the identification of specific candidate antigens that pave the way for the development of more accurate indirect diagnostic tests.
Collapse
Affiliation(s)
- Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Fabrizia Perletta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Federica D'Onofrio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fabrizio De Massis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
4
|
Bulashev A, Eskendirova S. Brucellosis detection and the role of Brucella spp. cell wall proteins. Vet World 2023; 16:1390-1399. [PMID: 37621538 PMCID: PMC10446727 DOI: 10.14202/vetworld.2023.1390-1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 08/26/2023] Open
Abstract
Brucellosis remains an endemic zoonotic disease in many developing countries, causing great harm to public health and devastating losses to livestock. One of the main reasons for the low effectiveness of anti-brucellosis measures is the lack of reliable methods for diagnosing infected animals throughout their lifespan. Classical serological tests, such as the tube agglutination test, rose Bengal plate test, and complement fixation test, as well as commercial enzyme-linked immunosorbent assay kits, are based on the detection of antibodies to the cell wall polysaccharide antigens of Brucella spp. smooth strains. As a result, they do not exclude cross-reactions with related bacteria and fail to differentiate between infected and vaccinated animals. Over the past decades, many attempts have been made to identify immunoreactive and pathogen-specific protein antigens. To date, several studies have investigated Brucella spp. recombinant proteins, including cell wall proteins, as the best antigens for diagnosing brucellosis in animals and humans. However, the available results on the specificity and sensitivity of serological tests based on cell wall proteins are ambiguous and sometimes contradictory. This review aims to provide an overview of the current state of knowledge of the diagnostic value of outer membrane and/or periplasmic proteins of Brucella spp. The goal is to identify future developments that may lead to reliable antigens for serological tests.
Collapse
Affiliation(s)
- Aitbay Bulashev
- Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan
| | - Saule Eskendirova
- Laboratory of Stem Cell, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
5
|
Hans R, Thavaselvam D. Immunoassay-based evaluation of rOmp28 protein as a candidate for the identification of Brucella species. J Med Microbiol 2023; 72. [PMID: 37367949 DOI: 10.1099/jmm.0.001718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Introduction. Brucellosis is an important bacterial zoonosis, re-emerging as a serious public health concern in developing countries. Two major species, Brucella melitensis and Brucella abortus, cause recurrent facile infection in human. Therefore, rapid and accurate diagnosis for early disease control and prevention is needed in areas with low disease burden.Hypothesis. This study evaluated the sandwich enzyme-linked immunosorbent assay (ELISA) (S-ELISA) immunoassay for potential use of whole-cell (WC) and recombinant outer-membrane protein (rOmp28)-derived IgG polyclonals in sensitive detection of Brucella.Aim. Immunoassay-based WC detection of Brucella species in important sub-clinical matrices at lower limits of detection.Methodology. We purified recombinant rOmp28 with Ni-NTA gel affinity chromatography and produced IgG polyclonal antibodies (pAbs) using BALB/c mice and New Zealand white female rabbits against different antigens (Ags) of Brucella. Checkerboard sandwich ELISA and P/N ratio (optical density of 'P' positive test sample to 'N' negative control) were used for evaluation and optimization of the study. The pAbs were characterized using Western blot analysis and different matrices were spiked with WC Ag of Brucella.Results. Double-antibody S-ELISA was developed using WC Ag-derived rabbit IgG (capture antibody at 10 µg ml-1) and rOmp28-derived mice IgG (detection antibody at 100 µg ml-1) with a detection range of 102 to 108 cells ml-1 and a limit of detection at 102 cells ml-1. A P/N ratio of 1.1 was obtained with WC pAbs as compared to 0.6 and 0.9 ratios with rOmp28-derived pAbs for detecting B. melitensis 16M and B. abortus S99, respectively. An increased P/N ratio of 4.4 was obtained with WC Ag-derived rabbit IgG as compared to 4.2>4.1>2.4 ratios obtained with rabbit IgGs derived against cell envelope (CE), rOmp28 and sonicated antigen (SA) of Brucella with high affinity for rOmp28 Ag analysed on immunoblots. The rOmp28-derived mice IgG revealed two Brucella species at P/N ratios of 11.8 and 6.3, respectively. Upon validation, S-ELISA detected Brucella WCs in human whole blood and sera samples with no cross-reactivity to other related bacteria.Conclusion. The developed S-ELISA is specific and sensitive in early detection of Brucella from different matrices of clinical and non-clinical disease presentation.
Collapse
Affiliation(s)
- Richa Hans
- Division of Biodetector Development Test and Evaluation, Defence Research and Development Establishment, Defence Research and Development Organisation, Jhansi Road, Gwalior - 474002, India
| | - Duraipandian Thavaselvam
- Director (PM) O/o Director General Life Sciences (DGLS), Defence Research and Development Organization (DRDO) Headquarters, Ministry of Defence, SSPL Campus, Timarpur, New Delhi - 110011, India
| |
Collapse
|
6
|
Hans R, Yadav PK, Zaman MB, Poolla R, Thavaselvam D. A rapid direct-differential agglutination assay for Brucella detection using antibodies conjugated with functionalized gold nanoparticles. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Brucellosis is the most widespread and serious zoonotic disease worldwide which affects livestock, sylvatic wildlife, marine dwellers, and humans. It is acquired through Alphaproteobacteria which belong to the genus Brucella and is categorized as a potential bio-threat agent. In this study, we developed a rapid and direct differential whole cell (WC) agglutination-based assay for its on-field detection. The recombinant outer membrane (rOmp28) protein-derived specific mice IgG polyclonal antibodies (pAbs) of Brucella were purified using affinity chromatography and conjugated with functionalized gold nanoparticles (AuNPs) for rapid agglutination. A positive blot of 32 kDa protein revealed specific immuno-reactivity of rOmp28-pAbs using immunoblot analysis. For the synthesis of AuNPs, the conventional “Turkevich method” was optimized at a concentration < 1 mM of gold precursor for obtaining 50-nm-sized particles. Also, their physico-chemical characteristics were analyzed using UV-visible spectrophotometry, Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ζ, ZP), and fluorescence spectroscopy. Furthermore, these AuNPs were functionalized with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to prepare modified carboxylated AuNPs. For bioconjugation with Brucella rOmp28 IgG pAbs, antibody-conjugated functionalized AuNP constructs were prepared and characterized using FT-IR analysis with strong N–H deformations. Subsequently, these bioconjugated AuNPs were used to develop a direct-differential slide agglutination assay with a detection limit of 104 CFU mL−1. The sensitivity of this assay was compared with standard double-antibody sandwich ELISA (S-ELISA) using rOmp28 IgG pAbs with an LOD of 103 CFU mL−1 and a detection range of 102–108 CFU mL−1. No intraspecies cross-reactivity was observed based on evaluation of its specificity with a battery of closely related bacterial species. In conclusion, the increased sensitivity and specificity of the developed agglutination assay obtained using bioconjugated functionalized AuNPs is ≥ 98% for the detection of Brucella. Therefore, it can be used as an alternate rapid method of direct WC detection of bacteria as it is simple, robust, and cost-effective, with minimal time of reaction in the case of early disease diagnosis.
