1
|
Zhao Y, Fei W, Yang L, Xiang Z, Chen X, Chen Y, Hu C, Chen J, Guo A. The Establishment of a Novel γ-Interferon In Vitro Release Assay for the Differentiation of Mycobacterial Bovis-Infected and BCG-Vaccinated Cattle. Vet Sci 2024; 11:198. [PMID: 38787170 PMCID: PMC11125845 DOI: 10.3390/vetsci11050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
BCG vaccination is increasingly reconsidered in the effective prevention of bovine tuberculosis (bTB). However, the primary challenge in BCG vaccination for cattle is the lack of a technique for differentiating between infected and vaccinated animals (DIVA). This study aimed to establish a novel DIVA diagnostic test based on an interferon-gamma in vitro release assay (IGRA). The plasmid encoding three differential antigens (Rv3872, CFP-10, and ESAT-6) absent in BCG genes but present in virulent M. bovis was previously constructed. Thus, a recombinant protein called RCE (Rv3872, CFP-10, and ESAT-6) was expressed, and an RCE-based DIVA IGRA (RCE-IGRA) was established. The RCE concentration was optimized at 4 μg/mL by evaluating 97 cattle (74 of which were bTB-positive, and 23 were negative) using a commercial IGRA bTB diagnostic kit. Further, 84 cattle were tested in parallel with the RCE-IGRA and commercial PPD-based IGRA (PPD-IGRA), and the results showed a high correlation with a kappa value of 0.83. The study included BCG-vaccinated calves (n = 6), bTB-positive cattle (n = 6), and bTB-negative non-vaccinated calves (n = 6). After 3 months post-vaccination, PPD-IGRA generated positive results in both vaccinated and infected calves. However, RCE-IGRA developed positive results in infected calves but negative results in vaccinated calves. In conclusion, this DIVA method has broad prospects in differentiating BCG vaccination from natural infection to prevent bTB.
Collapse
Affiliation(s)
- Yuhao Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Wentao Fei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Li Yang
- Wuhan Keqian Biology Co., Ltd., Wuhan 430206, China;
| | - Zhijie Xiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (W.F.); (Z.X.); (X.C.); (Y.C.); (C.H.); (J.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
2
|
Subramanian S, Srinivasan S, Ramaiyan Selvaraju K, Vinoli PM, Selladurai S, Ramasamy B, Kumaragurubaran K, Bakker D, Vordermeier M, Kapur V, Gopal DR. Defined Antigen Skin Test for Bovine Tuberculosis Retains Specificity on Revaccination With Bacillus Calmette–Guérin. Front Vet Sci 2022; 9:814227. [PMID: 35498753 PMCID: PMC9043861 DOI: 10.3389/fvets.2022.814227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
The Bacillus Calmette–Guérin (BCG) vaccination provides partial protection against, and reduces severity of pathological lesions associated with bovine tuberculosis (bTB) in cattle. Accumulating evidence also suggests that revaccination with BCG may be needed to enhance the duration of immune protection. Since BCG vaccine cross-reacts with traditional tuberculin-based diagnostic tests, a peptide-based defined antigen skin test (DST) comprising of ESAT-6, CFP-10, and Rv3615c to detect the infected among the BCG-vaccinated animals (DIVA) was recently described. The DST reliably identifies bTB-infected animals in experimental challenge models and in natural infection settings, and differentiated these from animals immunized with a single dose of BCG in both skin tests and interferon-gamma release assay (IGRA). The current investigation sought to assess the diagnostic specificity of DST in calves (Bos taurus ssp. taurus × B. t. ssp. indicus; n = 15) revaccinated with BCG 6 months after primary immunization. The results show that none of the 15 BCG-revaccinated calves exhibited a delayed hypersensitivity response when skin tested with DST 61 days post-revaccination, suggesting 100% diagnostic specificity (one-tailed lower 95% CI: 82). In contrast, 8 of 15 (diagnostic specificity = 47%; 95% CI: 21, 73) BCG-revaccinated calves were positive per the single cervical tuberculin (SCT) test using bovine tuberculin. Together, these results show that the DST retains its specificity even after revaccination with BCG and confirms the potential for implementation of BCG-based interventions in settings where test-and-slaughter are not economically or culturally feasible.
Collapse
Affiliation(s)
- Saraswathi Subramanian
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Sreenidhi Srinivasan
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Kathiravan Ramaiyan Selvaraju
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Priyadharshini Michael Vinoli
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Suganya Selladurai
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Boominathan Ramasamy
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Karthik Kumaragurubaran
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Douwe Bakker
- Technical Consultant and Independent Researcher, Lelystad, Netherlands
| | - Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Vivek Kapur
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Dhinakar Raj Gopal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
- *Correspondence: Dhinakar Raj Gopal
| |
Collapse
|
3
|
Javed R, Narang D, Kaur P, Chandra M, Filia G, Singh ST. A fluorescence polarization assay using recombinant protein ESAT-6 for the detection of antibodies against pathogenic Mycobacterium bovis in bovine. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:204-209. [PMID: 36425598 PMCID: PMC9681983 DOI: 10.22099/ijvr.2022.38558.5613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bovine tuberculosis (bTB) is a major bacterial disease that causes significant economic disruption across the globe. AIMS Our study was based on using a fluorescence polarization assay (FPA) that used fluorescein-labeled ESAT-6 protein to detect Mycobacterium bovis antibodies in bovine serum. METHODS The ESAT-6 protein was used in a FPA. Positive TB reactors were determined by the comparative intradermal test (CID) and interferon gamma test (IFN-γ). Antibodies against M. bovis were detected using a fluorescein isothiocyanate (FITC) labeled tracer and a whole culture FITC labeled tracer in the positive cattle. RESULTS Of the 192 animals tested for bTB, 37 were found to be positive by either the CID or IFN-γ assays. Using the mP values from five culture-positive serum samples, a cutoff value of more than >127 mp provided the best discrimination between positive reactors and negative bTB animals. The ESAT-6 results of FPA in comparison with CID results revealed sensitivity of 92.9% and specificity of 64.6%, and in comparison with results IFN-γ, showed sensitivity of 95.7% and specificity of 49%. FPA using FITC labelled ESAT-6 as a tracer has better sensitivity (95.7%) and specificity (49.1%) than IFN-γ test in humoral immune response in animals. CONCLUSION This work revealed that the ESAT-6 protein as an antigen can be used in diagnosing bTB using a practical and sensitive humoral test.
Collapse
Affiliation(s)
- R. Javed
- Ph.D. Student, Department of Veterinary Microbiology, College of Veterinary Science (COVS), Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - D. Narang
- Department of Veterinary Microbiology, College of Veterinary Science (COVS), Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - P. Kaur
- Department of Veterinary Microbiology, College of Veterinary Science (COVS), Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - M. Chandra
- Department of Veterinary Microbiology, College of Veterinary Science (COVS), Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - G. Filia
- Animal Disease Research Centre (ADRC), College of Veterinary Science (COVS), Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - S. T. Singh
- Directorate of Livestock Farms, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| |
Collapse
|
4
|
Prime Vaccination with Chitosan-Coated Phipps BCG and Boosting with CFP-PLGA against Tuberculosis in a Goat Model. Animals (Basel) 2021; 11:ani11041046. [PMID: 33917739 PMCID: PMC8068168 DOI: 10.3390/ani11041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Bovine tuberculosis is a disease that affects cattle and other animal species worldwide and represents a risk to public health. Even though there is a vaccine that has been used to control tuberculosis in humans for almost 100 years, up to now, it has not been used in animals. The reason is that vaccination interferes with the tuberculin test, the current test to diagnose tuberculosis in the field, and shows an inconsistent efficacy in animals. Recent studies report that prime vaccinating with BCG and boosting with proteins vaccinations perform better. In addition, there are reports that some polymers increase the immune response against various infectious diseases; therefore, testing a vaccine formula with polymers sounds like a wise thing to do. In this study, we showed that priming with BCG and boosting with a culture filtrate protein, alone or in combination with a polymer, the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone, are significantly reduced. Our results mean that a vaccination used as a complement of actual tuberculosis control programs in animal populations can be useful to reduce tuberculosis dissemination. Abstract Attempts to improve the immune response and efficacy of vaccines against tuberculosis in cattle, goats, and other animal species have been the focus of research in this field during the last two decades. Improving the vaccine efficacy is essential prior to running long-lasting and expensive field trials. Studies have shown that vaccine protocols utilizing boosting with proteins improve the vaccine efficacy. The use of polymers such as chitosan and PolyLactic-co-Glycolic Acid (PLGA) improves the immune response against different diseases by improving the interaction of antigens with the cellular immune system and modulating the host immune response. This study shows that the prime BCG vaccination, boosted with a culture filtrate protein (CFP), alone or in combination with chitosan and PolyLactic-co-Glycolic Acid (PLGA), have the potential to reduce tuberculosis (TB) dissemination by reducing the number of animals with lesions, the number of lesions per animal, and the size of the lesions in vaccinated animals, compared with those not vaccinated or those vaccinated with BCG alone. The vaccinated groups showed significantly higher Interferon-γ levels in the blood compared to the control, nonvaccinated group after vaccination, after boosting, and after the challenge with the wild-type Mycobacterium bovis strain.
