1
|
Harjung A, Fracassi A, Devaraj NK. Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins. Nat Commun 2024; 15:9363. [PMID: 39477950 PMCID: PMC11526174 DOI: 10.1038/s41467-024-53783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The development of artificial cells has led to fundamental insights into the functional processes of living cells while simultaneously paving the way for transformative applications in biotechnology and medicine. A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We modify the membrane translocating loop of α-hemolysin to translocate functional peptides up to 52 amino acids across lipid membranes. Full membrane translocation occurs in the absence of any translocase machinery and the translocated peptides are recognized by specific peptide-binding ligands on the opposing membrane side. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures.
Collapse
Affiliation(s)
- Alexander Harjung
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Alexyuk M, Bogoyavlenskiy A, Moldakhanov Y, Akanova K, Manakbayeva A, Alexyuk P. Draft genome sequence data of methicillin-resistant Staphylococcus aureus, strain 4233. Data Brief 2024; 54:110492. [PMID: 38799713 PMCID: PMC11127097 DOI: 10.1016/j.dib.2024.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus is a conditionally pathogenic microorganism and one of the main causative agents of antibiotic resistant nosocomial infections. In immunocompromised people, S. aureus infection can cause folliculitis, furuncles, impetigo, osteomyelitis, septic arthritis, sepsis, endocarditis, pneumonia and meningitis. In the presented work, sequencing of a methicillin-resistant S. aureus, strain 4233, was performed on the Illumina MiSeq platform, followed by bioinformatics processing and gene annotation using SPAdes, RAST and CARD programs and databases. The submitted genome is a total of 2,790,390 bp long and contains 2759 genes, including 82 RNA genes. 33 % of the genes are functionally significant and represent 25 functional groups. Fourteen genes encoding resistance factors to 14 different types of antibacterial drugs were predicted. The information provided on the genome of S. aureus, strain 4233 will be of value in investigating the evolution and formation of antibiotic-resistant forms of S. aureus.
Collapse
Affiliation(s)
- Madina Alexyuk
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Andrey Bogoyavlenskiy
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Yergali Moldakhanov
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Kuralay Akanova
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Adolat Manakbayeva
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| | - Pavel Alexyuk
- Research and Production Center for Microbiology and Virology, Bogenbay batyr. Str., 105, Almaty 050010, Kazakhstan
| |
Collapse
|
3
|
Bak YS, Park JY, Kim JB, Cho SH. Molecular characterization and antibiotic resistance of Staphylococcus aureus strains isolated from patients with diarrhea in Korea between the years 2007 and 2022. Food Sci Biotechnol 2024; 33:1965-1974. [PMID: 38752118 PMCID: PMC11091020 DOI: 10.1007/s10068-023-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 05/18/2024] Open
Abstract
To investigate the molecular characteristics and antibiotic resistance of Staphylococcus aureus isolates from patients with diarrhea in Korea, 327 S. aureus strains were collected between 2007 and 2022. The presence of staphylococcal enterotoxin (SE) and toxic shock syndrome toxin-1 (TSST-1) genes in S. aureus isolates was determined by PCR. The highest expression of the TSST-1 gene was found in the GIMNO type (43.1% of GIMNO type). GIMNO type (Type I) refers to each staphylococcal enterotoxin (SE) gene gene (initials of genes): G = seg; I = sei; M = selm; N = seln; O = selo. Moreover, Type I isolates showed a significantly higher resistance to most antibiotics. A total of 195 GIMNO-type S. aureus strains were analyzed using multilocus sequence typing (MLST), and 18 unique sequence types (STs) were identified. The most frequent sequence type was ST72 (36.9%), followed by ST5 (22.1%) and ST30 (16.9%). Interestingly, ST72 strains showed a higher prevalence of MRSA than the other STs. In conclusion, our results were the first reported for S. aureus strains in Korea, which significantly expanded S. aureus genotype information for the surveillance of pathogenic S. aureus and may provide important epidemiological information to resolve several infectious diseases caused by S. aureus. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01478-9.
