1
|
Hafsa U, Chuwdhury GS, Hasan MK, Ahsan T, Moni MA. An in silico approach towards identification of novel drug targets in Klebsiella oxytoca. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
2
|
Yang X, Qiu Q, Liu G, Ren H, Wang X, Lovell JF, Zhang Y. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. J Control Release 2021; 341:329-340. [PMID: 34843813 DOI: 10.1016/j.jconrel.2021.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Effective delivery of antimicrobial agents to intracellular pathogens represents a major bottleneck for a wide variety of infectious diseases. To address this, we developed SIR-micelles(+), as a new delivery vehicle comprising antibiotic-loaded micelles with rapid self-immolation within cells for targeted delivery to macrophages, where most intracellular bacterial reside. After phagocytosis, SIR-micelles(+) rapidly release the pristine antibiotic after the cleavage of the disulfide bonds by intracellular reducing agents such as glutathione (GSH). Colistin, a hydrophilic and potent "last-resort" antibiotic used for the treatment of drug-resistant bacterial infection, was encapsulated in SIR-micelles with 40% yield and good short-term storage stability. Hydrophobic moieties and mannose ligands in SIR-micelles(+) enhanced the delivery of colistin into macrophages. The traceless and thiol-responsive release of colistin effectively eliminated intracellular Escherichia coli within twenty minutes. In a murine pneumonia model, SIR-micelles(+) significantly reduced bacterial lung burden of multidrug-resistant Klebsiella pneumoniae. Furthermore, SIR-micelles(+) improved the survival rate and reduced the bacterial burden of organs infected by intracellular bacteria transferred from donor mice. Using this formulation approach, the nephrotoxicity and neurotoxicity induced by antibiotic were reduced by about 5- 15 fold. Thus, SIR-micelles(+) represent a new class of material that can be used for targeting treatment of intracellular and drug-resistant pathogens.
Collapse
Affiliation(s)
- Xingyue Yang
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - He Ren
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Xiaojie Wang
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
3
|
Anand T, Virmani N, Kumar S, Mohanty AK, Pavulraj S, Bera BC, Vaid RK, Ahlawat U, Tripathi BN. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist 2019; 21:34-41. [PMID: 31604128 DOI: 10.1016/j.jgar.2019.09.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is an important emerging pathogen of humans and animals leading to serious clinical consequences. Increased antibiotic use has promoted the emergence of carbapenem-resistant and extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae strains. Recently, phage therapy has gained momentum as a possible alternative against emerging antimicrobial resistance. This study was performed to assess the therapeutic effects of a novel lytic phage (VTCCBPA43) in a pneumonic mouse model in order to explore the efficacy of phage therapy against virulent K. pneumoniae infection. METHODS The tailed phage VTCCBPA43 was assessed for its growth kinetics, in vitro host range, and temperature and pH sensitivity. Protein constituents were analysed by SDS-PAGE and nLC-MS/MS. Therapeutic efficacy was observed 2 h post-challenge with virulent K. pneumoniae in a BALB/c mouse model. RESULTS Phage VTCCBPA43 was found to be highly temperature-tolerant (up to 80 °C). It was most active at pH 5, had a burst size of 172 PFU/mL and exhibited a narrow host range. It was identified as a KP36-like phage by shotgun proteomics. Following intranasal application of a single dose (2 × 109 PFU/mouse) post-challenge with virulent K. pneumoniae, the presence of biologically active phage in vivo and a significant reduction in the lung bacterial load at all time points was observed. A reduction in lesion severity suggested overall beneficial effects of VTCCBPA43 phage therapy in the pneumonic mouse model. CONCLUSION This research represents the first in vivo evidence of effective phage therapy against K. pneumoniae infection by the intranasal route.
Collapse
Affiliation(s)
- Taruna Anand
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India.
| | - Nitin Virmani
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Sudarshan Kumar
- ICAR-National Dairy Research Institute, Animal Biotechnology Centre, Karnal, Haryana-132001, India
| | - Ashok Kumar Mohanty
- ICAR-National Dairy Research Institute, Animal Biotechnology Centre, Karnal, Haryana-132001, India
| | - S Pavulraj
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Bidhan Ch Bera
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Rajesh K Vaid
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Umang Ahlawat
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - B N Tripathi
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| |
Collapse
|
4
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|
5
|
Chen C, Zhang X, Lin Q, Remlinger NT, Gilbert TW, Di YP. Urinary Bladder Matrix Protects Host in a Murine Model of Bacterial-Induced Lung Infection. Tissue Eng Part A 2019; 25:257-270. [DOI: 10.1089/ten.tea.2018.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chen Chen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Zhang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Thomas W. Gilbert
- ACell, Inc., Columbia, Maryland
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Rønning TG, Aas CG, Støen R, Bergh K, Afset JE, Holte MS, Radtke A. Investigation of an outbreak caused by antibiotic-susceptible Klebsiella oxytoca in a neonatal intensive care unit in Norway. Acta Paediatr 2019; 108:76-82. [PMID: 30238492 DOI: 10.1111/apa.14584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022]
Abstract
AIM Klebsiella spp. have been stated to be the most frequent cause of neonatal intensive care unit (NICU) outbreaks. We report an outbreak of Klebsiella oxytoca in a NICU at a tertiary care hospital in Norway between April 2016 and April 2017. This study describes the outbreak, infection control measures undertaken and the molecular methods developed. METHODS The outbreak prompted detailed epidemiological and microbial investigations, where whole-genome sequencing (WGS) was particularly useful for both genotyping and development of two new K. oxytoca-specific real-time PCR assays. Routine screening of patients, as well as sampling from numerous environmental sites, was performed during the outbreak. A bundle of infection control measures was instigated to control the outbreak, among them strict cohort isolation. RESULTS Five neonates had symptomatic infection, and 17 were found to be asymptomatically colonised. Infections varied in severity from conjunctivitis to a fatal case of pneumonia. A source of the outbreak could not be determined. CONCLUSION This report describes K. oxytoca as a significant pathogen in a NICU outbreak setting and highlights the importance of developing appropriate microbiological screening methods and implementing strict infection control measures to control the outbreak in a setting where the source could not be identified.
Collapse
Affiliation(s)
- Torunn Gresdal Rønning
- Department of Medical Microbiology St. Olavs Hospital Trondheim University Hospital Trondheim Norway
| | - Christina Gabrielsen Aas
- Department of Medical Microbiology St. Olavs Hospital Trondheim University Hospital Trondheim Norway
- Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Ragnhild Støen
- Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences Norwegian University of Science and Technology Trondheim Norway
- Department of Neonatal intensive Care St. Olavs Hospital Trondheim University Hospital Trondheim Norway
| | - Kåre Bergh
- Department of Medical Microbiology St. Olavs Hospital Trondheim University Hospital Trondheim Norway
- Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Jan Egil Afset
- Department of Medical Microbiology St. Olavs Hospital Trondheim University Hospital Trondheim Norway
- Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Mari Sagli Holte
- Unit of Infection Control St. Olavs Hospital Trondheim University Hospital Trondheim Norway
| | - Andreas Radtke
- Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences Norwegian University of Science and Technology Trondheim Norway
- Unit of Infection Control St. Olavs Hospital Trondheim University Hospital Trondheim Norway
| |
Collapse
|
7
|
Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control.