Collapse
|
5
|
Srinivasan S, Conlan AJK, Easterling LA, Herrera C, Dandapat P, Veerasami M, Ameni G, Jindal N, Raj GD, Wood J, Juleff N, Bakker D, Vordermeier M, Kapur V. A Meta-Analysis of the Effect of Bacillus Calmette-Guérin Vaccination Against Bovine Tuberculosis: Is Perfect the Enemy of Good? Front Vet Sci 2021; 8:637580. [PMID: 33681334 PMCID: PMC7930010 DOI: 10.3389/fvets.2021.637580] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects ("herd-immunity") to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50-95% of cumulative cases may be averted over the next 50 years even in high (20-40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.
Collapse
Affiliation(s)
- Sreenidhi Srinivasan
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Andrew J. K. Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Laurel A. Easterling
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Christian Herrera
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Premanshu Dandapat
- Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | | | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Gopal Dhinakar Raj
- Translational Research Platform for Veterinary Biological, Tamil Nadu University of Veterinary and Animal Sciences, Chennai, India
| | - James Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nick Juleff
- The Bill & Melinda Gates Foundation, Seattle, WA, United States
| | - Douwe Bakker
- Technical Consultant and Independent Researcher, Lelystad, Netherlands
| | - Martin Vordermeier
- Animal and Plant Health Agency, Addlestone, United Kingdom
- Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Vivek Kapur
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
7
|
Martucciello A, Vitale N, Mazzone P, Dondo A, Archetti I, Chiavacci L, Cerrone A, Gamberale F, Schiavo L, Pacciarini ML, Boniotti MB, De Carlo E. Field Evaluation of the Interferon Gamma Assay for Diagnosis of Tuberculosis in Water Buffalo ( Bubalus bubalis) Comparing Four Interpretative Criteria. Front Vet Sci 2020; 7:563792. [PMID: 33335916 PMCID: PMC7736034 DOI: 10.3389/fvets.2020.563792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Bovine tuberculosis (bTB) is a worldwide zoonosis that affects many species of domestic and wild animals. Mycobaterium bovis is the main cause of infection in water buffalo (Bubalus bubalis) and bovines and is of great concern for human health and for buffalo producers in Italy. The bTB eradication programme is based on slaughterhouse surveillance and intradermal skin tests. Other in vivo diagnostic methods such as the interferon-gamma (IFN-γ) assay have been developed and are widely used in cattle to accelerate the elimination of bTB positive animals. The present study is the first to assess the use and performance of IFN-γ assays, which is used as an ancillary test for bTB diagnosis in water buffalo, and presents the results of a field-evaluation of the assay from 2012 to 2019 during the buffalo bTB eradication programme in Italy. The study involved 489 buffaloes with a positive result to the single intradermal tuberculin test (SITT). The IFN-γ assays and single intradermal comparative tuberculin test were used as confirmation tests. Then, a total of 458 buffaloes, reared on officially tuberculosis-free (OTF) herds, that were confirmed bTB-free for at least the last 6 years were subjected to IFN-γ testing. Furthermore, to evaluate the IFN-γ test in an OTF herd with Paratuberculosis (PTB) infection, 103 buffaloes were subjected to SITT and IFN-γ test simultaneously. Four interpretative criteria were used, and the IFN-γ test showed high levels of accuracy, with sensitivity levels between 75.3% (CI 95% 71.2–79.0%) and 98.4% (CI 95% 96.7–99.4%) and specificity levels between 94.3% (CI 95% 91.2–96.50%) and 98.5% (CI 95% 96.9–99.4%), depending on the criterion used. Finally, in the OTF herd with PTB infection, in buffalo, the IFN-γ test displayed high specificity values according to all 4 interpretative criteria, with specificity levels between 96.7% (CI 95% 88.4–99.5%) and 100% (CI 95% 96.2–100%), while SITT specificity proved unsatisfactory, with a level of 45.3% (CI 95% 35.0–55.7%). Our results showed that the IFN-γ test in the buffalo species could reach high Sensitivity and Specificity values, and that the level of Sensitivity and Specificity could be chosen based on the interpretative criterion and the antigens used depending on the health status of the herd and the epidemiological context of the territory. The IFN-γ test and the use of different interpretative criteria proved to be useful to implement bTB diagnostic strategies in buffalo herds, with the possibility of a flexible use of the assay.
Collapse
Affiliation(s)
- Alessandra Martucciello
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Nicoletta Vitale
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Ivonne Archetti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Laura Chiavacci
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Anna Cerrone
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | | | - Lorena Schiavo
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| | - Maria Lodovica Pacciarini
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Maria Beatrice Boniotti
- National Reference Centre for Bovine Tuberculosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Salerno, Italy
| |
Collapse
|
8
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
9
|
Ihedioha O, Potter AA, Chen JM. Poor stimulation of bovine dendritic cells by Mycobacterium bovis culture supernatant and surface extract is associated with decreased activation of ERK and NF- κB and higher expression of SOCS1 and 3. Innate Immun 2020; 26:537-546. [PMID: 32513050 PMCID: PMC7491241 DOI: 10.1177/1753425920929759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cell envelope of pathogenic mycobacteria interfaces with the host. As such, the interaction of bacterial products localized at or released from the cell surface with the host’s immune system can determine the fate of the bacterium in its host. In this study, the effects of three different types of Mycobacterium bovis cell envelope fractions—purified protein derivative, total cell wall lipids and culture supernatant and surface extract—on bovine dendritic cells were assessed. We found that the culture supernatant and surface extract fraction induced little to no production of the pro-inflammatory cytokines TNF-α and IL-12 in bovine dendritic cells. Moreover, this muted response was associated with poor activation of ERK and NF-κB, both of which are critical for the pro-inflammatory response. Furthermore, culture supernatant and surface extract treatment increased the expression of suppressor of cytokine signaling 1 and 3, both of which are negative regulators of pro-inflammatory signaling, in bovine dendritic cells. These observations taken together suggest the M. bovis culture supernatant and surface extract fraction contain immunomodulatory molecules that may aid in M. bovis pathogenesis.
Collapse
Affiliation(s)
- Olivia Ihedioha
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Canada.,Vaccine and Infectious Disease Organization, International Vaccine Centre, University of Saskatchewan, Canada
| | - Andrew A Potter
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Canada.,Vaccine and Infectious Disease Organization, International Vaccine Centre, University of Saskatchewan, Canada
| | - Jeffrey M Chen
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Canada.,Vaccine and Infectious Disease Organization, International Vaccine Centre, University of Saskatchewan, Canada
| |
Collapse
|
10
|
Coad M, Doyle M, Steinbach S, Gormley E, Vordermeier M, Jones G. Simultaneous measurement of antigen-induced CXCL10 and IFN-γ enhances test sensitivity for bovine TB detection in cattle. Vet Microbiol 2019; 230:1-6. [PMID: 30827373 DOI: 10.1016/j.vetmic.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023]
Abstract
Bovine tuberculosis (BTB) is a disease of economic and zoonotic importance caused mainly by Mycobacterium bovis. In addition to the tuberculin skin test, an interferon-gamma (IFN-γ) release assay (IGRA) blood test has been incorporated in the BTB control programs of numerous countries as an ancillary test to the skin test. A potential disadvantage of the IGRA assay is that it relies solely on the measurement of a single readout (i.e. IFN-γ) for the detection of BTB. In this study we have assessed the practical use of CXCL10 as an additional biomarker for the diagnosis of BTB in the setting of the current testing approach alongside IGRA. To do so, we have assessed both IFN-γ and CXCL10 readouts in blood cultures from a variety of different BTB cattle groups stimulated with standard tuberculin reagents and also with more specific defined antigens (ESAT-6, CFP-10 and Rv3615c). When using a tuberculin based whole blood assay, CXCL10 alone could not substitute for IFN-γ as the analyte measured in the test without reducing the sensitivity of detecting BTB animals. However, when used as an additional test readout, CXCL10 identified BTB animals that failed to induce IFN-γ responses. When tested in non-infected animals, the use of the dual biomarker system had the potential to lower overall test specificity, however this could be overcome by raising the cut-off values for CXCL10 test positivity. Taken together, the results demonstrate that in particular settings, measurement of CXCL10 has the potential to complement the current use of IFN-γ in blood assays to maximise the detection of BTB.