Collapse
Affiliation(s)
- Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Seung-Hak Cho
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Korea
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-Gu, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
4
|
Souza SSR, Smith JT, Marcovici MM, Eckhardt EM, Hansel NB, Martin IW, Andam CP. Demographic fluctuations in bloodstream Staphylococcus aureus lineages configure the mobile gene pool and antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:14. [PMID: 38725655 PMCID: PMC11076216 DOI: 10.1038/s44259-024-00032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
Staphylococcus aureus in the bloodstream causes high morbidity and mortality, exacerbated by the spread of multidrug-resistant and methicillin-resistant S. aureus (MRSA). We aimed to characterize the circulating lineages of S. aureus from bloodstream infections and the contribution of individual lineages to resistance over time. Here, we generated 852 high-quality short-read draft genome sequences of S. aureus isolates from patient blood cultures in a single hospital from 2010 to 2022. A total of 80 previously recognized sequence types (ST) and five major clonal complexes are present in the population. Two frequently detected lineages, ST5 and ST8 exhibited fluctuating demographic structures throughout their histories. The rise and fall in their population growth coincided with the acquisition of antimicrobial resistance, mobile genetic elements, and superantigen genes, thus shaping the accessory genome structure across the entire population. These results reflect undetected selective events and changing ecology of multidrug-resistant S. aureus in the bloodstream.
Collapse
Affiliation(s)
- Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, NY USA
| | - Joshua T. Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Michael M. Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, NY USA
| | - Elissa M. Eckhardt
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH USA
| | - Nicole B. Hansel
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH USA
| | - Isabella W. Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, NY USA
| |
Collapse
|
5
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Dewar AE, Belcher LJ, Scott TW, West SA. Genes for cooperation are not more likely to be carried by plasmids. Proc Biol Sci 2024; 291:20232549. [PMID: 38412971 PMCID: PMC10898968 DOI: 10.1098/rspb.2023.2549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Cooperation is prevalent across bacteria, but risks being exploited by non-cooperative cheats. Horizontal gene transfer, particularly via plasmids, has been suggested as a mechanism to stabilize cooperation. A key prediction of this hypothesis is that genes which are more likely to be transferred, such as those on plasmids, should be more likely to code for cooperative traits. Testing this prediction requires identifying all genes for cooperation in bacterial genomes. However, previous studies used a method which likely misses some of these genes for cooperation. To solve this, we used a new genomics tool, SOCfinder, which uses three distinct modules to identify all kinds of genes for cooperation. We compared where these genes were located across 4648 genomes from 146 bacterial species. In contrast to the prediction of the hypothesis, we found no evidence that plasmid genes are more likely to code for cooperative traits. Instead, we found the opposite-that genes for cooperation were more likely to be carried on chromosomes. Overall, the vast majority of genes for cooperation are not located on plasmids, suggesting that the more general mechanism of kin selection is sufficient to explain the prevalence of cooperation across bacteria.
Collapse
Affiliation(s)
- Anna E Dewar
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | | | - Thomas W Scott
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
7
|
Jurado A, Fernández L, Rodríguez A, García P. Prevalence of virulence- and antibiotic resistance-associated genotypes and phenotypes in Staphylococcus aureus strains from the food sector compared to clinical and cow mastitis isolates. Front Cell Infect Microbiol 2024; 14:1327131. [PMID: 38348375 PMCID: PMC10859521 DOI: 10.3389/fcimb.2024.1327131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Background Infections by the pathogen Staphylococcus aureus currently represent one of the most serious threats to human health worldwide, especially due to the production of enterotoxins and the ability to form biofilms. These structures and the acquisition of antibiotic resistance limit the action of antibiotics and disinfectants used to combat this microorganism in the industry and the clinic. Methods This work reports a comparative phenotypic and genotypic study of 18 S. aureus strains from different origins: clinical samples, milk from mastitic cows and food industry surfaces, most of which were isolated in Northern Spain. Results Genetically, the strains were very diverse but, in most cases, a closer proximity was observed for those from the same source. Notably, the average number of virulence genes was not significantly different in strains from the food sector. Of the 18 strains, 10 coded for at least one enterotoxin, and four of them carried 6 or 7 enterotoxin genes. The latter were all veterinary or clinical isolates. Most strains carried prophages, plasmids and/or pathogenicity islands. Regarding antibiotic resistance, although phenotypically all strains showed resistance to at least one antibiotic, resistance genes were only identified in 44.5% of strains, being mastitis isolates those with the lowest prevalence. Virulence-related phenotypic properties such as haemolytic activity, staphyloxanthin production, biofilm-forming capacity and spreading ability were widely distributed amongst the isolates. Conclusions Our results indicate that production of virulence factors, antibiotic resistance and biofilm formation can be found in S. aureus isolates from diverse environments, including the food industry, although some of these traits are more prevalent in strains isolated from infections in cows or humans. This emphasizes on the importance of monitoring the spread of these determinants not only in samples from the clinical environment, but also along the food chain, a strategy that falls under the prism of a one-health approach.