Collapse
|
8
|
The Impact of Mutations in Topoisomerase Genes and the Plasmid-Mediated Quinolone Resistance (PMQR) Determinants on the Resistance to Fluoroquinolones in Klebsiella pneumoniae. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2017. [DOI: 10.5812/archcid.57290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Xu H, Mei B, Wang M, Xu S. Inhibitor κBα protein therapy alleviates severe pneumonia through inhibition of nuclear factor κB. Exp Ther Med 2017; 13:1398-1402. [PMID: 28413484 PMCID: PMC5377337 DOI: 10.3892/etm.2017.4130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/09/2016] [Indexed: 11/06/2022] Open
Abstract
To investigate the effect of inhibitor κBα (IκBα) on severe pneumonia and explain the mechanisms of nuclear factor κB (NF-κB), the activation of NF-κB was induced in Sprague-Dawley (SD) rats infected with Klebsiella pneumoniae (K. pneumoniae). The rats were then treated with differing concentrations of IκBα protein. A histological analysis was performed to compare the lung structure prior to and following treatment, and an immunohistochemistry assay was used to detect NF-κB activity. In addition, the expression of certain inflammatory factors was detected using a protein chip assay. The severe pneumonia rat model was successfully produced and in model rats, NF-κB was activated by K. pneumoniae. Following treatment with IκBα, the activity of NF-κB was inhibited and pneumonia symptoms in model rats were alleviated. Furthermore, the expression of a number of inflammatory factors including tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon γ (IFN-γ) and monocyte chemoattractant protein-1 (MCP-1) were also inhibited. The current study demonstrates that NF-κB inhibition with IκBα protein therapy prevents the development of pneumonia in a K. pneumoniae rat model. The therapeutic effect is indicated by the responses of proinflammatory factors, including TNF-α, IL-6, IFN-γ and MCP-1.
Collapse
Affiliation(s)
- Haizhou Xu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Bing Mei
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Meitang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
10
|
Genome Sequence of a Clinical Klebsiella pneumoniae Sequence Type 6 Strain. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01311-15. [PMID: 26564039 PMCID: PMC4972775 DOI: 10.1128/genomea.01311-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the genome sequence of Klebsiella pneumoniae CH1034, a sequence type 6 (ST6) strain isolated in 2012 from a central venous catheter of a hospitalized patient.
Collapse
|
11
|
Vanhoecke BWA, De Ryck TRG, De boel K, Wiles S, Boterberg T, Van de Wiele T, Swift S. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis. Exp Biol Med (Maywood) 2015. [PMID: 26202372 DOI: 10.1177/1535370215595467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of host-microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention.
Collapse
Affiliation(s)
- Barbara W A Vanhoecke
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Tine R G De Ryck
- Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Kevin De boel
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Siouxsie Wiles
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D, Regueiro V, Brennan GP, Millán-Lou MI, Martín C, Garmendia J, Bengoechea JA. Klebsiella pneumoniaesurvives within macrophages by avoiding delivery to lysosomes. Cell Microbiol 2015; 17:1537-60. [DOI: 10.1111/cmi.12466] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Victoria Cano
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
| | - Catalina March
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
| | - Jose Luis Insua
- Centre for Infection and Immunity; Queen's University Belfast; Belfast UK
| | - Nacho Aguiló
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Enrique Llobet
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - David Moranta
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - Verónica Regueiro
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - Gerard P. Brennan
- School of Biological Sciences; Queen's University Belfast; Belfast UK
| | - Maria Isabel Millán-Lou
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Carlos Martín
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Instituto de Agrobiotecnología; CSIC - Universidad Pública de Navarra-Gobierno de Navarra; Mutilva Spain
| | - José A. Bengoechea
- Centre for Infection and Immunity; Queen's University Belfast; Belfast UK
- Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
| |
Collapse
|
13
|
Bansal S, Harjai K, Chhibber S. Aeromonas punctata derived depolymerase improves susceptibility of Klebsiella pneumoniae biofilm to gentamicin. BMC Microbiol 2015; 15:119. [PMID: 26063052 PMCID: PMC4461996 DOI: 10.1186/s12866-015-0455-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/28/2015] [Indexed: 01/28/2023] Open
Abstract
Background To overcome antibiotic resistance in biofilms, enzymes aimed at biofilm dispersal are under investigation. In the present study, applicability of an Aeromonas punctata derived depolymerase capable of degrading the capsular polysaccharide (CPS) of Klebsiella pneumoniae, in disrupting its biofilm and increasing gentamicin efficacy against biofilm was investigated. Results Intact biofilm of K. pneumoniae was recalcitrant to gentamicin due to lack of antibiotic penetration. On the other hand, gentamicin could not act on disrupted biofilm cells due to their presence in clusters. However, when depolymerase (20 units/ml) was used in combination with gentamicin (10 μg/ml), dispersal of CPS matrix by enzyme facilitated gentamicin penetration across biofilm. This resulted in significant reduction (p < 0.05) in bacterial count in intact and disrupted biofilms. Reduction in CPS after treatment with depolymerase was confirmed by confocal microscopy and enzyme linked lectinosorbent assay. Furthermore, to substantiate our study, the efficacy of bacterial depolymerase was compared with a phage borne depolymerase possessing similar application against K. pneumoniae. Although both were used at same concentration i.e. 20 units/ml, but a higher efficacy of bacterial depolymerase particularly against older biofilms was visibly clear over its phage counterpart. This could be explained due to high substrate affinity (indicated by Km value) and high turnover number (indicated by Kcat value) of the bacterial depolymerase (Km = 89.88 μM, Kcat = 285 s−1) over the phage derived one (Km = 150 μM, Kcat = 107 s−1). Conclusion Overall the study indicated that, the A. punctata derived depolymerase possesses antibiofilm potential and improves gentamicin efficacy against K. pneumoniae. Moreover, it can serve as a potential substitute to phage borne depolymerases for treating biofilms formed by K. pneumoniae. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0455-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruti Bansal
- Department of Microbiology, Panjab University, Sector-14, Chandigarh, 160014, India.
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Sector-14, Chandigarh, 160014, India.