Collapse
|
7
|
Katsiolis A, Papadopoulos DK, Giantsis IA, Papageorgiou K, Zdragas A, Giadinis ND, Petridou E. Brucella spp. distribution, hosting ruminants from Greece, applying various molecular identification techniques. BMC Vet Res 2022; 18:202. [PMID: 35624476 PMCID: PMC9137169 DOI: 10.1186/s12917-022-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Brucellosis still remains an endemic disease for both livestock and human in Greece, influencing the primary sector and national economy in general. Although farm animals and particularly ruminants constitute the natural hosts of the disease, transmission to humans is not uncommon, thus representing a serious occupational disease as well. Under this prism, knowledge concerning Brucella species distribution in ruminants is considered a high priority. There are various molecular methodologies for Brucella detection with however differential discriminant capacity. Hence, the aim of this survey was to achieve nationally Brucella epidemiology baseline genotyping data at species and subtype level, as well as to evaluate the pros and cons of different molecular techniques utilized for detection of Brucella species. Thirty-nine tissue samples from 30 domestic ruminants, which were found positive applying a screening PCR, were tested by four different molecular techniques i.e. sequencing of the 16S rRNA, the BP26 and the OMP31 regions, and the MLVA typing panel 1 assay of minisatellite markers. Results Only one haplotype was revealed from the 16S rRNA sequencing analysis, indicating that molecular identification of Brucella bacteria based on this marker might be feasible solely up to genus level. BP26 sequencing analysis and MLVA were in complete agreement detecting both B. melitensis and B. abortus. An interesting exception was observed in 11 samples, of lower quality extracted DNA, in which not all expected MLVA amplicons were produced and identification was based on the remaining ones as well as on BP26. On the contrary OMP31 failed to provide a clear band in any of the examined samples. Conclusions The present study reveals the constant circulation of Brucella bacteria in ruminants throughout Greece. Further, according to our results, BP26 gene represents a very good alternative to MLVA minisatellite assay, particularly in lower quality DNA samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03295-4.
Collapse
Affiliation(s)
- Aristomenis Katsiolis
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Konstantinos Papageorgiou
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonis Zdragas
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization DEMETER (former NAGREF), Thessaloniki, Greece
| | - Nektarios D Giadinis
- Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
8
|
Microbiological Laboratory Diagnosis of Human Brucellosis: An Overview. Pathogens 2021; 10:pathogens10121623. [PMID: 34959578 PMCID: PMC8709366 DOI: 10.3390/pathogens10121623] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Brucella spp. are Gram-negative, non-motile, non-spore-forming, slow-growing, facultative intracellular bacteria causing brucellosis. Brucellosis is an endemic of specific geographic areas and, although underreported, represents the most common zoonotic infection, with an annual global incidence of 500,000 cases among humans. Humans represent an occasional host where the infection is mainly caused by B. melitensis, which is the most virulent; B. abortus; B. suis; and B. canis. A microbiological analysis is crucial to identifying human cases because clinical symptoms of human brucellosis are variable and aspecific. The laboratory diagnosis is based on three different microbiological approaches: (i) direct diagnosis by culture, (ii) indirect diagnosis by serological tests, and (iii) direct rapid diagnosis by molecular PCR-based methods. Despite the established experience with serological tests and highly sensitive nucleic acid amplification tests (NAATs), a culture is still considered the “gold standard” in the laboratory diagnosis of brucellosis due to its clinical and epidemiological relevance. Moreover, the automated BC systems now available have increased the sensitivity of BCs and shortened the time to detection of Brucella species. The main limitations of serological tests are the lack of common interpretative criteria, the suboptimal specificity due to interspecies cross-reactivity, and the low sensitivity during the early stage of disease. Despite that, serological tests remain the main diagnostic tool, especially in endemic areas because they are inexpensive, user friendly, and have high negative predictive value. Promising serological tests based on new synthetic antigens have been recently developed together with novel point-of-care tests without the need for dedicated equipment and expertise. NAATs are rapid tests that can help diagnose brucellosis in a few hours with high sensitivity and specificity. Nevertheless, the interpretation of NAAT-positive results requires attention because it may not necessarily indicate an active infection but rather a low bacterial inoculum, DNA from dead bacteria, or a patient that has recovered. Refined NAATs should be developed, and their performances should be compared with those of commercial and home-made molecular tests before being commercialized for the diagnosis of brucellosis. Here, we review and report the most common and updated microbiological diagnostic methods currently available for the laboratory diagnosis of brucellosis.
Collapse
|
9
|
Nagalingam M, Basheer TJ, Balamurugan V, Shome R, Kumari SS, Reddy GBM, Shome BR, Rahman H, Roy P, Kingston JJ, Gandham RK. Comparative evaluation of the immunodominant proteins of Brucella abortus for the diagnosis of cattle brucellosis. Vet World 2021; 14:803-812. [PMID: 33935431 PMCID: PMC8076471 DOI: 10.14202/vetworld.2021.803-812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Aim: The present serodiagnosis of brucellosis in livestock is based on the whole cell or smooth lipopolysaccharide of the Brucella organism in which specificity is hampered by the cross-reactivity, especially with the antibodies against Yersinia enterocolitica O:9 organism. The problem can be addressed by screening for better immunodominant antigens. Hence, the present study was undertaken to screen protein antigens of Brucella abortus for their diagnostic potential in cattle brucellosis. Materials and Methods: Protein antigens of B. abortus (n=10) non-reactive to antibodies against Y. enterocolitica O:9 were selected, expressed in Escherichia coli, assessed the reactivity of expressed recombinant proteins by Western blot, standardized indirect-enzyme-linked immunosorbent assay (ELISA) for detecting Brucella antibodies in cattle serum, and comparative evaluation was done. Results: All the selected protein antigens were expressed and in the Western blot with Brucella antibodies positive cattle serum, six recombinant (Brucella protein 26 [BP26], Cu-Zn Superoxide dismutase [SodC], B. abortus I-1885, Serine protease, Bacterioferritin, and Brucella Lumazine Synthase [BLS]) proteins showed reaction whereas none of the proteins showed reactivity with Brucella negative cattle serum. ELISA has been done using known Brucella positive and negative cattle sera samples (n=113 each) in which the performance of recombinant proteins in diagnosing brucellosis was in the order of BP26 > BLS > SodC followed by rest of the proteins. BP26 based ELISA was found to be better with area under the curve as 0.953, and diagnostic sensitivity, diagnostic specificity, and Youden’s index of 90.27%, 95.58%, and 0.8584, respectively, with the excellent agreement (k=0.85). Conclusion: BP26 could be a potential diagnostic antigen among the immunodominant proteins of B. abortus in ruling out Y. enterocolitica O:9 infection while diagnosing brucellosis in cattle herds.