Collapse
Affiliation(s)
- Andrea Jurado
- Department of Technology and Biotechnology, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
- DairySafe Group. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Department of Technology and Biotechnology, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
- DairySafe Group. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Rodríguez
- Department of Technology and Biotechnology, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
- DairySafe Group. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
- DairySafe Group. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
8
|
Moon Y, Heo S, Park HJ, Park HW, Jeong DW. Novel Strain Leuconostoc lactis DMLL10 from Traditional Korean Fermented Kimchi as a Starter Candidate for Fermented Foods. J Microbiol Biotechnol 2023; 33:1625-1634. [PMID: 37674392 PMCID: PMC10772556 DOI: 10.4014/jmb.2306.06056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Leuconostoc lactis strain DMLL10 was isolated from kimchi, a fermented vegetable, as a starter candidate through safety and technological assessments. Strain DMLL10 was susceptible to ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, and tetracycline. It did not show any hemolytic activity. Regarding its phenotypic results related to its safety properties, genomic analysis revealed that strain DMLL10 did not encode for any toxin genes such as hemolysin found in the same genus. It did not acquire antibiotic resistance genes either. Strain DMLL10 showed protease activity on agar containing NaCl up to 3%. The genome of DMLL10 encoded for protease genes and possessed genes associated with hetero- and homo-lactic fermentative pathways for lactate production. Finally, strain DMLL10 showed antibacterial activity against seven common foodborne pathogens, although bacteriocin genes were not identified from its genome. These results indicates that strain DMLL10 is a novel starter candidate with safety, enzyme activity, and bacteriocin activity. The complete genomic sequence of DMLL10 will contribute to our understanding of the genetic basis of probiotic properties and allow for assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.
Collapse
Affiliation(s)
- Yura Moon
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Hee-Jung Park
- Department of Food and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
9
|
AlSaleh A, Shahid M, Farid E, Bindayna KM. Reduction of Panton-Valentine Leukocidin Production in the Staphylococcal Strain USA300 After In Vitro Ascorbic Acid and Nicotinamide Treatment. Cureus 2023; 15:e47588. [PMID: 38022293 PMCID: PMC10666906 DOI: 10.7759/cureus.47588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Panton-Valentine leukocidin (PVL) is one of the most important determinants of virulence in Staphylococcus aureus. It is associated with a propensity for complicating skin and soft tissue infections and necrotizing pneumonia. This study aims to quantitively examine the effect of ascorbic acid and nicotinamide on PVL production in the reference strain USA300. Methodology Sandwich enzyme-linked immunosorbent assay (ELISA) was used to quantitively measure the production of PVL via the commercial LukS sandwich ELISA kit (IBT Bio-services, MD, USA). Results Incubating USA300 with subinhibitory concentrations of antioxidants resulted in a statistically significant eight-fold reduction in PVL production at 1.25 mg/mL and 30 mg/mL for ascorbic acid and nicotinamide, respectively. Although the mechanism by which antioxidants inhibit PVL production is yet to be elucidated, we suggest that it can be due to interrupting PVL gene expression. Conclusions Ascorbic acid and nicotinamide have the potential to be toxin-suppressing agents that may be effective in supporting the bactericidal effect of antibiotics to improve the outcome of PVL-associated infections; however, further extensive research is required.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Mohammad Shahid
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Eman Farid
- Pathology/Immunology, Salmaniya Medical Complex, Ministry of Health, College of Medicine, Arabian Gulf University, Manama, BHR
| | | |
Collapse
|
10
|
Ramadan HA, El-Baz AM, Goda RM, El-Sokkary MMA, El-Morsi RM. Molecular characterization of enterotoxin genes in methicillin-resistant S. aureus isolated from food poisoning outbreaks in Egypt. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:86. [PMID: 37641155 PMCID: PMC10463939 DOI: 10.1186/s41043-023-00416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/09/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Staphylococcus aureus (S. aureus), especially methicillin-resistant S. aureus (MRSA), is a known disease-causing bacteria with many associated health hazards. Staphylococcal food poisoning can result from staphylococcal enterotoxins (SEs). METHODS In this study, 50 S. aureus isolates were isolated from the gastrointestinal tract (GIT) clinical samples of patients with food poisoning in clinical laboratories at Mansoura University Hospital, Egypt. For determination their antibiogram, these isolates were tested for antimicrobial sensitivity against 12 antimicrobial agents using the agar disk diffusion test. After DNA extraction from the isolates, conventional polymerase chain reaction (PCR) was used to detect mecA and SEs genes. RESULTS As a result, all isolates were ampicillin and cefoxitin-resistant, while 86% (43 of 50) of the tested isolates exhibited multidrug resistance (MDR). In contrast, the highest sensitivity was confirmed against vancomycin, linezolid and quinolones, namely ciprofloxacin and norfloxacin. Although 100% of the isolates were mecA positive, staphylococcal enterotoxin genes set-A, set-B, set-C, set-G, set-M, and set-O genes were detected in 56%, 20%, 8%, 32%, 16%, and 24%, of the tested isolates, respectively. Finally, isolates encompassing SEs genes were used to validate a microarray chip, indicating its potential for a better methodological approach for detecting and identifying SEs in human samples. CONCLUSION The genotypic findings of this study may help explain the enterotoxigenic patterns in S. aureus among Egyptian patients with food poisoning.