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Sector-14, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem 2015; 290:16678-97. [PMID: 25971969 PMCID: PMC4505419 DOI: 10.1074/jbc.m114.621292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Anna Tomás
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Leticia Lery
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France
| | - Verónica Regueiro
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Camino Pérez-Gutiérrez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Verónica Martínez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - David Moranta
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Enrique Llobet
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mar González-Nicolau
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose L Insua
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Juan M Tomas
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75231 Paris, France
| | - Régis Tournebize
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Imagopole, Plateforme d'Imagerie Dynamique, Institut Pasteur, 75724 Paris, France, and
| | - José A Bengoechea
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom, the Consejo Superior de Investigaciones Científicas (CSIC), 28008 Madrid, Spain
| |
Collapse
|
15
|
Khater F, Balestrino D, Charbonnel N, Dufayard JF, Brisse S, Forestier C. In silico analysis of usher encoding genes in Klebsiella pneumoniae and characterization of their role in adhesion and colonization. PLoS One 2015; 10:e0116215. [PMID: 25751658 PMCID: PMC4353729 DOI: 10.1371/journal.pone.0116215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches.
Collapse
Affiliation(s)
- Fida Khater
- LMGE—UMR CNRS 6023- Clermont Ferrand, 63000, France
| | | | | | | | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, 75015 Paris, France
- CNRS, UMR 3525, Paris, France
| | | |
Collapse
|
16
|
Bednarz-Misa I, Serek P, Dudek B, Pawlak A, Bugla-Płoskońska G, Gamian A. Application of zwitterionic detergent to the solubilization of Klebsiella pneumoniae outer membrane proteins for two-dimensional gel electrophoresis. J Microbiol Methods 2014; 107:74-9. [PMID: 25261774 DOI: 10.1016/j.mimet.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/09/2023]
Abstract
Klebsiella pneumoniae is a frequent cause of nosocomial respiratory, urinary and gastrointestinal tract infections and septicemia with the multidrug-resistant K. pneumoniae being a major public health concern. Outer membrane proteins (OMPs) are important virulence factors responsible for the appropriate adaptation to the host environment. They constitute of the antigens being the first in contact with infected organism. However, K. pneumoniae strains are heavily capsulated and it is important to establish the OMPs isolation procedure prior to proteomics extensive studies. In this study we used Zwittergent Z 3-14® as a detergent to isolate the OMPs from K. pneumoniae cells and resolve them using two-dimensional electrophoresis (2-DE). As a result we identified 134 protein spots. The OMPs identified in this study are possible candidates for the development of a protein-based vaccine against K. pneumoniae infections.
Collapse
Affiliation(s)
- I Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocalaw, Poland.
| | - P Serek
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocalaw, Poland
| | - B Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - A Pawlak
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - G Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - A Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocalaw, Poland; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
17
|
Huang H, Weaver A, Wu E, Li Y, Gao H, Fan W, Wu M. Lipid-based signaling modulates DNA repair response and survival against Klebsiella pneumoniae infection in host cells and in mice. Am J Respir Cell Mol Biol 2013; 49:798-807. [PMID: 23742126 DOI: 10.1165/rcmb.2013-0069oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae causes serious infections in the urinary tract, respiratory tract, and blood. Lipid rafts, also known as membrane microdomains, have been linked to the pathogenesis of bacterial infection. However, whether lipid rafts affect K. pneumoniae internalization into host cells remains unknown. Here, we show for the first time that K. pneumoniae was internalized into lung cells by activating lipid rafts. Disrupting lipid rafts by methyl-β-cyclodextrin inhibited pathogen internalization, impairing host defense. A deficient mutant of capsule polysaccharide (CPS) showed a higher internalization rate than a wild-type strain, indicating that CPS may inhibit bacterial entry to host cells. Furthermore, lipid rafts may affect the function of extracellular regulated kinase (ERK)-1/2, and knocking down ERK1/2 via short, interfering RNA increased apoptosis in both alveolar macrophages and epithelial cells after infection. To gain insights into bacterial pathogenesis, we evaluated the impact of lipid rafts on DNA integrity, and showed that raft aggregates also affect DNA damage and DNA repair responses (i.e., 8-oxoguanine DNA glycosylase [Ogg1]) through the regulation of reactive oxygen species. Importantly, cells overexpressing Ogg1 demonstrated reduced cytotoxicity during bacterial infection. Taken together, these results suggest that lipid rafts may modulate bacterial internalization, thereby affecting DNA damage and repair, which is critical to host defense against K. pneumoniae.
Collapse
Affiliation(s)
- Huang Huang
- 1 Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota
| | | | | | | | | | | | | |
Collapse
|
18
|
Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81:3552-65. [PMID: 23836821 DOI: 10.1128/iai.00391-13] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae.
Collapse
|
19
|
Barichello T, Simões LR, Generoso JS, Carradore MM, Moreira AP, Panatto AP, Costa CS, Filho AS, Jeremias IC, Bez GD, Streck E. Evaluation of energetic metabolism in the rat brain after meningitis induction by Klebsiella pneumoniae. Acta Neuropsychiatr 2013; 25:95-100. [PMID: 25287310 DOI: 10.1111/j.1601-5215.2012.00671.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bacterial meningitis is an infection of the central nervous system characterised by strong inflammatory response. The brain is highly dependent on ATP, and the cell energy is obtained through oxidative phosphorylation, a process which requires the action of various respiratory enzyme complexes and creatine kinase (CK) as an effective buffering system of cellular ATP levels in tissues that consume high energy. OBJECTIVES Evaluate the activities of mitochondrial respiratory chain complexes I, II, III, IV and CK activity in hippocampus and cortex of the Wistar rat submitted to meningitis by Klebsiella pneumoniae. METHODS Adult Wistar rats received either 10 µl of sterile saline as a placebo or an equivalent volume of K. pneumoniae suspension. The animals were killed in different times at 6, 12, 24 and 48 h after meningitis induction. Another group was treated with antibiotic, starting at 16 h and continuing daily until their decapitation at 24 and 48 h after induction. RESULTS In the hippocampus, the meningitis group without antibiotic treatment, the complex I was increased at 24 and 48 h, complex II was increased at 48 h, complex III was inhibited at 6, 12, 24 and 48 h and in complex IV all groups with or without antibiotic treatment were inhibited after meningitis induction, in the cortex there was no alteration. Discussion Although descriptive, our results show that antibiotic prevented in part the changes of the mitochondrial respiratory chain. The meningitis model could be a good research tool to study the biological mechanisms involved in the pathophysiology of the K. pneumoniae meningitis.