Collapse
Affiliation(s)
- Mohandoss Nagalingam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Thaslim J Basheer
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | | | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - S Sowjanya Kumari
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - G B Manjunatha Reddy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Habibur Rahman
- International Livestock Research Institute, New Delhi, India
| | - Parimal Roy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | | | - R K Gandham
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Kong Y, Wang H, Wu S, Lv J, Mei L, Zhou H, Lin X, Han X. A quantum dot fluorescent microsphere based immunochromatographic strip for detection of brucellosis. BMC Vet Res 2021; 17:48. [PMID: 33485335 PMCID: PMC7823175 DOI: 10.1186/s12917-021-02760-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brucellosis is a serious zoonosis disease that frequently causes significant economic loss in animal husbandry and threatens human health. Therefore, we established a rapid, accurate, simple and sensitive fluorescent immunochromatographic strip test (ICST) based on quantum dots (QDs) for detection the antibodies of Brucella infection animals serum. RESULTS The test strips were successfully prepared by quantum dot fluorescent microspheres (QDFM) as tracers, which were covalently coupled to an outer membrane protein of Brucella OMP22. The outer membrane protein OMP28 and monoclonal antibodies of OMP22 were separately dispensed onto a nitrocellulose membrane as test and quality control lines, respectively. The critical threshold for determining negative or positive through the ratio of the fluorescent signal of the test line and the control line (HT / HC) is 0.0492. The repeatability was excellent with an overall average CV of 8.78%. Under optimum conditions, the limit of detection was 1.05 ng/mL (1:512 dilution). With regard to the detection of brucellosis in 150 clinical samples, the total coincidence rate of ICST and Rose Bengal plate test (RBPT) was 97.3%, the coincidence rate of positive samples was 98.8%, the coincidence rate of negative samples was 95.3%, the sensitivity of RBPT is 1:32, and no cross reaction with the sera of other related diseases was observed. CONCLUSION In our present study, the QDFM has promising application for on-site screening of brucellosis owing to its high detection speed, high sensitivity, high specificity and low cost.
Collapse
Affiliation(s)
- Yufang Kong
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Huiyu Wang
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Shaoqiang Wu
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Jizhou Lv
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Lin Mei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China
| | - Huifang Zhou
- People's Hospital of Jiaxiang, Jiaxiang County, Jining City, 272400, Shandong Province, China
| | - Xiangmei Lin
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China.
| | - Xueqing Han
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, 100176, Beijing, China.
| |
Collapse
|
11
|
Bialer MG, Sycz G, Muñoz González F, Ferrero MC, Baldi PC, Zorreguieta A. Adhesins of Brucella: Their Roles in the Interaction with the Host. Pathogens 2020; 9:E942. [PMID: 33198223 PMCID: PMC7697752 DOI: 10.3390/pathogens9110942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
Collapse
Affiliation(s)
- Magalí G. Bialer
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Gabriela Sycz
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
| | - Florencia Muñoz González
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mariana C. Ferrero
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pablo C. Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (F.M.G.); (M.C.F.)
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir (FIL), IIBBA (CONICET-FIL), Buenos Aires 1405, Argentina; (M.G.B.); (G.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
12
|
Sánchez-Jiménez MM, de la Cuesta Zuluaga JJ, Garcia-Montoya GM, Dabral N, Alzate JF, Vemulapalli R, Olivera-Angel M. Diagnosis of human and canine Brucella canis infection: development and evaluation of indirect enzyme-linked immunosorbent assays using recombinant Brucella proteins. Heliyon 2020; 6:e04393. [PMID: 32685723 PMCID: PMC7358725 DOI: 10.1016/j.heliyon.2020.e04393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Brucella canis, a Gram-negative coccobacilli belonging to the genus Brucellae, is a pathogenic bacterium that can produce infections in dogs and humans. Multiple studies have been carried out to develop diagnostic techniques to detect all zoonotic Brucellae. Diagnosis of Brucella canis infection is challenging due to the lack of highly specific and sensitive diagnostic assays. This work was divided in two phases: in the first one, were identified antigenic proteins in B. canis that could potentially be used for serological diagnosis of brucellosis. Human sera positive for canine brucellosis infection was used to recognize immunoreactive proteins that were then identified by performing 2D-GEL and immunoblot assays. These spots were analyzed using MALDI TOF MS and predicted proteins were identified. Of the 35 protein spots analyzed, 14 proteins were identified and subsequently characterized using bioinformatics, two of this were selected for the next phase. In the second phase, we developed and validated an indirect enzyme-linked immunosorbent assays using those recombinant proteins: inosine 5' phosphate dehydrogenase, pyruvate dehydrogenase E1 subunit beta (PdhB) and elongation factor Tu (Tuf). These genes were PCR-amplified from genomic DNA of B. canis strain Oliveri, cloned, and expressed in Escherichia coli. Recombinant proteins were purified by metal affinity chromatography, and used as antigens in indirect ELISA. Serum samples from healthy and B. canis-infected humans and dogs were used to evaluate the performance of indirect ELISAs. Our results suggest that PdhB and Tuf proteins could be used as antigens for serologic detection of B. canis infection in humans, but not in dogs. The use of recombinant antigens in iELISA assays to detect B. canis-specific antibodies in human serum could be a valuable tool to improve diagnosis of human brucellosis caused by B. canis.