Collapse
Affiliation(s)
- Michael Coad
- TB Immunology and Vaccinology, Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Mairead Doyle
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Sabine Steinbach
- TB Immunology and Vaccinology, Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Eamonn Gormley
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Martin Vordermeier
- TB Immunology and Vaccinology, Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Gareth Jones
- TB Immunology and Vaccinology, Department of Bacteriology, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom.
| |
Collapse
|
11
|
Jenkins AO, Gormley E, Gcebe N, Fosgate GT, Conan A, Aagaard C, Michel AL, Rutten VPMG. Cross reactive immune responses in cattle arising from exposure to Mycobacterium bovis and non-tuberculous mycobacteria. Prev Vet Med 2018; 152:16-22. [PMID: 29559101 DOI: 10.1016/j.prevetmed.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Accurate diagnosis of tuberculosis in cattle may be compromised in areas where there are high rates of exposure to environmental/non-tuberculous mycobacteria (NTM). This cross reaction of immune responses to Mycobacterium bovis antigens shared with NTMs can result in reduced specificity of commonly used diagnostic tests including tuberculin skin tests and the interferon gamma assay (IFN-ɣ). In this study we assessed the cross-reactive immune responses of M. bovis (infected) and NTM exposed animals to M. bovis and M. avium tuberculin, the ESAT6/CFP10 cocktail antigen, tuberculin derived from cultures of selected NTMs, and a panel of recombinant mycobacterium tuberculosis complex (MTBC) antigens sharing homology with orthologues in NTM. Gamma interferon (IFN-ɣ) responses were measured in whole blood cultures using the IFN-ɣ assay and the IFN-ɣ elispot assay on purified peripheral blood mononuclear cells (PBMC). We observed the expected strong IFN-ɣ response to PPD-B in the M. bovis infected animals that distinguished this group from non-infected NTM exposed cattle. The IFN-ɣ responses to PPD-N (M. nonchromogenicum), were relatively high in both infected and non-infected NTM exposed cattle, but were not significantly different to classify the true infection status of each group. The results indicated that the cross-reactive responses to PPD-B and/or PPD-A with PPD-N, likely arose from prior exposure to environmental non-tuberculous mycobacteria. The IFN-ɣ immune responses to the 10 R-Mag measured by the IFN-ɣ elispot assay revealed that three of the selected antigens, Rv3615 (ESpC), Rv0287 (esxG) and the ESAT6/CFP10, were immunogenic in the infected cattle, and distinguished the infected cattle from the non-infected NTM exposed animals. The combined data of PPDs and R-Mags derived from NTM mycobacteria may prove useful in future development of novel bTB diagnostic tests.
Collapse
Affiliation(s)
- A O Jenkins
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - E Gormley
- TB diagnostics and Vaccine Research Laboratory, School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin (UCD), Dublin 4, Ireland
| | - N Gcebe
- Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
| | - G T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - A Conan
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, Saint Kitts and Nevis
| | - C Aagaard
- Department of Infectious Disease immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - A L Michel
- Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - V P M G Rutten
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Bovine Tuberculosis and Brucellosis Research Programme, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
12
|
Nieuwenhuizen NE, Kaufmann SHE. Next-Generation Vaccines Based on Bacille Calmette-Guérin. Front Immunol 2018; 9:121. [PMID: 29459859 PMCID: PMC5807593 DOI: 10.3389/fimmu.2018.00121] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis (Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille Calmette-Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major disease manifestation and source of dissemination. The protective efficacy of BCG is on average 50% but varies substantially with geographical location and is poorer in those with previous exposure to mycobacteria. BCG can also cause adverse reactions in immunocompromised individuals. However, BCG has contributed to reduced infant TB mortality by protecting against extrapulmonary TB. In addition, BCG has been associated with reduced general childhood mortality by stimulating immune responses. In order to improve the efficacy of BCG, two major strategies have been employed. The first involves the development of recombinant live mycobacterial vaccines with improved efficacy and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb antigens. This article reviews recombinant BCG strains that have been tested against TB in animal models. This includes BCG strains that have been engineered to induce increased immune responses by the insertion of genes for Mtb antigens, mammalian cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, and the manipulation of bacterial genes in order to increase antigen presentation and immune activation. Subunit vaccines for boosting BCG are also briefly discussed.
Collapse
|
13
|
Risalde MÁ, Thomas J, Sevilla I, Serrano M, Ortíz JA, Garrido J, Domínguez M, Domínguez L, Gortázar C, Ruíz-Fons JF. Development and evaluation of an interferon gamma assay for the diagnosis of tuberculosis in red deer experimentally infected with Mycobacterium bovis. BMC Vet Res 2017; 13:341. [PMID: 29145844 PMCID: PMC5691593 DOI: 10.1186/s12917-017-1262-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 11/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Red deer (Cervus elaphus) is regarded as an epidemiologically relevant host for Mycobacterium bovis (M. bovis) and closely related members of the Mycobacterium tuberculosis complex that cause animal tuberculosis (TB). The standard antemortem screening test for the detection of TB in deer is the intradermal tuberculin skin test, but the detection of interferon-gamma (IFNγ) produced by white blood cells exposed to M. bovis antigens can be used as an alternative or supplemental assay in most TB eradication/control programs. This study aims to develop an in-house sandwich ELISA for deer IFNγ, based on the cross-reactivity of the antibodies to both cervid and bovine IFNγ, and to evaluate the potential of this assay to detect M. bovis-infected red deer in response to the in vitro stimulation of whole-blood cells with bovine purified protein derivative (bPPD), p22 protein complex derived from bPPD or using the specific tuberculous mycobacterial proteins ESAT-6/CFP-10, Rv3615c and Rv3020c. The positive control stimulant used in this study was pokeweed mitogen, which resulted in a consistent induction of IFNγ in samples from red deer, thus allowing the interpretation of the assay. RESULTS The percentage of animals correctly classified by this technique as M. bovis non-infected was 100%. The detection of infected animals as positive was high and ranged widely depending upon the antigen and the cut-off value applied, as well as the time after infection. Our findings indicate that this protocol may serve as a reliable assay for the antemortem diagnosis of TB from the initial stage of M. bovis-infection, and may also be adequately sensitive. CONCLUSIONS The suggested optimal antigens and cut-off are bPPD, p22 and the combination of ESAT-6/CFP-10 and Rv3020c with a 0.05 Δ optical density, which yielded a up to 100% correct classification of TB positive and negatve red deer under our experimental conditions. This technique will aid in TB testing of farmed and translocated deer. Future studies should evaluate the ability of this IFNγ assay to detect specific responses under field conditions.
Collapse
Affiliation(s)
- María Ángeles Risalde
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
- Unidad de Enfermedades Infecciosas, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Jobin Thomas
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
- Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Iker Sevilla
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia Spain
| | - Miriam Serrano
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia Spain
| | | | - Joseba Garrido
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia Spain
| | - Mercedes Domínguez
- Servicio de Inmunología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre. Complutense University of Madrid, Madrid, Spain
| | - Christian Gortázar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Jose Francisco Ruíz-Fons
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| |
Collapse
|
14
|
Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep 2017; 7:12807. [PMID: 28993692 PMCID: PMC5634507 DOI: 10.1038/s41598-017-12718-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
The mycobacterial envelope is unique, containing the so-called mycomembrane (MM) composed of very-long chain fatty acids, mycolic acids (MA). Presently, the molecular composition of the MM remains unproven, due to the diversity of methods used for determining its composition. The plasma membranes (PM) and the native MM-containing cell walls (MMCW) of two rapid-growing mycobacterial species, Mycobacterium aurum and M. smegmatis, were isolated from their cell lysates by differential ultracentrifugation. Transmission electron microscopy and biochemical analyses demonstrated that the two membranes were virtually pure. Bottom-up quantitative proteomics study indicated a different distribution of more than 2,100 proteins between the PM and MMCW. Among these, the mannosyltransferase PimB, galactofuranosyltransferase GlfT2, Cytochrome p450 and ABC transporter YjfF, were most abundant in the PM, which also contain lipoglycans, phospholipids, including phosphatidylinositol mannosides, and only a tiny amount of other glycolipids. Antigen85 complex proteins, porins and the putative transporters MCE protein family were mostly found in MMCW fraction that contains MA esterifying arabinogalactan, constituting the inner leaflet of MM. Glycolipids, phospholipids and lipoglycans, together with proteins, presumably composed the outer leaflet of the MM, a lipid composition that differs from that deduced from the widely used extraction method of mycobacterial cells with dioctylsulfosuccinate sodium.