Collapse
Affiliation(s)
- Tatiana Barichello
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lutiana Roque Simões
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mirelle M Carradore
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ana Paula Moreira
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ana Paula Panatto
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Caroline S Costa
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alvaro Steckert Filho
- 1 Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabela C Jeremias
- 2 Laboratório de Fisiopatologia and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gisele D Bez
- 2 Laboratório de Fisiopatologia and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio Streck
- 2 Laboratório de Fisiopatologia and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
20
|
Liu Y, Bartlett JA, Di ME, Bomberger JM, Chan YR, Gakhar L, Mallampalli RK, McCray PB, Di YP. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1519-31. [PMID: 23499554 DOI: 10.1016/j.ajpath.2013.01.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
Abstract
Epithelial host defense proteins comprise a critical component of the pulmonary innate immune response to infection. The short palate, lung, nasal epithelium clone (PLUNC) 1 (SPLUNC1) protein is a member of the bactericidal/permeability-increasing (BPI) fold-containing (BPIF) protein family, sharing structural similarities with BPI-like proteins. SPLUNC1 is a 25 kDa secretory protein that is expressed in nasal, oropharyngeal, and lung epithelia, and has been implicated in airway host defense against Pseudomonas aeruginosa and other organisms. SPLUNC1 is reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to assess the importance of SPLUNC1 surfactant activity in airway epithelial secretions and to explore its biological relevance in the context of a bacterial infection model. Using cultured airway epithelia, we confirmed that SPLUNC1 is critically important for maintenance of low surface tension in airway fluids. Furthermore, we demonstrated that recombinant SPLUNC1 (rSPLUNC1) significantly inhibited Klebsiella pneumoniae biofilm formation on airway epithelia. We subsequently found that Splunc1(-/-) mice were significantly more susceptible to infection with K. pneumoniae, confirming the likely in vivo relevance of this anti-biofilm effect. Our data indicate that SPLUNC1 is a crucial component of mucosal innate immune defense against pulmonary infection by a relevant airway pathogen, and provide further support for the novel hypothesis that SPLUNC1 protein prevents bacterial biofilm formation through its ability to modulate surface tension of airway fluids.
Collapse
Affiliation(s)
- Yang Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Frank CG, Reguerio V, Rother M, Moranta D, Maeurer AP, Garmendia J, Meyer TF, Bengoechea JA. Klebsiella pneumoniae targets an EGF receptor-dependent pathway to subvert inflammation. Cell Microbiol 2013; 15:1212-33. [PMID: 23347154 DOI: 10.1111/cmi.12110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/21/2012] [Accepted: 01/12/2013] [Indexed: 12/24/2022]
Abstract
The NF-κB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-κB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identified 17 kinases that when targeted by siRNA restored IL-1β-dependent NF-κB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)-phosphatidylinositol 3-OH kinase (PI3K)-AKT-PAK4-ERK-GSK3β signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-κB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR-PI3K-AKT-PAK4-ERK-GSK3β signalling pathway. Our efforts to identify the bacterial factor(s)responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence suggesting that CPS could mediate the activation of EGFR. Supporting this notion, purified CPS did activate EGFR as well as the EGFR-dependent PI3K-AKT-PAK4-ERK-GSK3β signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4-MyD88-c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.
Collapse
Affiliation(s)
- Christian G Frank
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, 07110, Bunyola, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS One 2013; 8:e56847. [PMID: 23457627 PMCID: PMC3574025 DOI: 10.1371/journal.pone.0056847] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis.
Collapse
|
23
|
Abstract
Mouse models of acute lung inflammation are critical for understanding the role of the innate immune response to pathogen associated molecular patterns, bacteria, and sepsis in humans. Bacterial infections in the lung elicit a range of immune reactions, depending on the pathogen, the level of exposure and the effectiveness of the host response. In general, mice have proven to be an acceptable surrogate model organism for studying specific aspects of human lung pathogenesis, including localized and systemic inflammation, necrotizing pneumonia, bacteriemia, and survival. Here, we describe a highly versatile model utilizing the gram-negative bacterium Klebsiella pneumoniae. Following a single challenge with this bacterium, mice develop a robust Th1 mediated immune response and clinically relevant disease progression. While these protocols have been optimized for K. pneumoniae, they can be applied to any gram-positive or gram-negative organism of interest.
Collapse
Affiliation(s)
- Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia- Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
24
|
Hennequin C, Aumeran C, Robin F, Traore O, Forestier C. Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15-producing Klebsiella pneumoniae isolate. J Antimicrob Chemother 2012; 67:2123-30. [PMID: 22577106 DOI: 10.1093/jac/dks169] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a CTX-M-15-producing Klebsiella pneumoniae isolate that was identified during an outbreak involving 16 patients who had undergone endoscopic retrograde cholangiopancreatography between December 2008 and August 2009. The strain was also detected in one endoscope used for these examinations. METHODS Disc diffusion assays, MICs and isoelectric focusing were used to characterize the plasmidic CTX-M-15 β-lactamase. PCRs were used to check for the presence of genes associated with virulence or antibiotic resistance. Antibiotic tolerance tests and plasmid transfer were carried out in both planktonic and biofilm conditions. RESULTS The strain belonged to sequence type 14 and to the virulent capsular serotype K2, but produced little glucuronic acid. It contained a 62.5 kb conjugative plasmid carrying the bla(CTX-M-15), bla(OXA-1) and aac(6')-Ib-cr genes and harboured few virulence genes (uge, wabG, kfu and mrkD). The strain was highly resistant to cefotaxime (MIC 516 mg/L) and the presence of this antibiotic at sub-MIC concentrations enhanced biofilm formation. The isolate was susceptible to ofloxacin (MIC 2 mg/L), but the bactericidal effect of this antibiotic was greater in planktonic cultures and 6 h old biofilm than in 24 or 48 h old biofilms. The K. pneumoniae strain was notable for its ability to transfer its plasmid, especially in biofilm conditions, in which the rate of plasmid transfer was about 0.5/donor. CONCLUSIONS These findings demonstrate the ability of this strain to survive in a hospital environment and to transfer its extended-spectrum β-lactamase-encoding plasmid.
Collapse
Affiliation(s)
- Claire Hennequin
- Clermont Université, UMR CNRS 6023 'Laboratoire Microorganismes: Génome Environnement (LMGE)', Université d'Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
25
|
Bojer MS, Krogfelt KA, Struve C. The newly discovered ClpK protein strongly promotes survival of Klebsiella pneumoniae biofilm subjected to heat shock. J Med Microbiol 2011; 60:1559-1561. [PMID: 21617023 DOI: 10.1099/jmm.0.032698-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Martin S Bojer
- Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark.,Department of Microbiological Surveillance and Research, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Karen A Krogfelt
- Department of Microbiological Surveillance and Research, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Carsten Struve
- Department of Microbiological Surveillance and Research, Statens Serum Institut, 2300 Copenhagen S, Denmark
| |
Collapse
|
26
|
March C, Moranta D, Regueiro V, Llobet E, Tomás A, Garmendia J, Bengoechea JA. Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells. J Biol Chem 2011; 286:9956-67. [PMID: 21278256 DOI: 10.1074/jbc.m110.181008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-Δwca(K2)ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-Δwca(K2)ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung.