Collapse
Affiliation(s)
- Miryan Margot Sánchez-Jiménez
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
- Colombian Institute of Tropical Medicine, ICMT - CES University, Medellín, Colombia
| | - Juan Jacobo de la Cuesta Zuluaga
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
| | - Gisela María Garcia-Montoya
- National Center for Genomic Sequencing -CNSG, University of Antioquia, Medellín, Colombia
- Parasitology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States
| | - Juan Fernando Alzate
- National Center for Genomic Sequencing -CNSG, University of Antioquia, Medellín, Colombia
- Parasitology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States
| | - Martha Olivera-Angel
- Vericel-Biogénesis Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad of Antioquia, Medellín, Colombia
| |
Collapse
|
13
|
Yin D, Bai Q, Zhang J, Xu K, Li J. A novel recombinant multiepitope protein candidate for the diagnosis of brucellosis: A pilot study. J Microbiol Methods 2020; 174:105964. [PMID: 32479870 DOI: 10.1016/j.mimet.2020.105964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/18/2023]
Abstract
Brucellosis is a zoonotic disease transmitted to humans from infected animals. As a systemic disease, it can harm any organ or system of the host body. Human brucellosis presents with various clinical symptoms, which makes diagnosis challenging. Serological diagnosis of brucellosis is based on ELISA or agglutination tests, which use colorimetry to detect antibodies generated against lipopolysaccharide (LPS) or extracts from whole-cell bacteria. To construct a protein that can specifically recognize Brucella, we analyzed hydrophilicity, accessibility, flexibility, antigenicity, and β-turns using a protein network server. Then, we chose the most abundant immunodominant epitopes of the outer membrane proteins omp31, BP26, omp2b and omp16. Based on the sequences of these major epitopes, fifteen major immunodominant epitopes were selected to construct a synthetic Brucella recombinant multiepitope outer membrane protein (rOmp) gene. This recombinant gene was expressed in E. coli, and the produced protein was purified by Ni-NTA affinity purification. The purified protein was tested in an indirect ELISA assay, demonstrating a high level of sensitivity and specificity. This technique is creating a unique antigen that, coupled with overexpression and low-cost purification, offers a promising diagnosis of both human and animal brucellosis, with the potential to avoid the disadvantages of whole brucellosis-antigen-based assays.
Collapse
Affiliation(s)
- Dehui Yin
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qiongqiong Bai
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinpeng Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| | - Kun Xu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Abstract
The clinical presentation of brucellosis in humans is variable and unspecific, and thus, laboratory corroboration of the diagnosis is essential for the patient's proper treatment. The diagnosis of brucellar infections can be made by culture, serological tests, and nucleic acid amplification assays. Modern automated blood culture systems enable detection of acute cases of brucellosis within the routine 5- to 7-day incubation protocol employed in clinical microbiology laboratories, although a longer incubation and performance of blind subcultures may be needed for protracted cases. Serological tests, though they lack specificity and provide results that may be difficult to interpret in individuals repeatedly exposed to Brucella organisms, nevertheless remain a diagnostic cornerstone in resource-poor countries. Nucleic acid amplification assays combine exquisite sensitivity, specificity, and safety and enable rapid diagnosis of the disease. However, long-term persistence of positive molecular test results in patients that have apparently fully recovered is common and has unclear clinical significance and therapeutic implications. Therefore, as long as there are no sufficiently validated commercial tests or studies that demonstrate an adequate interlaboratory reproducibility of the different homemade PCR assays, cultures and serological methods will remain the primary tools for the diagnosis and posttherapeutic follow-up of human brucellosis.
Collapse
Affiliation(s)
- Pablo Yagupsky
- Clinical Microbiology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pilar Morata
- Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Málaga, Málaga, Spain
- IBIMA, Málaga, Spain
| | - Juan D Colmenero
- Infectious Diseases Service, University Regional Hospital, Málaga, Spain
- IBIMA, Málaga, Spain
| |
Collapse
|
15
|
ElTahir Y, Al-Araimi A, Nair RR, Autio KJ, Tu H, Leo JC, Al-Marzooqi W, Johnson EH. Binding of Brucella protein, Bp26, to select extracellular matrix molecules. BMC Mol Cell Biol 2019; 20:55. [PMID: 31783731 PMCID: PMC6884894 DOI: 10.1186/s12860-019-0239-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). RESULTS ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. CONCLUSIONS Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis.
Collapse
Affiliation(s)
- Yasmin ElTahir
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman.
| | - Amna Al-Araimi
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| | - Remya R Nair
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland
| | - Hongmin Tu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014, Oulu, Finland
| | - Jack C Leo
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0361, Oslo, Norway.,Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Waleed Al-Marzooqi
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| | - Eugene H Johnson
- Department of Animal & Veterinary Sciences, Sultan Qaboos University. College of Agricultural & Marine Sciences, P.O.box 34. 123 Alkhod, Muscat, Sultanate of Oman
| |
Collapse
|
16
|
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, Zygmunt MS, de Miguel MJ, Tejedor C, Vizcaíno N. Characterization of Cell Envelope Multiple Mutants of Brucella ovis and Assessment in Mice of Their Vaccine Potential. Front Microbiol 2018; 9:2230. [PMID: 30294312 PMCID: PMC6158377 DOI: 10.3389/fmicb.2018.02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Brucella ovis is a non-zoonotic Brucella species lacking specific vaccine. It presents a narrow host range, a unique biology relative to other Brucella species, and important distinct surface properties. To increase our knowledge on its peculiar surface and virulence features, and seeking to develop a specific vaccine, multiple mutants for nine relevant cell-envelope-related genes were investigated. Mutants lacking Omp10 plus Omp19 could not be obtained, suggesting that at least one of these lipoproteins is required for viability. A similar result was obtained for the double deletion of omp31 and omp25 that encode two major surface proteins. Conversely, the absence of major Omp25c (proved essential for internalization in HeLa cells) together with Omp25 or Omp31 was tolerated by the bacterium. Although showing important in vitro and in vivo defects, the Δomp10Δomp31Δomp25c mutant was obtained, demonstrating that B. ovis PA survives to the simultaneous absence of Omp10 and four out seven proteins of the Omp25/Omp31 family (i.e., Omp31, Omp25c, Omp25b, and Omp31b, the two latter naturally absent in B. ovis). Three multiple mutants were selected for a detailed analysis of virulence in the mouse model. The Δomp31Δcgs and Δomp10Δomp31Δomp25c mutants were highly attenuated when inoculated at 106 colony forming units/mouse but they established a persistent infection when the infection dose was increased 100-fold. The Δomp10ΔugpBΔomp31 mutant showed a similar behavior until week 3 post-infection but was then totally cleared from spleen. Accordingly, it was retained as vaccine candidate for mice protection assays. When compared to classical B. melitensis Rev1 heterologous vaccine, the triple mutant induced limited splenomegaly, a significantly higher antibody response against whole B. ovis PA cells, an equivalent memory cellular response and, according to spleen colonization measurements, better protection against a challenge with virulent B. ovis PA. Therefore, it would be a good candidate to be evaluated in the natural host as a specific vaccine against B. ovis that would avoid the drawbacks of B. melitensis Rev1. In addition, the lack in this attenuated strain of Omp31, recognized as a highly immunogenic protein during B. ovis infection, would favor the differentiation between infected and vaccinated animals using Omp31 as diagnostic target.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Axel Cloeckaert
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - Michel Stanislas Zygmunt
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2, Zaragoza, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Abdollahi A, Mansouri S, Amani J, Fasihi-Ramandi M, Moradi M. Immunoreactivity evaluation of a new recombinant chimeric protein against Brucella in the murine model. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:193-202. [PMID: 27928487 PMCID: PMC5139923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Brucellosis is an important health problem in developing countries and no vaccine is available for the prevention of infection in humans. Because of clinically infectious diseases and their economic consequences in human and animals, designing a proper vaccine against Brucella is desirable. In this study, we evaluated the immune responses induced by a designed recombinant chimera protein in murine model. MATERIALS AND METHODS Three immunodominant antigens of Brucella have been characterized as potential immunogenic and protective antigens including: trigger factor (TF), Omp31 and Bp26 were fused together by EAAAK linkers to produce a chimera (structure were designed in silico), which was synthesized, cloned, and expressed in E. coli BL21 (DE3). The purification of recombinant protein was performed using Ni-NTA agarose. SDS-PAGE and anti-His antibody was used for confirmation purified protein (Western blot). BALB/c immunization was performed by purified protein and adjuvant, and sera antibody levels were measured by ELISA. otted. RESULTS SDS-PAGE and Western blotting results indicated the similarity of in silico designing and in vitro experiments. ELISA result proved that the immunized sera of mice contain high levels of antibodies (IgG) against recombinant chimeric protein. CONCLUSION The recombinant chimeric protein could be a potential antigen candidate for the development of a subunit vaccine against Brucella.