Collapse
|
15
|
Efficacy of oral BCG vaccination in protecting free-ranging cattle from natural infection by Mycobacterium bovis. Vet Microbiol 2017; 208:181-189. [PMID: 28888636 DOI: 10.1016/j.vetmic.2017.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/22/2022]
Abstract
Vaccination of cattle against bovine tuberculosis could be a valuable control strategy, particularly in countries faced with intractable ongoing infection from a disease reservoir in wildlife. A field vaccination trial was undertaken in New Zealand. The trial included 1286 effectively free-ranging cattle stocked at low densities in a remote 7600ha area, with 55% of them vaccinated using Mycobacterium bovis BCG (Danish strain 1311). Vaccine was administered orally in all but 34 cases (where it was injected). After inclusion, cattle were exposed to natural sources of M. bovis infection in cattle and wildlife, most notably the brushtail possum (Trichosurus vulpecula). Cattle were slaughtered at 3-5 years of age and were inspected for tuberculous lesions, with mycobacteriological culture of key tissues from almost all animals. The prevalence of M. bovis infection was 4.8% among oral BCG vaccinates, significantly lower than the 11.9% in non-vaccinates. Vaccination appeared to both reduce the incidence of detectable infection, and to slow disease progression. Based on apparent annual incidence, the protective efficacy of oral BCG vaccine was 67.4% for preventing infection, and was higher in cattle slaughtered soon after vaccination. Skin-test reactivity to tuberculin was high in vaccinates re-tested 70days after vaccination but not in non-vaccinates, although reactor animals had minimal response in gamma-interferon blood tests. In re- tests conducted more than 12 months after vaccination, skin-test reactivity among vaccinates was much lower. These results indicate that oral BCG vaccination could be an effective tool for greatly reducing detectable infection in cattle.
Collapse
|
16
|
Abstract
In this article we present experimental Mycobacterium bovis infection models in domestic livestock species and how these models were applied to vaccine development, biomarker discovery, and the definition of specific antigens for the differential diagnosis of infected and vaccinated animals. In particular, we highlight synergies between human and bovine tuberculosis (TB) research approaches and data and propose that the application of bovine TB models could make a valuable contribution to human TB vaccine research and that close alignment of both research programs in a one health philosophy will lead to mutual and substantial benefits.
Collapse
|
17
|
Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG, Villarreal-Ramos B. Bovine Tuberculosis in Cattle: Vaccines, DIVA Tests, and Host Biomarker Discovery. Annu Rev Anim Biosci 2016; 4:87-109. [PMID: 26884103 DOI: 10.1146/annurev-animal-021815-111311] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine tuberculosis remains a major economic and animal welfare concern worldwide. Cattle vaccination is being considered as part of control strategies. This approach, used alongside conventional control policies, also requires the development of vaccine-compatible diagnostic assays to distinguish vaccinated from infected animals (DIVA). We discuss progress made on optimizing the only potentially available vaccine, bacille Calmette Guérin (BCG), and on strategies to improve BCG efficacy. We also describe recent advances in DIVA development based on the detection of host cellular immune responses by blood-testing or skin-testing approaches. Finally, to accelerate vaccine development, definition of host biomarkers that provide meaningful stage-gating criteria to select vaccine candidates for further testing is highly desirable. Some progress has also been made in this area of research, and we summarize studies that defined either markers predicting vaccine success or markers that correlate with disease stage or severity.
Collapse
Affiliation(s)
- H Martin Vordermeier
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | - Gareth J Jones
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | - Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - R Glyn Hewinson
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | | |
Collapse
|
18
|
Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG. Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet Immunol Immunopathol 2016; 181:10-14. [DOI: 10.1016/j.vetimm.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
19
|
Maggioli MF, Palmer MV, Thacker TC, Vordermeier HM, McGill JL, Whelan AO, Larsen MH, Jacobs WR, Waters WR. Increased TNF-α/IFN-γ/IL-2 and Decreased TNF-α/IFN-γ Production by Central Memory T Cells Are Associated with Protective Responses against Bovine Tuberculosis Following BCG Vaccination. Front Immunol 2016; 7:421. [PMID: 27799930 PMCID: PMC5066095 DOI: 10.3389/fimmu.2016.00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Central memory T cell (Tcm) and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector/memory populations from bacille Calmette–Guerin (BCG) vaccinated and non-vaccinated calves by flow cytometry prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves, only differing in magnitude (i.e., infected > vaccinated). BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (3 weeks post-infection), non-vaccinates had greater antigen-specific interferon-γ (IFN-γ)/tumor necrosis factor-α (TNF-α) and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains) were detected in memory subsets, as well as in effector cells, as early as 3 weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden, while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.
Collapse
Affiliation(s)
- Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA; Imbio, Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| | - Tyler C Thacker
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| | | | - Jodi L McGill
- Department of Diagnostic Medicine and Pathology, College of Veterinary Medicine, Kansas State University , Manhattan, KS , USA
| | - Adam O Whelan
- Defense Science and Technology Laboratory, Porton Down , Wiltshire , UK
| | - Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | - W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center , Ames, IA , USA
| |
Collapse
|
20
|
Waters WR, Palmer MV. Mycobacterium bovis Infection of Cattle and White-Tailed Deer: Translational Research of Relevance to Human Tuberculosis. ILAR J 2016; 56:26-43. [PMID: 25991696 DOI: 10.1093/ilar/ilv001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis (TB) is a premier example of a disease complex with pathogens primarily affecting humans (i.e., Mycobacterium tuberculosis) or livestock and wildlife (i.e., Mycobacterium bovis) and with a long history of inclusive collaborations between physicians and veterinarians. Advances in the study of bovine TB have been applied to human TB, and vice versa. For instance, landmark discoveries on the use of Koch's tuberculin and interferon-γ release assays for diagnostic purposes, as well as Calmette and Guérin's attenuated M. bovis strain as a vaccine, were first evaluated in cattle for control of bovine TB prior to wide-scale use in humans. Likewise, recent discoveries on the role of effector/memory T cell subsets and polyfunctional T cells in the immune response to human TB, particularly as related to vaccine efficacy, have paved the way for similar studies in cattle. Over the past 15 years, substantial funding for development of human TB vaccines has led to the emergence of multiple promising candidates now in human clinical trials. Several of these vaccines are being tested for immunogenicity and efficacy in cattle. Also, the development of population-based vaccination strategies for control of M. bovis infection in wildlife reservoirs will undoubtedly have an impact on our understanding of herd immunity with relevance to the control of both bovine and human TB in regions of the world with high prevalence of TB. Thus, the one-health approach to research on TB is mutually beneficial for our understanding and control of TB in humans, livestock, and wildlife.
Collapse
Affiliation(s)
- W Ray Waters
- Dr. W. Ray Waters, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, and a collaborator/assistant professor of veterinary microbiology and preventive medicine at Iowa State University, Ames, Iowa. Dr. Mitchell V. Palmer, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, and a collaborator/assistant professor of veterinary pathology at Iowa State University, Ames, Iowa
| | - Mitchell V Palmer
- Dr. W. Ray Waters, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, Iowa, and a collaborator/assistant professor of veterinary microbiology and preventive medicine at Iowa State University, Ames, Iowa. Dr. Mitchell V. Palmer, DVM, PhD, is a veterinary medical officer in the TB Research Project in the Infectious Bacterial Diseases of Livestock Research Unit at the National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, and a collaborator/assistant professor of veterinary pathology at Iowa State University, Ames, Iowa
| |
Collapse
|
21
|
Dan JM, Crespo M, Silveira FP, Kaplan R, Aslam S. Mycobacterium bovis hip bursitis in a lung transplant recipient. Transpl Infect Dis 2016; 18:120-4. [PMID: 26671334 DOI: 10.1111/tid.12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 02/04/2023]
Abstract
We present a report of extrapulmonary Mycobacterium bovis infection in a lung transplant recipient. M. bovis is acquired predominantly by zoonotic transmission, particularly from consumption of unpasteurized foods. We discuss epidemiologic exposure, especially as relates to the Mexico-US border, clinical characteristics, resistance profile, and treatment.
Collapse
Affiliation(s)
- J M Dan
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| | - M Crespo
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - F P Silveira
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - R Kaplan
- Department of Medicine, Division of Rheumatology, Scripps Memorial Hospital Encinitas, Encinitas, California, USA
| | - S Aslam
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Pérez de Val B, Vidal E, López-Soria S, Marco A, Cervera Z, Martín M, Mercader I, Singh M, Raeber A, Domingo M. Assessment of safety and interferon gamma responses of Mycobacterium bovis BCG vaccine in goat kids and milking goats. Vaccine 2016; 34:881-6. [PMID: 26795364 DOI: 10.1016/j.vaccine.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Vaccination of domestic animals has emerged as an alternative long-term strategy for the control of tuberculosis (TB). A trial under field conditions was conducted in a TB-free goat herd to assess the safety of the Mycobacterium bovis BCG vaccine. Eleven kids and 10 milking goats were vaccinated with BCG. Bacterial shedding and interferon gamma (IFN-γ) responses were monitored throughout the study. Comprehensive pathological examination and mycobacterial culture of target tissues were performed. BCG vaccine strain was only isolated from the draining lymph node of the injection site of a kid euthanized at week 8 post-vaccination. The remaining animals were euthanized at week 24. Six out of 20 showed small granulomas at the injection site. BCG shedding was not detected in either faeces or in milk throughout the study. All vaccinated kids showed BCG-induced IFN-γ responses at week 8 post-vaccination. BCG vaccination of goats showed no lack of biological safety for the animals, environment and public health, and local adverse reactions were negligible.