Collapse
Affiliation(s)
- Catalina March
- Laboratory of Microbial Pathogenesis, Fundación Caubet-CIMERA Illes Balears, Recinto Hospital Joan March, Carretera Soller Km 12, 07110 Bunyola, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Bojer MS, Struve C, Ingmer H, Hansen DS, Krogfelt KA. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae. PLoS One 2010; 5:e15467. [PMID: 21085699 PMCID: PMC2976762 DOI: 10.1371/journal.pone.0015467] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/29/2010] [Indexed: 12/03/2022] Open
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably thermotolerant providing a conceivable explanation of its persistence in the hospital environment. This marked phenotype is mediated by a novel type of Clp ATPase, designated ClpK. The clpK gene is encoded by a conjugative plasmid and we find that the clpK gene alone renders an otherwise sensitive E. coli strain resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance of Clp ATPases in acquired environmental fitness and highlights the challenges of mobile genetic elements in fighting nosocomial infections.
Collapse
Affiliation(s)
- Martin Saxtorph Bojer
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Carsten Struve
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Hanne Ingmer
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis Schrøder Hansen
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Microbiology, Hillerød Hospital, Hillerød, Denmark
| | - Karen Angeliki Krogfelt
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
28
|
Regueiro V, Moranta D, Frank CG, Larrarte E, Margareto J, March C, Garmendia J, Bengoechea JA. Klebsiella pneumoniae subverts the activation of inflammatory responses in a NOD1-dependent manner. Cell Microbiol 2010; 13:135-53. [PMID: 20846183 DOI: 10.1111/j.1462-5822.2010.01526.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro-inflammatory mediators-induced IL-8 secretion. Klebsiella antagonizes the activation of NF-κB via the deubiquitinase CYLD and blocks the phosphorylation of mitogen-activated protein kinases (MAPKs) via the MAPK phosphatase MKP-1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti-inflammatory effect, Klebsiella engages NOD1. In NOD1 knock-down cells, Klebsiella neither induces the expression of CYLD and MKP-1 nor blocks the activation of NF-κB and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1-mediated CYLD and MKP-1 expression which in turn attenuates IL-1β-induced IL-8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL-1β-induced IL-8 secretion nor induces the expression of CYLD and MKP-1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.
Collapse
Affiliation(s)
- Verónica Regueiro
- Program Infection and Immunity, Fundació Caubet-CIMERA Illes Balears, Bunyola, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells. Infect Immun 2009; 78:1135-46. [PMID: 20008534 DOI: 10.1128/iai.00940-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human beta-defensins (hBDs) contribute to the protection of the respiratory tract against pathogens. It is reasonable to postulate that pathogens have developed countermeasures to resist them. Klebsiella pneumoniae capsule polysaccharide (CPS), but not the lipopolysaccharide O antigen, mediated resistance against hBD1 and hBD2. hBD3 was the most potent hBD against Klebsiella. We investigated the possibility that as a strategy for survival in the lung, K. pneumoniae may not activate the expression of hBDs. Infection of A549 and normal human bronchial cells with 52145-Deltawca(K2), a CPS mutant, increased the expression of hBD2 and hBD3. Neither the wild type nor the lipopolysaccharide O antigen mutant increased the expression of hBDs. In vivo, 52145-Deltawca(K2) induced higher levels of mBD4 and mBD14, possible mouse orthologues of hBD2 and hBD3, respectively, than the wild type. 52145-Deltawca(K2)-dependent upregulation of hBD2 occurred via NF-kappaB and mitogen-activated protein kinases (MAPKs) p44/42, Jun N-terminal protein kinase (JNK)-dependent pathways. The increase in hBD3 expression was dependent on the MAPK JNK. 52145-Deltawca(K2) engaged Toll-like receptors 2 and 4 (TLR2 and TLR4) to activate hBD2, whereas hBD3 expression was dependent on NOD1. K. pneumoniae induced the expression of CYLD and MKP-1, which act as negative regulators for 52145-Deltawca(K2)-induced expression of hBDs. Bacterial engagement of pattern recognition receptors induced CYLD and MKP-1, which may initiate the attenuation of proinflammatory pathways. The results of this study indicate that K. pneumoniae CPS not only protects the pathogen from the bactericidal action of defensins but also impedes their expression. These features of K. pneumoniae CPS may facilitate pathogen survival in the hostile environment of the lung.
Collapse
|
30
|
Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, Wang JT, Khoo KH, Wu SH. Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics 2009; 8:2613-23. [PMID: 19696081 DOI: 10.1074/mcp.m900276-mcp200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Encapsulated Klebsiella pneumoniae is the predominant causative agent of pyogenic liver abscess, an emerging infectious disease that often complicates metastatic meningitis or endophthalmitis. The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found that protein-tyrosine kinases and phosphatases are involved. Therefore, the identification and characterization of such kinases, phosphatases, and their substrates would advance our knowledge of the underlying mechanism in capsule formation and could contribute to the development of new therapeutic strategies. Here, we analyzed the phosphoproteome of K. pneumoniae NTUH-K2044 with a shotgun approach and identified 117 unique phosphopeptides along with 93 in vivo phosphorylated sites corresponding to 81 proteins. Interestingly, three of the identified tyrosine phosphorylated proteins, namely protein-tyrosine kinase (Wzc), phosphomannomutase (ManB), and undecaprenyl-phosphate glycosyltransferase (WcaJ), were found to be distributed in the cps locus and thus were speculated to be involved in the converging signal transduction of capsule biosynthesis. Consequently, we decided to focus on the lesser studied ManB and WcaJ for mutation analysis. The capsular polysaccharides of WcaJ mutant (WcaJY5F) were dramatically reduced quantitatively, and the LD(50) increased by 200-fold in a mouse peritonitis model compared with the wild-type strain. However, the capsular polysaccharides of ManB mutant (ManBY26F) showed no difference in quantity, and the LD(50) increased by merely 6-fold in mice test. Our study provided a clear trend that WcaJ tyrosine phosphorylation can regulate the biosynthesis of capsular polysaccharides and result in the pathogenicity of K. pneumoniae NTUH-K2044.
Collapse
Affiliation(s)
- Miao-Hsia Lin
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MTH, Taxman DJ, Duncan JA, Ting JPY. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. THE JOURNAL OF IMMUNOLOGY 2009; 183:2008-15. [PMID: 19587006 DOI: 10.4049/jimmunol.0900138] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the proinflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. Although the control of IL-1beta has been well studied, processes that control macrophage cell death and HMGB1 release in animals are poorly understood. This study uses Klebsiella pneumonia as a model organism because it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components NLRP3 and ASC, which are important for caspase-1 activation and IL-1beta release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB1, and IL-1beta release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control, indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1, suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation.