Collapse
Affiliation(s)
- Abbas Abdollahi
- Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahla Mansouri
- Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran, Corresponding author: Shahla Mansouri, Ph.D, Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran., Tel: +98 343 325 7665, +98 913 142 3384, E-mail:
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, Corresponding author: Jafar Amani, Ph.D, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Tel: +98 912 406 6964, E-mail:
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Moradi
- Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Manat Y, Shustov AV, Evtehova E, Eskendirova SZ. Expression, purification and immunochemical characterization of recombinant OMP28 protein of Brucella species. Open Vet J 2016; 6:71-7. [PMID: 27303654 PMCID: PMC4886644 DOI: 10.4314/ovj.v6i2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/18/2016] [Indexed: 11/18/2022] Open
Abstract
Brucellosis is the lion’s share of infectious disease of animals and it has a particular socio-economic importance for the Republic of Kazakhstan. Sixty percent of epizootic outbreaks of brucellosis identified in the Commonwealth of Independent States (CIS) originated from Kazakhstan in recent years. Definitive diagnosis of brucellosis remains a difficult task. Precisely for this reason, we evaluated a purified recombinant out membrane protein 28 (rOMP28) of Brucella species (Brucella spp.) produced in Escherichia coli (E. coli) as a diagnostic antigen in an Indirect ELISA (I-ELISA) for bovine brucellosis. The gene encoding OMP28 was synthesized using a two-round PCR procedure. In order to produce the rOMP28, the de novo synthesized DNA was cloned into the expression vector pET-22b(+). Then, the rOMP28 was expressed in E. coli system and characterized in the present study. We further estimated the diagnostic potential of purified rOMP28 of Brucella spp. for screening bovine sera. To determine if rOMP28 has a valuable benefit for use in the serodiagnosis of bovine brucellosis, rOMP28-based I-ELISA was performed. Brucella spp. positive (n=62) and Brucella spp. negative (n=28) samples from tube agglutination test (TAT) were positive (n=59) and negative (n=27) by I-ELISA, respectively. These findings show that the rOMP28 of Brucella spp. could be a good candidate for improving serological diagnostic methods for bovine brucellosis.
Collapse
Affiliation(s)
- Y Manat
- Laboratory of Cell Biotechnology, National Centre for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - A V Shustov
- Laboratory of Genetic Engineering, National Centre for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - E Evtehova
- Laboratory of Cell Biotechnology, National Centre for Biotechnology, Astana, 010000, Republic of Kazakhstan
| | - S Z Eskendirova
- Laboratory of Cell Biotechnology, National Centre for Biotechnology, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
19
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR. Serological diagnostic potential of recombinant outer membrane proteins (rOMPs) from Brucella melitensis in mouse model using indirect enzyme-linked immunosorbent assay. BMC Vet Res 2015; 11:275. [PMID: 26530141 PMCID: PMC4630882 DOI: 10.1186/s12917-015-0587-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/16/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Brucella melitensis is the most important pathogenic species of Brucella spp. which affects goats and sheep and causes caprine and ovine brucellosis, respectively. Serological tests for diagnosis of brucellosis such as Rose Bengal plate test (RBPT) and enzyme-linked immunosorbent assay (ELISA) usually utilize smooth lipopolysaccharides (S-LPS) as a diagnostic antigen which could give false positive serological reactions. Outer membrane proteins (OMP) of B. melitensis have been used as alternative diagnostic antigens rather than S-LPS for differential serological diagnosis of brucellosis, mainly in ELISA with single recombinant OMP (rOMP) as a diagnostic antigen. Nevertheless, the use of single format mainly showed lack of sensitivity against the desired rOMP. Therefore, this study aimed to determine whether a newly developed rOMPs indirect ELISA (rOMPs I-ELISA), based on combination of rOMP25, rOMP28 and rOMP31of B. melitensis, has a potential benefit for use in the serodiagnosis of brucellosis. METHODS In this study, omp25, omp28 and omp31 of B. melitensis were cloned and expressed using prokaryotic pET-32 Ek/LIC system and their respective rOMPs were combined as one coating antigen to develop rOMPs I-ELISA. Three groups of BALB/c mice were used to elicit antibody response. Group 1, infected with B. melitensis strain 0331 field strain; group 2, injected with B. melitensis Rev.1 vaccine strain and group 3, infected with Yersinia enterocolitica O:9. Antibody responses in three groups of mice were investigated using Rose Bengal plate test (RBPT) and rOMPs I-ELISA. RESULTS The production of rOMP25, rOMP28 and rOMP31 of B. melitensis were achieved and Western immunoblotting analysis demonstrated their reactivity. The RBPT was unable to differentiate the vaccinated mice (group 2) and mice infected with Y. enterocolitica O:9 (group 3) and categorized them wrongly as positive for brucellosis. In contrast, the rOMPs I-ELISA was able to differentiate the mice infected with B. melitensis strain 0331 (group 1) from both of group 2 and group 3, and recorded 100% sensitivity and 100% specificity. CONCLUSIONS The results of this study suggested that rOMPs of B. melitensis has potential diagnostic ability to differentiate the FPSR in serological diagnosis of brucellosis.