Collapse
Affiliation(s)
- Bernat Pérez de Val
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Enric Vidal
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Sergio López-Soria
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Alberto Marco
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Zoraida Cervera
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Maite Martín
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Irene Mercader
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació de la Generalitat de Catalunya, 08007 Barcelona, Catalonia, Spain
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - Alex Raeber
- Thermo Fisher Scientific, Schlieren, 8952 Zürich, Switzerland
| | - Mariano Domingo
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Display of Antigens on Polyester Inclusions Lowers the Antigen Concentration Required for a Bovine Tuberculosis Skin Test. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:19-26. [PMID: 26512049 DOI: 10.1128/cvi.00462-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022]
Abstract
The tuberculin skin test is the primary screening test for the diagnosis of bovine tuberculosis (TB), and use of this test has been very valuable in the control of this disease in many countries. However, the test lacks specificity when cattle have been exposed to environmental mycobacteria or vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG). Recent studies showed that the use of three or four recombinant mycobacterial proteins, including 6-kDa early secretory antigenic target (ESAT6), 10-kDa culture filtrate protein (CFP10), Rv3615c, and Rv3020c, or a peptide cocktail derived from those proteins, in the skin test greatly enhanced test specificity, with minimal loss of test sensitivity. The proteins are present in members of the pathogenic Mycobacterium tuberculosis complex but are absent in or not expressed by the majority of environmental mycobacteria and the BCG vaccine strain. To produce a low-cost skin test reagent, the proteins were displayed at high density on polyester beads through translational fusion to a polyhydroxyalkanoate synthase that mediates the formation of antigen-displaying inclusions in recombinant Escherichia coli. Display of the proteins on the polyester beads greatly increased their immunogenicity, allowing for the use of very low concentrations of proteins (0.1 to 3 μg of mycobacterial protein/inoculum) in the skin test. Polyester beads simultaneously displaying all four proteins were produced in a single fermentation process. The polyester beads displaying three or four mycobacterial proteins were shown to have high sensitivity for detection of M. bovis-infected cattle and induced minimal responses in animals exposed to environmental mycobacteria or vaccinated with BCG.
Collapse
|
24
|
Parlane NA, Buddle BM. Immunity and Vaccination against Tuberculosis in Cattle. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-014-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Singh S, Kumar M, Singh P. Evolution of M. bovis BCG Vaccine: Is Niacin Production Still a Valid Biomarker? Tuberc Res Treat 2015; 2015:957519. [PMID: 25694828 PMCID: PMC4324913 DOI: 10.1155/2015/957519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023] Open
Abstract
BCG vaccine is usually considered to be safe though rarely serious complications have also been reported, often incriminating contamination of the seed strain with pathogenic Mycobacterium tuberculosis. In such circumstances, it becomes prudent to rule out the contamination of the vaccine seed. M. bovis BCG can be confirmed by the absence of nitrate reductase, negative niacin test, and resistance to pyrazinamide and cycloserine. Recently in India, some stocks were found to be niacin positive which led to a national controversy and closer of a vaccine production plant. This prompted us to write this review and the comparative biochemical and genotypic studies were carried out on the these contentious vaccine stocks at the Indian vaccine plant and other seeds and it was found that some BCG vaccine strains and even some strains of M. bovis with eugenic-growth characteristics mainly old laboratory strains may give a positive niacin reaction. Most probably, the repeated subcultures lead to undefined changes at the genetic level in these seed strains. These changing biological characteristics envisage reevaluation of biochemical characters of existing BCG vaccine seeds and framing of newer guidelines for manufacturing, production, safety, and effectiveness of BCG vaccine.
Collapse
Affiliation(s)
- Sarman Singh
- 1Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
- *Sarman Singh:
| | - Manoj Kumar
- 1Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pragati Singh
- 2National Polio Surveillance Project, Country Office for India, World Health Organization, Mathura 281001, India
| |
Collapse
|
26
|
Vaccination of domestic animals against tuberculosis: Review of progress and contributions to the field of the TBSTEP project. Res Vet Sci 2014; 97 Suppl:S53-60. [DOI: 10.1016/j.rvsc.2014.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
|
27
|
Interferon-gamma assay in combination with tuberculin skin test are insufficient for the diagnosis of culture-negative pulmonary tuberculosis. PLoS One 2014; 9:e107208. [PMID: 25221998 PMCID: PMC4164613 DOI: 10.1371/journal.pone.0107208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/07/2014] [Indexed: 11/23/2022] Open
Abstract
Objective Early diagnosis of infectious cases and treatment of tuberculosis (TB) are important strategies for reducing the incidence of this disease. Unfortunately, traditional TB diagnostic methods are time-consuming and often unreliable. This study compared the accuracy and reliability of the tuberculin skin test (TST) and interferon (IFN)-γ-based assay (IGRA) for the diagnosis of active pulmonary TB Polish cases that could or could not be confirmed by M. tuberculosis (M.tb) culture. Methods In total, 126 adult patients with clinically active TB or non-mycobacterial, community-acquired lung diseases (NMLD) hospitalised at the Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn, Poland were enrolled in the present study. Sensitivity, specificity, positive predicted value (PPV), negative predicted value (NPV), and analytic accuracy (Acc) of TST and IGRA testing for the diagnosis of culture-positive and culture-negative TB patients were calculated. The quantities of IFN-γ produced in the response to M.tb specific antigens (TB Ag – Nil) in the cultures of blood from patients with active TB and NMLD patients were also analysed. Results The IGRA sensitivity in culture-positive and culture-negative TB patients was similar, measuring 65.1% and 55.6%, respectively. The sensitivity of TST did not differ from the parameters designated for IGRA, measuring 55.8% in culture-positive and 64.9% in culture-negative TB. The sensitivity of TST and IGRA was age-dependent and decreased significantly with the age of the patients. No differences in the frequency or intensity of M.tb-stimulated IFN-γ production, as assessed by IGRA testing between culture-positive and culture-negative TB were noticed. Significantly lower concentrations of IFN-γ were observed in patients with advanced TB forms compared with those with mild or moderate TB pathologies. Conclusions Our results do not show that a combination of IGRA and TST might be a step forward in the diagnosis of culture-negative TB cases. However, M. tuberculosis-stimulated IFN-γ levels might help to assess the extent of pulmonary TB lesions.
Collapse
|
28
|
Morar D, Schreuder J, Mény M, van Kooten PJS, Tijhaar E, Michel AL, Rutten VPMG. Towards establishing a rhinoceros-specific interferon-gamma (IFN-γ) assay for diagnosis of tuberculosis. Transbound Emerg Dis 2014; 60 Suppl 1:60-6. [PMID: 24171850 DOI: 10.1111/tbed.12132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Indexed: 11/30/2022]
Abstract
Mycobacterium bovis is the causal agent of bovine tuberculosis (BTB), with a diverse host range, extending from livestock to domestic and captive wild animals as well as free-ranging wildlife species. In South Africa, BTB is endemic in the Kruger National Park (KNP) and the Hluluwe iMfolozi National Park (HiP), where the high prevalence of M. bovis infections in buffalo herds has led to infection of a number of wildlife species. This has raised concerns about the spillover into the rhinoceros population, a species known to be susceptible to both M. bovis and Mycobacterium tuberculosis, jeopardizing breeding and relocation projects that serve to conserve and protect this species. In view of the advantages of the interferon-gamma (IFN-γ) assay in the diagnosis of BTB in a variety of species worldwide, such an assay has been developed for rhinoceroses by Morar and co-workers in 2007. In this study, this assay was optimized using recombinant eukaryotic rhinoceros IFN-γ and the lower detection limit was calculated to be 0.5 ng/ml. Subsequently, assessing the detection of native rhinoceros IFN-γ protein in whole-blood samples revealed stimulation with each of the mitogens: pokeweed (PWM), phytohaemagglutinin (PHA) & phorbol 12-myristate 13-acetate and calcium ionophore (PMA/CaI), though most prominently with the latter two. In addition, samples collected from 52 clinically healthy rhinoceroses, of presumed negative BTB status, from two different areas in South Africa were used to determine the cut-off value for a negative test result. This was calculated to be 0.10 (OD490 nm ) and as determined in this study is a preliminary recommendation based on IFN-γ responses observed in samples from BTB-free rhinoceroses only.