Collapse
Affiliation(s)
- Stephen B Willingham
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Klebsiella pneumoniae increases the levels of Toll-like receptors 2 and 4 in human airway epithelial cells. Infect Immun 2008; 77:714-24. [PMID: 19015258 DOI: 10.1128/iai.00852-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Airway epithelial cells act as the first barrier against pathogens. These cells recognize conserved structural motifs expressed by microbial pathogens via Toll-like receptors (TLRs) expressed on the surface. In contrast to the level of expression in lymphoid cells, the level of expression of TLR2 and TLR4 in airway epithelial cells is low under physiological conditions. Here we explored whether Klebsiella pneumoniae upregulates the expression of TLRs in human airway epithelial cells. We found that the expression of TLR2 and TLR4 by A549 cells and human primary airway cells was upregulated upon infection with K. pneumoniae. The increased expression of TLRs resulted in enhancement of the cellular response upon stimulation with Pam3CSK4 and lipopolysaccharide, which are TLR2 and TLR4 agonists, respectively. Klebsiella-dependent upregulation of TLR expression occurred via a positive IkappaBalpha-dependent NF-kappaBeta pathway and via negative p38 and p44/42 mitogen-activated protein kinase-dependent pathways. We showed that Klebsiella-induced TLR2 and TLR4 upregulation was dependent on TLR activation. An isogenic capsule polysaccharide (CPS) mutant did not increase TLR2 and TLR4 expression. Purified CPS upregulated TLR2 and TLR4 expression, and polymyxin B did not abrogate CPS-induced TLR upregulation. Although no proteins were detected in the CPS preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and colloidal gold staining, we could not rule out the possibility that traces of protein in our CPS preparation could have been responsible, at least in part, for the TLR upregulation.
Collapse
|
33
|
Klebsiella pneumoniae OmpA confers resistance to antimicrobial peptides. Antimicrob Agents Chemother 2008; 53:298-302. [PMID: 19015361 DOI: 10.1128/aac.00657-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Klebsiella pneumoniae ompA mutant was more susceptible to antimicrobial peptides (APs) than the wild type. Susceptibility did not result from surface changes other than the absence of OmpA. Our data suggest that OmpA is implicated in the activation of yet-unknown systems dedicated to ameliorating AP cytotoxicity.
Collapse
|
34
|
Humoral immunity against capsule polysaccharide protects the host from magA+ Klebsiella pneumoniae-induced lethal disease by evading Toll-like receptor 4 signaling. Infect Immun 2008; 77:615-21. [PMID: 19015249 DOI: 10.1128/iai.00931-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae magA (for mucoviscosity-associated gene A) is linked to the pathogenesis of primary pyogenic liver abscess, but the underlying mechanism by which magA increases pathogenicity is not well elucidated. In this study, we investigated the role of the capsular polysaccharides (CPS) in the pathogenesis of magA(+) K. pneumoniae by comparing host immunity to magA(+) K. pneumoniae and a DeltamagA mutant. We found that Toll-like receptor 4 recognition by magA(+) K. pneumoniae was hampered by the mucoviscosity of the magA(+) K. pneumoniae CPS. Interestingly, monoclonal antibodies (MAbs) against magA(+) K. pneumoniae CPS recognized all of the K1 strains tested but not the DeltamagA and non-K1 strains. Moreover, the anti-CPS MAbs protected mice from magA(+) K. pneumoniae-induced liver abscess formation and lethality. This indicates that the K1 epitope is a promising target for vaccine development, and anti-CPS MAbs has great potential to protect host from K1 strain-induced mortality and morbidity in diabetic and other immunocompromised patients in the future.
Collapse
|
35
|
Balestrino D, Ghigo JM, Charbonnel N, Haagensen JAJ, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol 2008; 10:685-701. [PMID: 18237304 DOI: 10.1111/j.1462-2920.2007.01491.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to form biofilm is seen as an increasingly important colonization strategy among both pathogenic and environmental Klebsiella pneumoniae strains. The aim of the present study was to identify abiotic surface colonization factors of K. pneumoniae using different models at different phases of biofilm development. A 2200 K. pneumoniae mutant library previously obtained by signature-tagged mutagenesis was screened in static and dynamic culture models to detect clones impaired at early and/or mature stages of biofilm formation. A total of 28 mutants were affected during late phases of biofilm formation, whereas 16 mutants displayed early adhesion defect. These mutants corresponded to genes involved in potential cellular and DNA metabolism pathways and to membrane transport functions. Eight mutants were deficient in capsule or LPS production. Gene disruption and microscopic analyses showed that LPS is involved in initial adhesion on both glass and polyvinyl-chloride and the capsule required for the appropriate initial coverage of substratum and the construction of mature biofilm architecture. These results give new insight into the bacterial factors sequentially associated with the ability to colonize an abiotic surface and reveal the dual roles played by surface exopolysaccharides during K. pneumoniae biofilm formation.
Collapse
Affiliation(s)
- Damien Balestrino
- Laboratoire de Bactériologie, Université d'Auvergne-Clermont1, Faculté de Pharmacie, Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
36
|
MacArthur CJ, Pillers DAM, Pang J, Degagne JM, Kempton JB, Trune DR. Gram-negative pathogen Klebsiella oxytoca is associated with spontaneous chronic otitis media in Toll-like receptor 4-deficient C3H/HeJ mice. Acta Otolaryngol 2008; 128:132-8. [PMID: 17851949 DOI: 10.1080/00016480701387124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION This report confirms the presence of gram-negative Klebsiella bacteria in the middle ear of the C3H/HeJ mouse by culture, polymerase chain reaction (PCR), and electron microscopy. Identification of the bacterial pathogen supports the C3H/HeJ mouse as an excellent model for spontaneous chronic otitis media and its effects on the middle and inner ear. OBJECTIVES The C3H/HeJ mouse has a single amino acid substitution in its Toll-like receptor 4, making it insensitive to endotoxin and suppressing initiation of the innate immune system. This study explored the bacteriology of the resultant middle ear infection by culture, PCR, histology, and electron microscopy. MATERIALS AND METHODS Twelve-month-old C3H/ HeJ mice were screened positive for spontaneous otitis media. Tympanocentesis and blood cultures of mice were carried out under sedation. Middle ear aspirate material and blood samples were then sent for culture and PCR. Mice were then sacrificed for bright-field and electron microscopy analysis. RESULTS All tympanocentesis and blood specimens grew gram-negative Klebsiella oxytoca, which was confirmed by PCR. Histopathology confirmed an intense inflammatory reaction and gram-negative bacteria in the middle and inner ears. Electron microscopy of the middle ears revealed abundant rod-shaped Klebsiella bacteria, both free and being engulfed by neutrophils.