Collapse
Affiliation(s)
- Ihsan Muneer Ahmed
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
- Department of Microbiology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.
| | - Siti Khairani-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| |
Collapse
|
21
|
Yao L, Wu CX, Zheng K, Xu XJ, Zhang H, Chen CF, Liu ZF. Immunogenic response to a recombinant pseudorabies virus carrying bp26 gene of Brucella melitensis in mice. Res Vet Sci 2015; 100:61-7. [PMID: 25890577 DOI: 10.1016/j.rvsc.2015.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/29/2015] [Indexed: 01/18/2023]
Abstract
Brucellae are facultative intracellular bacterial pathogens of a zoonotic disease called brucellosis. Live attenuated vaccines are utilized for prophylaxis of brucellosis; however, they retain residual virulence to human and/or animals, as well as interfere with diagnosis. In this study, recombinant virus PRV ΔTK/ΔgE/bp26 was screened and purified. One-step growth curve assay showed that the titer of recombinant virus was comparable to the parent strain. Mice experiments showed the recombinant virus elicited high titer of humoral antibodies against Brucella detected by enzyme-linked immunosorbent assay and against PRV by serum neutralization test. The recombinant virus induced high level of Brucella-specific lymphocyte proliferation response and production of interferon gamma. Collectively, these data suggest that the bivalent virus was capable of inducing both humoral and cellular immunity, and had the potential to be a vaccine candidate to prevent Brucella and/or pseudorabies virus infections.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Chang-Xian Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xian-Jin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hui Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science & Technology, Shihezi University, Shihezi city, Xinjiang Uyghur Autonomous Region, China
| | - Chuang-Fu Chen
- Department of Preventive Veterinary Medicine, College of Animal Science & Technology, Shihezi University, Shihezi city, Xinjiang Uyghur Autonomous Region, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
22
|
França S, Mol J, Costa E, Silva A, Xavier M, Tsolis R, Reis J, Paixão T, Santos R. Indirect ELISA for diagnosis of Brucella ovis infection in rams. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-6767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brucella ovis is a major cause of epididymitis in sexually mature rams, resulting in subfertility, infertility, and economic losses for the sheep industry worldwide. The aim of this study was to develop an indirect ELISA (iELISA) using recombinant proteins, namely rBoP59 and rBP26, as antigens for serological diagnosis of B. ovisinfection. The BoP59 and BP26 recombinant proteins were expressed in E. coli and purified by affinity chromatography. Antigenicity was tested by Western blot and iELISA. Standardization of iELISA was performed with 500ng and 1µg BoP59 and rBP26 per well, testing serum from uninfected and experimentally infected rams. rBP26 was effective in distinguishing positive from negative rams. The rBP26 iELISA developed in this study is the first to use a completely purified rBP26 as antigen resulting in high sensitivity (100%) and specificity (90.2%), and an overall accuracy equal to 1.0.
Collapse
|
23
|
Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:172-80. [PMID: 24847419 PMCID: PMC4016687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE(S) Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The commonly used live attenuated vaccine in ovine brucellosis prophylaxis is B. melitensis Rev1. But due to different problems caused by the administration of this vaccine, a protective subunit vaccine against B. melitensis is strongly demanded. Brucella BP26, Omp31 and TF proteins have shown a considerable potential as protective antigens for brucellosis. Chimeric proteins carrying epitopes or adjuvant sequences increase the possibility of eliciting a broad cellular or humoral immune response. In silico tools are highly suited to study, design and evaluate vaccine strategies. MATERIALS AND METHODS In this study, a synthetic chimeric gene, encoding TF, BP26 (93-111) and Omp31(48-74) was designed. In order to predict the 3D structure of protein, modeling was carried out. RESULTS Validation results showed that 91.1% of residues lie in favored or additional allowed region of Ramachandran plot. The epitopes in the chimeric protein are likely to induce both the B-cell and T-cell mediated immune responses. Conclusion : The chimeric protein may be used as multi subunit for development of Brucella vaccine candidates.
Collapse
Affiliation(s)
- Amir Ghasemi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Jafar Amani
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author: Jafar Amani. Applied Microbiology Research Center, Baqiyatallah Medical Science University, Tehran, Iran. Vanak Sq. Molasadra St. Tehran, Iran. Tel: +98-21-82482568; Fax: +98-21-88068924.
| |
Collapse
|
24
|
Wang W, Wu J, Qiao J, Weng Y, Zhang H, Liao Q, Qiu J, Chen C, Allain JP, Li C. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine 2013; 32:825-33. [PMID: 24370708 DOI: 10.1016/j.vaccine.2013.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
In recent years, the number of cases of human brucellosis has been increasing by approximately 10% per year in China. Most cases were caused by Brucella melitensis through contacts with infected sheep, goats or their products. An attenuated B. melitensis vaccine M5-90 is currently used to vaccinate both animals in China. This vaccine has not been investigated for critical parameters such as immune response and its association with protective efficacy. In this study, humoral and cellular immune response to the periplasmic protein BP26 and the outer membrane protein OMP31 were evaluated in M5-90 vaccinated Chinese merino and Kazak sheep. Antibodies to BP26 or OMP31 were detected at low levels, and specific IFN-γ response was quantified. Strongly reactive peptides derived from BP26 and OMP31 identified five T-cell epitopes (BP26-6, -8, -11, -12 and OMP31-23) common to both sheep species, five species-specific epitopes (BP26-10, -18, -21 and -22 and OMP31-12) and four animal-specific epitopes (BP26-15, -23, OMP31-6 and -21), which stimulated specific IFN-γ response in vaccinated sheep. Among those T-cell epitopes, reactivity to BP26-18 and -21 epitopes was significantly associated with MHC-I B allele (P=0.024). However, a specific T-cell response induced by the M5-90 vaccine was relatively week and did not sustain long enough, which might be suppressed by rapid activation of T-regulatory (Treg) cells following vaccination. These findings provide an insight in designing a safer and more effective vaccine for use in animals and in humans.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jingbo Wu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jun Qiao
- School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yunceng Weng
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qingyu Liao
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jinlang Qiu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Chuangfu Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Limitations of the BP26 protein-based indirect enzyme-linked immunosorbent assay for diagnosis of Brucellosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1410-7. [PMID: 23863503 DOI: 10.1128/cvi.00052-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucellosis is a serious zoonosis that occurs worldwide, and its diagnosis is typically based on the detection of antibodies against Brucella lipopolysaccharide (LPS). However, the specificity of the LPS-based test is compromised by cross-reactivity with Escherichia coli O157:H7 and Yersinia enterocolitica O:9. Also, diagnosis based on the LPS test cannot differentiate between vaccinated and infected individuals. The detection of the 26-kDa cytosoluble protein (BP26) antibody is considered an alternative that circumvents these drawbacks because it is exclusively expressed by infectious Brucella. A BP26-based enzyme-linked immunosorbent assay (ELISA) has been tried for the diagnosis of Brucella-infected animals and humans, but a few results showed that BP26 couldn't react with all Brucella-positive sera. In order to explore whether different animals could produce antibodies against BP26 after being infected with various Brucella species, we infected sheep, goats, and beef cattle with common virulent reference Brucella species. All sera were collected from the experimental animals and tested using both LPS-based ELISAs and BP26-based ELISAs. The results showed that all Brucella-infected individuals could produce high levels of antibodies against LPS, but only B. melitensis 16M- and B. melitensis M28-infected sheep and B. melitensis 16M- and B. abortus 2308-infected goats could produce antibodies against BP26. Therefore, we concluded that the BP26-based indirect ELISA (i-ELISA) showed both Brucella species and host specificity, which obviously limits its reliability as a substitute for the traditional LPS-based ELISA for the detection of brucellosis.