Collapse
Affiliation(s)
- Heba A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Reham M Goda
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Mohamed M A El-Sokkary
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| |
Collapse
|
11
|
Schlievert PM, Gaitán AV, Kilgore SH, Roe AL, Maukonen J, Lehtoranta L, Leung DYM, Marsman DS. Inhibition of Toxic Shock Syndrome-Associated Staphylococcus aureus by Probiotic Lactobacilli. Microbiol Spectr 2023; 11:e0173523. [PMID: 37404182 PMCID: PMC10434015 DOI: 10.1128/spectrum.01735-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Staphylococcus aureus is a human pathogen with many infections originating on mucosal surfaces. One common group of S. aureus is the USA200 (CC30) clonal group, which produces toxic shock syndrome toxin-1 (TSST-1). Many USA200 infections occur on mucosal surfaces, particularly in the vagina and gastrointestinal tract. This allows these organisms to cause cases of menstrual TSS and enterocolitis. The current study examined the ability of two lactobacilli, Lactobacillus acidophilus strain LA-14 and Lacticaseibacillus rhamnosus strain HN001, for their ability to inhibit the growth of TSST-1 positive S. aureus, the production of TSST-1, and the ability of TSST-1 to induce pro-inflammatory chemokines from human vaginal epithelial cells (HVECs). In competition growth experiments, L. rhamnosus did not affect the growth of TSS S. aureus but did inhibit the production of TSST-1; this effect was partially due to acidification of the growth medium. L. acidophilus was both bactericidal and prevented the production of TSST-1 by S. aureus. This effect appeared to be partially due to acidification of the growth medium, production of H2O2, and production of other antibacterial molecules. When both organisms were incubated with S. aureus, the effect of L. acidophilus LA-14 dominated. In in vitro experiments with HVECs, neither lactobacillus induced significant production of the chemokine interleukin-8, whereas TSST-1 did induce production of the chemokine. When the lactobacilli were incubated with HVECs in the presence of TSST-1, the lactobacilli reduced chemokine production. These data suggest that these two bacteria in probiotics could reduce the incidence of menstrual and enterocolitis-associated TSS. IMPORTANCE Toxic shock syndrome (TSS) Staphylococcus aureus commonly colonize mucosal surfaces, giving them the ability to cause TSS through the action of TSS toxin-1 (TSST-1). This study examined the ability of two probiotic lactobacilli to inhibit S. aureus growth and TSST-1 production, and the reduction of pro-inflammatory chemokine production by TSST-1. Lacticaseibacillus rhamnosus strain HN001 inhibited TSST-1 production due to acid production but did not affect S. aureus growth. Lactobacillus acidophilus strain LA-14 was bactericidal against S. aureus, partially due to acid and H2O2 production, and consequently also inhibited TSST-1 production. Neither lactobacillus induced the production of pro-inflammatory chemokines by human vaginal epithelial cells, and both inhibited chemokine production by TSST-1. These data suggest that the two probiotics could reduce the incidence of mucosa-associated TSS, including menstrual TSS and cases originating as enterocolitis.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa; Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Samuel H. Kilgore
- Department of Microbiology and Immunology, University of Iowa; Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy L. Roe
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
12
|
Li Y, Pan T, Cao R, Li W, He Z, Sun B. Nitrate Reductase NarGHJI Modulates Virulence via Regulation of agr Expression in Methicillin-Resistant Staphylococcus aureus Strain USA300 LAC. Microbiol Spectr 2023; 11:e0359622. [PMID: 37199609 PMCID: PMC10269880 DOI: 10.1128/spectrum.03596-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium with a widespread distribution that can cause diverse severe diseases. The membrane-bound nitrate reductase NarGHJI serves respiratory function. However, little is known about its contribution to virulence. In this study, we demonstrated that narGHJI disruption results in the downregulation of virulence genes (e.g., RNAIII, agrBDCA, hla, psmα, and psmβ) and reduces the hemolytic activity of the methicillin-resistant S. aureus (MRSA) strain USA300 LAC. Moreover, we provided evidence that