Collapse
Affiliation(s)
- Carol J MacArthur
- Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Cohen MD. Bacterial host resistance models in the evaluation of immunotoxicity. Methods 2007; 41:20-30. [PMID: 17161299 DOI: 10.1016/j.ymeth.2006.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2006] [Indexed: 11/20/2022] Open
Abstract
To assess potential immunomodulatory effects of a drug, pollutant, or natural product, an analysis of an exposed host's ability to resist challenge with a viable bacteria is one of the best gauges. Many factors govern whether a host exposed to a test agent and then infected becomes ill or dies at rates greater than infected control counterparts. Beyond the status of the host's immunocompetence, a bacterium's route of entry into the host and its inherent virulence are important variables determining how (and rate at which) an infection resolves. A pre-determination of endpoint(s) to be defined is critical during planning of resistance assays. If a study is to determine overall changes in immunocompetence due to exposure (regardless of regimen or dosage of test agent), then assessing shifts in morbidity/mortality at a defined lethal dose [LD(x)] value for the chosen route of infection would suffice. However, if a study is to define extent of immunomodulation in a particular body organ/cavity--or specific alterations in particular aspects of the humoral or cell-mediated immune responses--then careful selection of the pathogen, dose of the inoculum, means of infection of target site, and extent of the post-infection period to be examined, need to be made prior to host exposure to the test toxicant. This review will provide the Reader with background information about bacterial infections and how endpoint selection could be approached when designing resistance assays. An overview of protocols involved in the assays (e.g., bacterial preparation, host infection, post-infection endpoint analyses) and information about three bacteria that are among the most commonly employed in resistance assays is provided as well.
Collapse
Affiliation(s)
- Mitchell D Cohen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
38
|
Lawlor MS, O'connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 2007; 75:1463-72. [PMID: 17220312 PMCID: PMC1828572 DOI: 10.1128/iai.00372-06] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron acquisition systems are essential for the in vivo growth of bacterial pathogens. Despite the epidemiological importance of Klebsiella pneumoniae, few experiments have examined the importance of siderophores in the pathogenesis of this species. A previously reported signature-tagged mutagenesis screen identified an attenuated strain that featured an insertional disruption in ybtQ, which encodes a transporter for the siderophore yersiniabactin. We used this finding as a starting point to evaluate the importance of siderophores in the physiology and pathogenesis of K. pneumoniae. Isogenic strains carrying in-frame deletions in genes required for the synthesis of either enterobactin or yersiniabactin were constructed, and the growth of these mutants was examined both in vitro and in vivo using an intranasal infection model. The results suggest divergent functions for each siderophore in different environments, with enterobactin being more important for growth in vitro under iron limitation than in vivo and the reverse being true for the yersiniabactin locus. These observations represent the first examination of isogenic mutants in iron acquisition systems for K. pneumoniae and may indicate that the acquisition of nonenterobactin siderophores is an important step in the evolution of virulent enterobacterial strains.
Collapse
Affiliation(s)
- Matthew S Lawlor
- Department of Molecular Microbiology, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
39
|
Lawlor MS, Hsu J, Rick PD, Miller VL. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol 2006; 58:1054-73. [PMID: 16262790 DOI: 10.1111/j.1365-2958.2005.04918.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Klebsiella pneumoniae is a Gram-negative enterobacterium that has historically been, and currently remains, a significant cause of human disease. It is a frequent cause of urinary tract infections and pneumonia, and subsequent systemic infections can have mortality rates as high as 60%. Despite its clinical significance, few virulence factors of K. pneumoniae have been identified or characterized. In this study we present a mouse model of acute K. pneumoniae respiratory infection using an intranasal inoculation method, and examine the progression of both pulmonary and systemic disease. Wild-type infection recapitulates many aspects of clinical disease, including significant bacterial growth in both the trachea and lungs, an inflammatory immune response characterized by dramatic neutrophil influx, and a steady progression to systemic disease with ensuing mortality. These observations are contrasted with an infection by an isogenic capsule-deficient strain that shows an inability to cause disease in either pulmonary or systemic tissues. The consistency and clinical accuracy of the intranasal mouse model proved to be a useful tool as we conducted a genetic screen to identify novel virulence factors of K. pneumoniae. A total of 4800 independent insertional mutants were evaluated using a signature-tagged mutagenesis protocol. A total of 106 independent mutants failed to be recovered from either the lungs or spleens of infected mice. Small scale independent infections proved to be helpful as a secondary screening method, as opposed to the more traditional competitive index assay. Those mutants showing verified attenuation contained insertions in loci with a variety of putative functions, including a large number of hypothetical open reading frames. Subsequent experiments support the premise that the central mechanism of K. pneumoniae pathogenesis is the production of a polysaccharide-rich cell surface that provides protection from the inflammatory response.
Collapse
Affiliation(s)
- Matthew S Lawlor
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
40
|
Kissenpfennig A, Aït-Yahia S, Clair-Moninot V, Stössel H, Badell E, Bordat Y, Pooley JL, Lang T, Prina E, Coste I, Gresser O, Renno T, Winter N, Milon G, Shortman K, Romani N, Lebecque S, Malissen B, Saeland S, Douillard P. Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol Cell Biol 2005; 25:88-99. [PMID: 15601833 PMCID: PMC538791 DOI: 10.1128/mcb.25.1.88-99.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/03/2004] [Accepted: 10/10/2004] [Indexed: 11/20/2022] Open
Abstract
Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin(-/-) mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin(-/-) mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin(-/-) LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin(-/-) mice were not impaired in their capacity to process native OVA protein for I-A(b)-restricted presentation to CD4(+) T lymphocytes or for H-2K(b)-restricted cross-presentation to CD8(+) T lymphocytes. langerin(-/-) mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin(-/-) and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin(-/-) C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Antigens/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/physiology
- Blastocyst/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Carcinogens
- Cell Movement
- Cell Physiological Phenomena
- Cytoplasmic Granules/metabolism
- Dendritic Cells
- Dose-Response Relationship, Drug
- Electroporation
- Embryo, Mammalian/cytology
- Flow Cytometry
- Genetic Vectors
- Immunohistochemistry
- Islets of Langerhans/cytology
- Islets of Langerhans/physiology
- Kinetics
- Langerhans Cells/cytology
- Lectins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/physiology
- Lymph Nodes/metabolism
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron
- Models, Genetic
- Mutagenesis
- Mutation
- Neoplasms/chemically induced
- Ovalbumin/metabolism
- Phenotype
- Stem Cells/cytology
Collapse
Affiliation(s)
- Adrien Kissenpfennig
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Université de la Méditerranee, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sahly H, Podschun R, Oelschlaeger TA, Greiwe M, Parolis H, Hasty D, Kekow J, Ullmann U, Ofek I, Sela S. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect Immun 2000; 68:6744-9. [PMID: 11083790 PMCID: PMC97775 DOI: 10.1128/iai.68.12.6744-6749.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adhesion of K21a, K26, K36, and K50 capsulated Klebsiella strains to ileocecal (HCT-8) and bladder (T24) epithelial cell lines was significantly lower than that of their corresponding spontaneous noncapsulated variants K21a/3, K26/1, K36/3, and K50/3, respectively. Internalization of the bacteria by both epithelial cell lines was also significantly reduced. Similarly, a capsule-switched derivative, K2(K36), that exhibited a morphologically larger K36 capsule and formed more capsular material invaded the ileocecal epithelial cell line poorly compared to the corresponding K2 parent strain. None of the capsulated strains exhibited significant mannose-sensitive type 1 fimbriae, whereas two of the noncapsulated variants K21a/3 and K50/3 exhibited potent mannose-sensitive hemagglutinating activity. Although hemagglutinating activity that could be attributed to mannose-resistant Klebsiella type 3 fimbriae was weak in all strains, in several cases the encapsulated parent strains exhibited lower titers than their corresponding noncapsulated variants. Although the level of adhesion to the ileocecal cells is not different from adhesion to bladder cells, bacterial internalization by bladder cells was significantly lower than internalization by ileocecal cells, suggesting that bladder cells lack components required for the internalization of Klebsiella.