Collapse
|
26
|
Sustained and differential antibody responses to virulence proteins of Brucella melitensis during acute and chronic infections in human brucellosis. Eur J Clin Microbiol Infect Dis 2012; 32:437-47. [DOI: 10.1007/s10096-012-1767-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/16/2012] [Indexed: 01/18/2023]
|
27
|
Qiu J, Wang W, Wu J, Zhang H, Wang Y, Qiao J, Chen C, Gao GF, Allain JP, Li C. Characterization of periplasmic protein BP26 epitopes of Brucella melitensis reacting with murine monoclonal and sheep antibodies. PLoS One 2012; 7:e34246. [PMID: 22457830 PMCID: PMC3311636 DOI: 10.1371/journal.pone.0034246] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/24/2012] [Indexed: 11/22/2022] Open
Abstract
More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.
Collapse
Affiliation(s)
- Jinlang Qiu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jingbo Wu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Yuanzhi Wang
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Jun Qiao
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- Animal Science and Technology College, Shihezi University, Shihezi, China
| | - Goege F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
28
|
Büyüktanır O, Genç O, Celebi O, Yurdusev N. Rapid immunofiltration assay as a field diagnostic tool for ovine brucellosis. J Immunoassay Immunochem 2011; 33:35-47. [PMID: 22181819 DOI: 10.1080/15321819.2011.591478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work describes the development of two rapid immunofiltration assays, enzymatic (ERIFA) and non-enzymatic (NERIFA), for the rapid detection of ovine anti-Brucella antibodies. Brucella abortus lipopolysaccharide and total bacterial extract were dotted separately as diagnostic antigens on a nitrocellulose filter-membrane of the individual assay unit along with a third dot of purified sheep IgG as an internal control. The assay's diagnostic performance was evaluated in comparison with a modified rose bengal test (mRBT) and an indirect enzyme-linked immunosorbent assay (ELISA) through usage of 590 serum samples from healthy, vaccinated, or infected sheep. The ERIFA and indirect ELISA were found to be significantly more sensitive than NERIFA, while mRBT was determined to be statistically equivalent to NERIFA. A perfect agreement (κ = 0.984) and a statistical equivalence to indirect ELISA suggest that the bi-antigenic ERIFA can be used as an "individual rapid ELISA" for screening ovine anti-Brucella antibody both in the field and in limited laboratory conditions.
Collapse
Affiliation(s)
- Ozlem Büyüktanır
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, Samsun, Turkey
| | | | | | | |
Collapse
|
29
|
Evaluation of the recombinant 10-kilodalton immunodominant region of the BP26 protein of Brucella abortus for specific diagnosis of bovine brucellosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1760-4. [PMID: 21852548 DOI: 10.1128/cvi.05159-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucellosis is a disease with worldwide distribution affecting animals and human beings. Brucella abortus is the causative agent of bovine brucellosis. The cross-reactions of currently available diagnostic procedures for B. abortus infection result in false-positive reactions, which make the procedures unreliable. These tests are also unable to differentiate Brucella-infected and -vaccinated animals. The present work is focused on the use of a nonlipopolysaccharide (LPS) diagnostic antigen, a recombinant 10-kDa (r10-kDa) protein of B. abortus, for specific diagnosis of brucellosis. The purified recombinant protein was used as a diagnostic antigen in plate enzyme-linked immunosorbent assay (p-ELISA) format to screen 408 bovine serum samples (70 presumptively negative, 308 random, and 30 vaccinated), and the results were compared with those of the Rose Bengal plate agglutination test (RBPT) and the standard tube agglutination test (STAT). Statistical analysis in presumptive negative samples revealed 100 and 98.41% specificity of p-ELISA with RBPT and STAT, and an agreement of 91.43% with the tests using Cohen's kappa statistics. In random samples, the agreement of p-ELISA was 77.92% and 80.52% with RBPT and STAT, respectively. p-ELISA investigation of vaccinated samples reported no false-positive results, whereas RBPT and STAT reported 30% and 96.6% false-positive results, respectively. The data suggest that p-ELISA with r10-kDa protein may be a useful method for diagnosis of bovine brucellosis. Furthermore, p-ELISA may also be used as a tool for differentiating Brucella-vaccinated and naturally infected animals.
Collapse
|
30
|
Liu WX, Hu S, Qiao ZJ, Chen WY, Liu LT, Wang FK, Hua RH, Bu ZG, Li XR. Expression, purification, and improved antigenic specificity of a truncated recombinant bp26 protein of Brucella melitensis M5-90: a potential antigen for differential serodiagnosis of brucellosis in sheep and goats. Biotechnol Appl Biochem 2011; 58:32-8. [PMID: 21446957 DOI: 10.1002/bab.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antibodies produced in animals vaccinated using live attenuated vaccines against Brucella spp. are indistinguishable using current conventional serological tests from those produced in infected animals. One potential approach is to develop marker vaccines in which specific genes have been deleted from parental vaccine strains that show good immunogenicity and vaccine efficacy. Corresponding methods of detection for antibodies raised by the marker vaccine should also be developed. A specific fragment of the bp26 gene of Brucella melitensis M5-90 was cloned into vector pQE32 to construct the recombinant plasmid (pQE32-rΔbp26). It was used to transform Escherichia coli M15 (pREP4) host cells, which expressed the rΔbp26 protein. Subsequently, the recombinant protein was purified by immobilized metal affinity chromatography and size-exclusion chromatography. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified rΔbp26 protein was represented by only one band, with a molecular weight of 14 kDa, and it showed good antigenic specificity on western blot and enzyme-linked immunosorbent assay (ELISA). The purified rΔbp26 protein was intended to be used as an antigen to develop a novel ELISA to differentiate animals vaccinated with bp26 mutants of Brucella spp. from those infected naturally and those vaccinated with the parental vaccine strains.