Collapse
Affiliation(s)
- D Morar
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | | | | | | | | | | | |
Collapse
|
29
|
Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res Vet Sci 2014; 97 Suppl:S44-52. [PMID: 24768355 DOI: 10.1016/j.rvsc.2014.04.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/25/2014] [Accepted: 04/05/2014] [Indexed: 11/21/2022]
Abstract
Bovine tuberculosis (TB), mainly caused by Mycobacterium bovis, is a zoonotic disease with implications for Public Health and having an economic impact due to decreased production and limitations to the trade. Bovine TB is subjected to official eradication campaigns mainly based on a test and slaughter policy using diagnostic assays based on the cell-mediated immune response as the intradermal tuberculin test and the gamma-interferon (IFN-γ) assay. Moreover, several diagnostic assays based on the detection of specific antibodies (Abs) have been developed in the last few years with the aim of complementing the current diagnostic techniques in the near future. This review provides an overview of the current ante-mortem diagnostic tools for diagnosis of bovine TB regarding historical background, methodologies and sensitivity (Se) and specificity (Sp) obtained in previous studies under different epidemiological situations.
Collapse
|
30
|
Sabry M, Elkerdasy A. A polymerase chain reaction and enzyme linked immunosorbent assay based approach for diagnosis and differentiation between vaccinated and infected cattle with Mycobacterium bovis. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2014; 6:115-21. [PMID: 24741280 PMCID: PMC3983741 DOI: 10.4103/0975-7406.126584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/21/2013] [Accepted: 10/29/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In most African and Arabic countries tuberculosis (TB) causes great economic losses in bovine species and constitutes serious zoonotic problem. As the traditional diagnostic method delay the research because of low sensitivity and specificity, a rapid method of diagnosis is of outmost importance. AIM The study was designed to evaluate the two rapid diagnostic methods of TB in cattle, further to differentiate between infected and bacillus Calmette-Guerin (BCG) vaccinated animals. MATERIALS AND METHODS Intradermal tuberculin test was applied to 300 cattle. Of these cattle, 15 cattle were vaccinated from cattle negative to tuberculin test with BCG. Blood samples were taken for lymphocyte separation to apply polymerase chain reaction (PCR) upon and for serum preparation for the enzyme-linked immunosorbent assay (ELISA) application, this blood collected from 65 cattle classified into three groups, viz. positive tuberculin test (35 animals), negative tuberculin test (15 animals), and vaccinated cow with BCG (15 animals). From blood samples lymphocytes were separated and the isolated lymphocytes were subjected to PCR and serum for ELISA application. Blood samples, specimens from lymph nodes and specific tissues were taken for PCR and for cultivation and isolation of Mycobacterium bovis. RESULTS AND CONCLUSIONS The results of this study revealed that PCR can be used as rapid efficient and accurate diagnostic test in detection of ruminant TB. Moreover, cattle's ELISA reading showed higher sensitivity in positive tuberculin animals. However, the differentiations between vaccinated and infected animals not clear by using a single antigen only.
Collapse
Affiliation(s)
- Mohamed Sabry
- Department of Bacteriology, Mycology and Immunology, College of Veterinary Medicine, Sadat University, Egypt
| | - Ahmed Elkerdasy
- Department of Biochemistry, College of Veterinary Medicine, Sadat University, Egypt
- Department of Biomedical Science, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| |
Collapse
|
31
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
32
|
New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli. Appl Environ Microbiol 2014; 80:2526-35. [PMID: 24532066 DOI: 10.1128/aem.04168-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tuberculin skin test for diagnosing tuberculosis (TB) in cattle lacks specificity if animals are sensitized to environmental mycobacteria, as some antigens in purified protein derivative (PPD) prepared from Mycobacterium bovis are present in nonpathogenic mycobacteria. Three immunodominant TB antigens, ESAT6, CFP10, and Rv3615c, are present in members of the pathogenic Mycobacterium tuberculosis complex but absent from the majority of environmental mycobacteria. These TB antigens have the potential to enhance skin test specificity. To increase their immunogenicity, these antigens were displayed on polyester beads by translationally fusing them to a polyhydroxyalkanoate (PHA) synthase which mediated formation of antigen-displaying inclusions in recombinant Escherichia coli. The most common form of these inclusions is poly(3-hydroxybutyric acid) (PHB). The respective fusion proteins displayed on these PHB inclusions (beads) were identified using tryptic peptide fingerprinting analysis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The surface exposure and accessibility of antigens were assessed by enzyme-linked immunosorbent assay (ELISA). Polyester beads displaying all three TB antigens showed greater reactivity with TB antigen-specific antibody than did beads displaying only one TB antigen. This was neither due to cross-reactivity of antibodies with the other two antigens nor due to differences in protein expression levels between beads displaying single or three TB antigens. The triple-antigen-displaying polyester beads were used for skin testing of cattle and detected all cattle experimentally infected with M. bovis with no false-positive reactions observed in those sensitized to environmental mycobacteria. The results suggested applicability of TB antigen-displaying polyester inclusions as diagnostic reagents for distinguishing TB-infected from noninfected animals.
Collapse
|
33
|
Vordermeier M, Jones GJ, Whelan AO. DIVA reagents for bovine tuberculosis vaccines in cattle. Expert Rev Vaccines 2014; 10:1083-91. [DOI: 10.1586/erv.11.22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Canto Alarcon GJ, Rubio Venegas Y, Bojorquez Narvaez L, Pizano Martínez OE, García Casanova L, Sosa Gallegos S, Nava Vargas A, Olvera Ramírez AM, Milian Suazo F. Efficacy of a vaccine formula against tuberculosis in cattle. PLoS One 2013; 8:e76418. [PMID: 24204624 PMCID: PMC3799756 DOI: 10.1371/journal.pone.0076418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
"Test-and-slaughter" has been successful in industrialized countries to control and eradicate tuberculosis from cattle; however, this strategy is too expensive for developing nations, where the prevalence is especially high. Vaccination with the Calmette-Guérin (BCG) strain has been shown to protect against the development of lesions in vaccinated animals: mouse, cattle and wildlife species. In this study, the immune response and the pathology of vaccinated (BCG-prime and BCG prime-CFP-boosted) and unvaccinated (controls) calves were evaluated under experimental settings. A 10(6) CFU dose of the BCG strain was inoculated subcutaneously on the neck to two groups of ten animas each. Thirty days after vaccination, one of the vaccinated groups was boosted with an M. bovis culture filtrate protein (CFP). Three months after vaccination, the three groups of animals were challenged with 5×10(5) CFU via intranasal by aerosol with a field strain of M. bovis. The immune response was monitored throughout the study. Protection was assessed based on immune response (IFN-g release) prechallenge, presence of visible lesions in lymph nodes and lungs at slaughter, and presence of bacilli in lymph nodes and lung samples in histological analysis. Vaccinated cattle, either with the BCG alone or with BCG and boosted with CFP showed higher IFN-g response, fewer lesions, and fewer bacilli per lesion than unvaccinated controls after challenge. Animals with low levels of IFN-g postvaccine-prechallenge showed more lesions than animals with high levels. Results from this study support the argument that vaccination could be incorporated into control programs to reduce the incidence of TB in cattle in countries with high prevalence.
Collapse
Affiliation(s)
| | - Yezenia Rubio Venegas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Qro., México
| | | | - Oscar E. Pizano Martínez
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán, Qro., México
| | - Leticia García Casanova
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán, Qro., México
| | - Susana Sosa Gallegos
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Qro., México
| | - Alejandro Nava Vargas
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán, Qro., México
| | | | - Feliciano Milian Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Qro., México
| |
Collapse
|
35
|
Subcutaneous administration of a 10-fold-lower dose of a commercial human tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guerin Danish, induced levels of protection against bovine tuberculosis and responses in the tuberculin intradermal test similar to those induced by a standard cattle dose. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1559-62. [PMID: 23925885 DOI: 10.1128/cvi.00435-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination of cattle with a commercial human tuberculosis (TB) vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG) Danish, at a dose equivalent to 5 human doses of BCG has protected these animals against TB in field and experimental trials. There is interest in determining whether a 10-fold-lower dose could still protect cattle but not induce a tuberculin intradermal test response. Two groups of calves (n = 9/group) were vaccinated subcutaneously with a lyophilized BCG Danish vaccine containing either 0.5 (1 × 10(5) to 4 × 10(5) CFU) or 5 (1 × 10(6) to 4 × 10(6) CFU) human doses of BCG Danish, with an additional group of 10 calves serving as nonvaccinated controls. Fifteen weeks after vaccination, these animals were challenged intratracheally with 5 × 10(3) CFU of virulent M. bovis and another 15 weeks later were slaughtered and examined for the presence of tuberculous lesions. Vaccination of the calves with either 0.5 or 5 equivalent human doses of BCG Danish induced similar levels of protection against challenge with M. bovis, with both groups showing significant reductions in the pathological and microbiological parameters compared to those for the the control group (P < 0.05). Vaccination with either of the two BCG doses induced similar numbers of animals responding to the tuberculin intradermal test at 11 weeks postvaccination. Vaccination with a 0.5 equivalent human dose of a commercial lyophilized BCG vaccine can protect cattle against challenge with M. bovis.