Collapse
Affiliation(s)
- H Sahly
- Department of Medical Microbiology and Virology, University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sahly H, Podschun R, Ullmann U. Klebsiella infections in the immunocompromised host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 479:237-49. [PMID: 10897425 DOI: 10.1007/0-306-46831-x_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- H Sahly
- Department of Medical Microbiology and Virology, Christians-Albrechts-University of Kiel, Germany
| | | | | |
Collapse
|
43
|
Matatov R, Goldhar J, Skutelsky E, Sechter I, Perry R, Podschun R, Sahly H, Thankavel K, Abraham SN, Ofek I. Inability of encapsulated Klebsiella pneumoniae to assemble functional type 1 fimbriae on their surface. FEMS Microbiol Lett 1999; 179:123-30. [PMID: 10481096 DOI: 10.1111/j.1574-6968.1999.tb08717.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We screened phase variants of Klebsiella pneumoniae isolates for the expression of capsule and type 1 fimbriae and found that all of the 22 blood isolates were encapsulated and did not express type 1 fimbriae while 10 of 11 urinary tract isolates expressed type 1 fimbriae but were unencapsulated. Phase variants from selected isolates were found to be either unencapsulated and fimbriated or lacked both structures. Variants expressing both structures were not detected. Fimbrial subunits FimH and FimA were localized in the periplasmic space of the parent strain and on the surface of the unencapsulated variants. The results suggest that capsule formation impedes assembly of pre-formed fimbrial subunits on the bacterial surface.
Collapse
Affiliation(s)
- R Matatov
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Toivanen P, Hansen DS, Mestre F, Lehtonen L, Vaahtovuo J, Vehma M, Möttönen T, Saario R, Luukkainen R, Nissilä M. Somatic serogroups, capsular types, and species of fecal Klebsiella in patients with ankylosing spondylitis. J Clin Microbiol 1999; 37:2808-12. [PMID: 10449457 PMCID: PMC85385 DOI: 10.1128/jcm.37.9.2808-2812.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of the present study was to find out whether patients with ankylosing spondylitis (AS) carry fecal Klebsiella strains that belong to serotypes or species specific for AS. Somatic serotypes (O groups), capsular (K) serotypes, and biochemically identified species were determined for fecal klebsiellae isolated from 187 AS patients and 195 control patients. The controls were patients with fibromyalgia or rheumatoid arthritis. The 638 isolates of Klebsiella that were obtained represented 161 strains; 81 from AS patients and 80 from the controls. The average number of Klebsiella strains per patient was 1.7 for the AS group and 1.5 for the control group. The most common O group was O1, which was observed for isolates from 23 of 187 AS patients and 24 of 195 control patients. Next in frequency was group O2, which was observed for isolates from 17 AS patients and 15 control patients. Regarding the K serotypes, 59 different types were identified, revealing a heterogeneous representation of Klebsiella strains, without a predominance of any serotype. By biochemical identification, Klebsiella pneumoniae was the most frequently occurring species, being found in 45 AS patients and 45 control patients. Next in the frequency was K. oxytoca, which was observed in 26 AS patients and in 29 control patients. K. planticola and K. terrigena occurred in only a minority of patients. Altogether, when analyzed either separately or simultaneously according to O groups, K serotypes, and biochemically identified species, no evidence of the existence of AS-specific Klebsiella strains was obtained. These findings do not indicate participation of Klebsiella in the etiopathogenesis of AS.
Collapse
Affiliation(s)
- P Toivanen
- Turku Immunology Centre, Department of Medical Microbiology, Turku University, Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sahly H, Podschun R, Kekow J, Nölle B, Gross WL, Ullmann U. Humoral immune response to Klebsiella capsular polysaccharides in HLA-B27-positive patients with acute anterior uveitis and ankylosing spondylitis. Autoimmunity 1999; 28:209-15. [PMID: 9892502 DOI: 10.3109/08916939808995368] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Klebsiella is suggested to trigger ankylosing spondylitis (AS) and acute anterior uveitis (AAU) in HLA-B27-positive individuals. Previous investigations showed an increased antibody response to the Klebsiella capsular types K26, K36, and K50 in sera from HLA-B27-positive AS patients. In the present study the prevalence and titers of antibodies against Klebsiella capsular antigens were measured by means of an ELISA in 32 sera from HLA-B27-positive AAU patients either with (n = 10) or without AS (n = 22) and compared with sera from HLA-B27-negative AS-patients (n = 13). Sera from either HLA-B27-positive (n = 45) or negative (n = 40) healthy individuals served as control. Sera from HLA-B27-positive AAU with or without AS showed significantly higher antibody prevalence and IgG-titers against capsular antigens of the Klebsiella serotypes K26, K36, and K50 when compared with sera from HLA-B27-negative AS patients or with healthy controls. These results might be taken to indicate the predominance of these serotypes in the HLA-B27-associated AS and AAU.
Collapse
Affiliation(s)
- H Sahly
- Department of Medical Microbiology and Virology, University of Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Kleiner D, Traglauer A, Domm S. Does ammonia production by Klebsiella contribute to pathogenesis? ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0020-2452(99)80006-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|