Collapse
Affiliation(s)
- Wen-xing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eoh H, Jeon BY, Kim Z, Kim SC, Cho SN. Expression and Validation of D-Erythrulose 1-Phosphate Dehydrogenase from Brucella abortus: A Diagnostic Reagent for Bovine Brucellosis. J Vet Diagn Invest 2010; 22:524-30. [DOI: 10.1177/104063871002200405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brucella abortus is a bacterium of brucellosis causing abortion in cattle. The diagnosis of bovine brucellosis mainly relies on serologic tests using smooth lipopolysaccharide (S-LPS) from B. abortus. However, the usefulness of this method is limited by false-positive reactions due to cross-reaction with other Gram-negative bacteria. In the present study, the eryC gene encoding B. abortus D-erythrulose 1-phosphate dehydrogenase, which is involved in the erythritol metabolism in virulent B. abortus strain but is absent from a B. abortus vaccine strain (S19), was cloned. Recombinant EryC was expressed and purified for the evaluation as a diagnostic reagent for bovine brucellosis. Other B. abortus proteins, Omp16, PP26, and CP39 were also purified and their seroreactivities were compared. Recombinant EryC, Omp16, PP26, and PP39 were all reactive to B. abortus-positive serum. The specificity of recombinant Omp 16, PP26, CP39, and EryC, were shown to be approximately 98%, whereas that of B. abortus whole cell lysates was shown to be 95%. The sensitivity of Omp16, PP26, CP39, and EryC were 10%, 51%, 64%, and 43%, respectively, whereas that of B. abortus whole cell lysates was 53%. These results suggested that B. abortus EryC would be a potential reagent for diagnosis for bovine brucellosis as a single protein antigen.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Department of Microbiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine
| | - Bo-Young Jeon
- Department of Microbiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine
| | - Zhiyeol Kim
- Chemical Defense Research Institute, The Armed Force CBR Defense Commend, Seoul, Republic of Korea
| | - Seung-Cheol Kim
- Chemical Defense Research Institute, The Armed Force CBR Defense Commend, Seoul, Republic of Korea
| | - Sang-Nae Cho
- Department of Microbiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine
| |
Collapse
|
32
|
Affiliation(s)
- Robert C Ladner
- Dyax Corp., 300 Technology Square, Cambridge, Massachusetts 0213, USA.
| |
Collapse
|
33
|
Werner JA, Feng S, Kasten RW, Hodzic E, Chomel BB, Barthold SW. Cloning, characterization, and expression of Bartonella henselae p26. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:830-6. [PMID: 16893981 PMCID: PMC1539124 DOI: 10.1128/cvi.00135-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to identify immunoreactive Bartonella henselae proteins, B. henselae antiserum from an experimentally infected cat was used to screen a B. henselae genomic DNA expression library. One immunoreactive phage clone contained a gene (p26) with significant nucleotide identity with orthologs in brucellae, bartonellae, and several plant-associated bacteria. p26 gene sequences from four B. henselae strains, one B. koehlerae strain, and one B. clarridgeiae strain were cloned. Comparative nucleotide sequence analysis showed that p26 is a potential marker for molecular diagnosis of infection, as well as for identification to species level and genotyping of Bartonella sp. isolates. Alignment of the predicted amino acid sequences illustrated conserved putative protein features including a hydrophobic transmembrane region, a peptide cleavage site, and four dominant antigenic sites. Expression of p26 in Escherichia coli produced two proteins (26 and 27.5 kDa), both of which were reactive with feline anti-B. henselae antisera. Furthermore, murine hyperimmune serum raised against either recombinant protein reacted with both proteins. No reactivity to either recombinant protein was detected in nonimmune serum, and reactivity persisted as long as 20 weeks for one cat. The p26 protein product is an immunodominant antigen that is expressed during infection in cats as a preprotein and is subsequently cleaved to form mature P26.
Collapse
Affiliation(s)
- Jonathan A Werner
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California at Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
34
|
Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW. Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun 2005; 73:7297-303. [PMID: 16239526 PMCID: PMC1273852 DOI: 10.1128/iai.73.11.7297-7303.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/20/2005] [Accepted: 07/18/2005] [Indexed: 11/20/2022] Open
Abstract
The Brucella melitensis 16M genome was examined for proteins in excess of 100 amino acids and for immunogenicity-associated genes. One subset of 32 annotated genes or open reading frames was identified, and each of these were cloned into the eukaryotic vector pcDNA3.1. Purified recombinant plasmids were used to intramuscularly (i.m.) immunize BALB/c mice. After challenge with B. melitensis 16M strain, two protective antigens were found: the periplasmic protein, bp26, and the chaperone protein, trigger factor (TF). Protective efficacy was confirmed with DNA vaccines for these two B. melitensis proteins and, when combined, protection against wild-type challenge was significantly enhanced. Both proteins were found to be immunogenic since elevated serum immunoglobulin G (IgG) antibodies without a specific IgG subclass bias were induced subsequent to i.m. DNA immunization. Antigen-restimulation assays revealed that bp26 and TF stimulated gamma interferon and only bp26 induced interleukin-4 (IL-4), IL-5, and IL-6 cytokines as measured by cytokine enzyme-linked immunospot assay. These collective results suggest that both bp26 and TF are excellent candidates for use in future vaccination studies against brucellosis.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Brucella melitensis/genetics
- Brucella melitensis/immunology
- Brucellosis/immunology
- Brucellosis/microbiology
- Brucellosis/prevention & control
- Cloning, Molecular
- Epitopes/genetics
- Epitopes/immunology
- Female
- Genome, Bacterial
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred BALB C
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccination
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Xinghong Yang
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | | | |
Collapse
|
35
|
Dabir P, Dabir S, Reddy MVR. Cloning and expression of a 12 kDa serospecific epitope of Wuchereria bancrofti. Immunol Cell Biol 2005; 83:520-4. [PMID: 16174102 DOI: 10.1111/j.1440-1711.2005.01359.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immunoscreening of a microfilarial cDNA library of Wuchereria bancrofti with microfilaraemic sera revealed many positive clones expressing filarial antigens. One immunoreactive clone, designated PMR1, was shown to encode a protein of 114 amino acid residues. The cDNA fragment was subcloned into an expression vector, Pinpoint XaT. The resulting recombinant (r)PMR1-biotin fusion protein was expressed in Escherichia coli (BL21 [DE3] pLys) and was affinity purified on avidin resin. Analysis of sera of different groups for filarial antibodies against rPMR1 showed it to be highly reactive with microfilaraemic and clinical filarial sera compared to its reactivity with endemic and nonendemic controls. This indicates that the gene sequence of cDNA is expressing an immunodominant epitope, which could be useful in serodiagnosis of lymphatic filariasis.
Collapse
Affiliation(s)
- Pankaj Dabir
- Department of Biochemistry, JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Wardha, India
| | | | | |
Collapse
|