Collapse
|
36
|
Prasad TSK, Verma R, Kumar S, Nirujogi RS, Sathe GJ, Madugundu AK, Sharma J, Puttamallesh VN, Ganjiwale A, Myneedu VP, Chatterjee A, Pandey A, Harsha H, Narayana J. Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis. Clin Proteomics 2013; 10:8. [PMID: 23870090 PMCID: PMC3729367 DOI: 10.1186/1559-0275-10-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/16/2013] [Indexed: 12/02/2022] Open
Abstract
Background Purified protein derivative (PPD) has been used for more than half a century as an antigen for the diagnosis of tuberculosis infection based on delayed type hypersensitivity. Although designated as “purified,” in reality, the composition of PPD is highly complex and remains ill-defined. In this report, high resolution mass spectrometry was applied to understand the complexity of its constituent components. A comparative proteomic analysis of various PPD preparations and their functional characterization is likely to help in short-listing the relevant antigens required to prepare a less complex and more potent reagent for diagnostic purposes. Results Proteomic analysis of Connaught Tuberculin 68 (PPD-CT68), a tuberculin preparation generated from M. tuberculosis, was carried out in this study. PPD-CT68 is the protein component of a commercially available tuberculin preparation, Tubersol, which is used for tuberculin skin testing. Using a high resolution LTQ-Orbitrap Velos mass spectrometer, we identified 265 different proteins. The identified proteins were compared with those identified from PPD M. bovis, PPD M. avium and PPD-S2 from previous mass spectrometry-based studies. In all, 142 proteins were found to be shared between PPD-CT68 and PPD-S2 preparations. Out of the 354 proteins from M. tuberculosis–derived PPDs (i.e. proteins in either PPD-CT68 or PPD-S2), 37 proteins were found to be shared with M. avium PPD and 80 were shared with M. bovis PPD. Alignment of PPD-CT68 proteins with proteins encoded by 24 lung infecting bacteria revealed a number of similar proteins (206 bacterial proteins shared epitopes with 47 PPD-CT68 proteins), which could potentially be involved in causing cross-reactivity. The data have been deposited to the ProteomeXchange with identifier PXD000377. Conclusions Proteomic and bioinformatics analysis of different PPD preparations revealed commonly and differentially represented proteins. This information could help in delineating the relevant antigens represented in various PPDs, which could further lead to development of a lesser complex and better defined skin test antigen with a higher specificity and sensitivity.
Collapse
|
37
|
Specificity of the tuberculin skin test is modified by use of a protein cocktail containing ESAT-6 and CFP-10 in cattle naturally infected with Mycobacterium bovis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:797-803. [PMID: 22419675 DOI: 10.1128/cvi.05668-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mycobacterial immunodominant ESAT-6 and CFP-10 antigens are strongly recognizable in tuberculosis-infected cattle, and they do not elicit a response in cattle without infection. In addition, they are absent in most environmental mycobacterial species, and therefore, their use can be an alternative to purified protein derivative (PPD) tuberculin in the development of a more specific skin diagnostic test in cattle. The aim of the current study was to assess the potential of an ESAT-6 and CFP-10 (E6-C10) protein cocktail in a skin test format in naturally tuberculosis-infected and paratuberculosis-infected cattle. We also included MPB83 as a third component in one of the protein cocktail preparations. The protein cocktail was tested at different dose concentrations (5, 10, and 15 μg per protein). The best skin response to the E6-C10 protein cocktail was obtained with 10 μg. Subsequently, this concentration was tested in 2 herds with high and low bovine tuberculosis prevalence, the latter with paratuberculosis coinfection. Our data show that the E6-C10 cocktail allows identification of an important proportion of animals that PPDB is not able to recognize, especially in low-prevalence herds. The protein cocktail did not induce reactions in tuberculosis-free cattle or in paratuberculosis-infected cattle. Addition of MPB83 to the protein cocktail did not make any difference in the skin reaction.
Collapse
|
38
|
Bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine 2012; 30:2611-22. [PMID: 22342705 DOI: 10.1016/j.vaccine.2012.02.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 11/19/2022]
Abstract
The emergence of wildlife reservoirs of Mycobacterium bovis infection in cattle as well as increased inter-regional trade with associated spread of M. bovis has led to renewed interest in the use of vaccines for the control of bovine tuberculosis (TB). Field efficacy trials performed in the early 20th century demonstrated the partial effectiveness of bacilli Calmette-Guerin (BCG) for the control of bovine TB. Recent experimental trials with cattle have demonstrated that: (1) subunit vaccines may boost immunity elicited by BCG in cattle, (2) T cell central memory immune responses evoked by protective vaccines correlate with protection upon subsequent M. bovis challenge, (3) BCG is particularly protective when administered to neonates, and (4) differentiation of infected from vaccinated animals (DIVA) is feasible in cattle using in vitro or in vivo methods. In regards to wildlife reservoirs, the efficacy of BCG delivered orally has been demonstrated for brushtail possums (in field trials) as well as Eurasian badgers, wild boar, and white-tailed deer (each in experimental challenge studies). Vaccine delivery to wildlife reservoirs will primarily be oral, although a parenteral route is being deployed for badgers in England. Vaccine efficacy trials, both experimental challenge and field studies, with cattle and their wildlife reservoirs represent a primary example of the one health approach, with outcomes relevant for both veterinary and medical applications.
Collapse
|
39
|
Borsuk S, Seixas FK, Ramos DF, Mendum T, McFadden J, Dellagostin O. Rational design of diagnostic and vaccination strategies for tuberculosis. Braz J Infect Dis 2012. [DOI: 10.1016/s1413-8670(12)70277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
40
|
Buddle BM, Aldwell FE, de Lisle GW, Vordermeier HM, Hewinson RG, Wedlock DN. Low oral BCG doses fail to protect cattle against an experimental challenge with Mycobacterium bovis. Tuberculosis (Edinb) 2011; 91:400-5. [PMID: 21807560 DOI: 10.1016/j.tube.2011.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022]
Abstract
Studies were undertaken to determine whether a dose of oral Mycobacterium bovis bacillus Calmette-Guérin (BCG) which did not induce skin test reactivity could protect cattle against bovine tuberculosis (TB). Groups of calves (n = 9) were vaccinated by administering 10(8), 10(7) or 10(6) colony forming units (CFU) of BCG orally or 10(6) CFU subcutaneous (s.c.) BCG. A control group (n = 10) was not vaccinated. All animals were challenged with M. bovis 18 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Positive responses in the single cervical tuberculin skin test (severe interpretation) at 15 weeks post-vaccination were only observed in the s.c. BCG and 10(8) CFU oral BCG groups (four of nine animals/group). Following experimental challenge with M. bovis, both these BCG-vaccinated groups had significant reductions in lesion scores and bacterial counts whereas there was no protection in calves vaccinated with oral doses of 10(6) or 10(7) CFU of BCG. In conclusion, low oral doses of BCG did not induce skin test responses, IFN-γ responses or protection against TB, however, in the BCG vaccine groups where protection was observed, there was no correlation between protection and skin test responses or IFN-γ responses.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Private Bag 11008, Palmerston North 4442, New Zealand.
| | | | | | | | | | | |
Collapse
|
41
|
Milián-Suazo F, Gutiérrez-Pabello J, Bojorquez-Narváez L, Anaya-Escalera A, Cantó-Alarcón G, González-Enríquez J, Campos-Guillén J. IFN-g response to vaccination against tuberculosis in dairy heifers under commercial settings. Res Vet Sci 2011; 90:419-24. [PMID: 20719347 DOI: 10.1016/j.rvsc.2010.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
|
42
|
Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Vet Microbiol 2011; 151:8-13. [PMID: 21411245 DOI: 10.1016/j.vetmic.2011.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The urgency for new and improved cattle vaccines and diagnostic reagents for Bovine tuberculosis (TB) has made their development a research priority in Great Britain (GB). Significant progress has been made to develop specific antigens that allow the differentiation of BCG vaccinated and Mycobacterium bovis infected cattle (DIVA test). This has been greatly facilitated by the completion of the genome sequences of M. tuberculosis, M. bovis and BCG Pasteur and the subsequent application of comparative genome and transcriptome analysis to define DIVA antigens that complemented the prototype DIVA antigens ESAT-6 and CFP-10 by increasing their test sensitivity. Finally, we present an up-date of our current approaches in this area.
Collapse
|
43
|
|
44
|
Identification of surrogates and correlates of protection in protective immunity against Mycobacterium bovis infection induced in neonatal calves by vaccination with M. bovis BCG Pasteur and M. bovis BCG Danish. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:373-9. [PMID: 21228141 DOI: 10.1128/cvi.00543-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vaccination of neonatal calves with Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces a significant degree of protection against infection with virulent M. bovis, the causative agent of bovine tuberculosis (bTB). We compared two strains of BCG, Pasteur and Danish, in order to confirm that the current European human vaccine strain (BCG Danish) induced protective immunity in calves, and we assessed immune responses to determine correlates of protection that could assist future vaccine evaluation in cattle. Both vaccine strains induced antigen (purified protein derivate [PPD])-specific gamma interferon (IFN-γ) in whole-blood cultures. These responses were not significantly different for BCG Pasteur and BCG Danish and peaked at week 2 to 4 postvaccination. Vaccination with either BCG Danish or BCG Pasteur induced significant protection against bTB, with reductions in both lesion score and bacteriological burden evident in both groups of vaccinated calves compared with nonvaccinated control calves. Measurement of IFN-γ-expressing T lymphocytes postvaccination and postchallenge revealed both correlates and surrogates of protective efficacy. The frequency of central memory T lymphocytes present at 12 weeks postvaccination (at the time of M. bovis challenge) correlated significantly with protection. Conversely, the number of IFN-γ-expressing effector T cells present after M. bovis challenge was correlated with disease. These results demonstrate that vaccination of neonatal calves with either BCG Pasteur or BCG Danish induces protective immune responses against TB. In addition, we show that measurement of antigen-specific T lymphocyte populations may provide a reliable means for identifying protective vaccine candidates.
Collapse
|
45
|
Del Borgo C, Urigo C, Marocco R, Belvisi V, Pisani L, Citton R, Cianni R, Soscia F, Lichtner M, Mastroianni CM. Diagnostic and therapeutic approach in a rare case of primary bilateral adrenal tuberculosis. J Med Microbiol 2010; 59:1527-1529. [PMID: 20798213 DOI: 10.1099/jmm.0.020461-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report a case of a febrile patient with primary bilateral adrenalitis who was successfully treated with an antituberculous regimen. Primary isolated tubercular adrenalitis is a very rare clinical entity but it should be considered in cases of fever and enlargement of the adrenal glands. Integration of radiological pattern data with epidemiological, clinical and immunological data has high accuracy and specificity, even without histological examination.
Collapse
Affiliation(s)
- Cosmo Del Borgo
- Infectious Diseases, Santa Maria Goretti Hospital, Latina, Italy
| | - Carlo Urigo
- Radiology Department, Santa Maria Goretti Hospital, Latina, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, Sapienza University, Polo Pontino, Latina, Italy
| | - Valeria Belvisi
- Infectious Diseases Unit, Sapienza University, Polo Pontino, Latina, Italy
| | - Luisa Pisani
- Radiology Department, Santa Maria Goretti Hospital, Latina, Italy
| | - Rita Citton
- Infectious Diseases, Santa Maria Goretti Hospital, Latina, Italy
| | - Roberto Cianni
- Radiology Department, Santa Maria Goretti Hospital, Latina, Italy
| | - Fabrizio Soscia
- Infectious Diseases, Santa Maria Goretti Hospital, Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Sapienza University, Polo Pontino, Latina, Italy
| | | |
Collapse
|
46
|
Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J Clin Microbiol 2010; 48:3176-81. [PMID: 20592155 DOI: 10.1128/jcm.00420-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tuberculin skin test has been used for the diagnosis of bovine and human tuberculosis (TB) for over a hundred years. However, the specificity of the test is compromised by vaccination with the Mycobacterium bovis-derived vaccine strain bacille Calmette-Guérin (BCG). Since current promising vaccines against bovine TB are based on heterologous prime-boost combinations that include BCG, there is a need for diagnostic tests for differentiating infected from vaccinated animals (DIVA). The application of antigens such as ESAT-6 and CFP-10 for DIVA has so far been realized largely through their application in the blood-based gamma interferon release assay. In the current study, we have reassessed the potential of such antigens as skin test reagents for DIVA in cattle. A cocktail of the Mycobacterium tuberculosis complex recombinant protein antigens ESAT-6, CFP-10, MPB70, and MPB83 elicited delayed-type hypersensitivity (DTH) skin test responses in 78% of naturally infected tuberculin-positive cattle. Importantly, this cocktail induced no skin responses in BCG-vaccinated cattle despite them being sensitized for strong tuberculin responses. Further optimization of skin test antigen combinations identified that the inclusion of Rv3615c (Mb3645c) enhanced skin test sensitivity in naturally infected cattle without compromising specificity. In addition, we demonstrate for the first time the utility of synthetic peptides as promising skin test antigens for bovine TB for DIVA. Our data provide a promising basis for the future development of skin tests for DIVA with practical relevance for TB diagnosis in both veterinary and clinical settings.
Collapse
|
47
|
Performance of the Enferplex TB assay with cattle in Great Britain and assessment of its suitability as a test to distinguish infected and vaccinated animals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:813-7. [PMID: 20219883 DOI: 10.1128/cvi.00489-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rapid, simple, and accurate antemortem tests for tuberculosis (TB) in cattle need to be developed in order to augment the existing screening methods. In particular, as cattle vaccines are developed, such tests would allow the continuation of test-and-slaughter policies alongside vaccination. Therefore, the development of an assay that distinguishes infected from vaccinated animals (a DIVA test) is an urgent research requirement. In this study, we assessed the performance of a novel multiplex serological test with sera collected from 96 skin-tested animals with bovine tuberculosis, 93 TB-free animals, and 39 cattle vaccinated with Mycobacterium bovis BCG. Our results indicate that the test has a relative sensitivity range of 77.0% to 86.5% at corresponding specificity levels of 100.0% to 77.6%. Comparison with the Bovigam gamma interferon antemortem test revealed that this serology test was significantly more sensitive at specificities above 97.9%, while the Bovigam test was, on average, about 10% more sensitive when the test specificity was set below 97%. Importantly, this serological multiplex assay does not react with sera from BCG-vaccinated calves and is therefore suitable as a DIVA test alongside BCG-based vaccine strategies.
Collapse
|
48
|
Borsuk S, Newcombe J, Mendum TA, Dellagostin OA, McFadden J. Identification of proteins from tuberculin purified protein derivative (PPD) by LC-MS/MS. Tuberculosis (Edinb) 2009; 89:423-30. [DOI: 10.1016/j.tube.2009.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
49
|
Lopez-Valencia G, Renteria-Evangelista T, Williams JDJ, Licea-Navarro A, Mora-Valle ADL, Medina-Basulto G. Field evaluation of the protective efficacy of Mycobacterium bovis BCG vaccine against bovine tuberculosis. Res Vet Sci 2009; 88:44-9. [PMID: 19564029 DOI: 10.1016/j.rvsc.2009.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 05/08/2009] [Accepted: 05/31/2009] [Indexed: 10/20/2022]
Abstract
The protective efficacy of Mycobacterium bovis BCG (1 x 10(6) single dose) was evaluated under field conditions. A total of 140 male Holstein Friesian calves, one to two week-old were selected. Two groups of 70 each were formed, one group was vaccinated and the other was injected with a placebo during their second week of age and followed until 12 months of age. The study considered a positive case of tuberculosis to be an animal that had a positive reaction to the three following tests in a row: tuberculin, IFNgamma PPD-B and IFNgamma ESAT6-CFP10 during the 12 months of exposure. The results showed a 59.4% efficacy (IC95%: 47.64-71.16). The non-vaccinated calves were 2.4 times more at risk of becoming infected (IC95%: 1.07-5.68) compared to vaccinated animals. As a complementary test a PCR test was performed using nasal exudates in some animals from both groups using a Mycobacterium complex detection kit. All the positive PCR reactions (5/44) were found in the non-vaccinated animals. These findings suggest that the use of the BCG vaccine, even though it is not capable of protecting 100%, does prevent TB vaccinated animals from excreting bacilli in their nasal secretions at their first year of age.
Collapse
Affiliation(s)
- G Lopez-Valencia
- Laboratorio de Tuberculosis y Brucelosis, Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Colonia Independencia, Mexicali, 21290 Baja California, Mexico.
| | | | | | | | | | | |
Collapse
|
50
|
Vordermeier M, Gordon SV, Hewinson ARG. Antigen mining to define Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected animals: A VLA perspective. Transbound Emerg Dis 2009; 56:240-7. [PMID: 19413883 DOI: 10.1111/j.1865-1682.2009.01070.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The urgency for new and improved cattle vaccines and diagnostic reagents has been acknowledged by the UK Government, and development of cattle vaccine is a research priority. Significant progress has been made to develop specific antigens that allow the differentiation of bacille Calmette-Guerin (BCG) vaccinated and M. bovis-infected cattle [diagnosis of infected from vaccinated individuals (DIVA) test]. This progress has been greatly facilitated by the completion of the genome sequences of Mycobacterium tuberculosis, M. bovis and BCG Pasteur. In this study, we describe how we applied this knowledge, through comparative genome and transcriptome analysis, to define DIVA antigens that complemented the prototype DIVA antigens ESAT-6 and CFP-10 by increasing their test sensitivity. In addition, we draw general conclusions from our experience, and discuss potential future approaches in this area.
Collapse
Affiliation(s)
- M Vordermeier
- Veterinary Laboratories Agency - Weybridge, TB Research Group, New Haw, Surrey, UK.
| | | | | |
Collapse
|