NarGHJI participates in regulating host inflammatory response. A mouse model of subcutaneous abscess and Galleria mellonella survival assay demonstrated that the ΔnarG mutant was significantly less virulent than the wild type. Interestingly, NarGHJI contributes to virulence in an agr-dependent manner, and the role of NarGHJI differs between different S. aureus strains. Our study highlights the novel role of NarGHJI in regulating virulence, thereby providing a new theoretical reference for the prevention and control of S. aureus infection. IMPORTANCE Staphylococcus aureus is a notorious pathogen that poses a great threat to human health. The emergence of drug-resistant strains has significantly increased the difficulty of preventing and treating S. aureus infection and enhanced the pathogenic ability of the bacterium. This indicates the importance of identifying novel pathogenic factors and revealing the regulatory mechanisms through which they regulate virulence. The nitrate reductase NarGHJI is mainly involved in bacterial respiration and denitrification, which can enhance bacterial survival. We demonstrated that narGHJI disruption results in the downregulation of the agr system and agr-dependent virulence genes, suggesting that NarGHJI participates in the regulation of S. aureus virulence in an agr-dependent manner. Moreover, the regulatory approach is strain specific. This study provides a new theoretical reference for the prevention and control of S. aureus infection and reveals new targets for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yujie Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ting Pan
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ruobing Cao
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
13
|
AlSaleh A, Shahid M, Farid E, Saeed N, Bindayna KM. Multidrug-Resistant Staphylococcus aureus Isolates in a Tertiary Care Hospital, Kingdom of Bahrain. Cureus 2023; 15:e37255. [PMID: 37168202 PMCID: PMC10166627 DOI: 10.7759/cureus.37255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a ubiquitous pathogen associated with a wide spectrum of human infections. In recent decades, MRSA infections have been increasingly reported in individuals without established risk factors, infecting immunocompetent members of the community. This emergence is attributed to the production of various virulence factors, notably Panton-Valentine leukocidin (PVL). OBJECTIVE The aim of this study was to better understand the prevalence, antibiotic resistance profiles, and molecular characteristics of S. aureus and MRSA in a tertiary care hospital in the Kingdom of Bahrain. MATERIALS AND METHODS This cross-sectional study was carried out in a tertiary hospital for a one-year period, from December 2020 to December 2021. A total of 161 consecutive S. aureus isolates were collected. Antibiotic susceptibility was tested using BD Phoenix™ automated identification and susceptibility testing system. Molecular analysis was conducted via conventional PCR and conventional multiplex PCR for SCCmec typing. RESULTS In this study, 161 S. aureus isolates were investigated, 60% (n=97) were characterized as MRSA, of which, 12% (n=12) were healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) while 88% (n=85) were community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). No statistically significant difference (P>0.05) in antibiotic resistance trends between HA-MRSA and CA-MRSA was detected. Multidrug resistance (MDR) amounted to 19% (n=30) of all S. aureus isolates, 14% (n=9) of methicillin-susceptible Staphylococcus aureus (MSSA) isolates, and 22% (n=21) of MRSA isolates. SCCmec typing demonstrated a high prevalence of type IV (61%, n=59), followed by type V (32%, n=31), then type II (4%, n=4), and type III (3%, n=3). The PVL prevalence was 39% (n=25) in MSSA and 62% (n=60) in MRSA, 33% (n=4) in HA-MRSA, and 66% (n=56) in CA-MRSA. CONCLUSION This study demonstrated the emergence of PVL-producing CA-MRSA in a tertiary care hospital, as well as the detection of PVL-producing MDR strains. This development prompts serious measures to be taken in order to sustain a healthy clinical environment.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Mohammed Shahid
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Eman Farid
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| | - Nermin Saeed
- Microbiology, Salmaniya Medical Complex, Manama, BHR
| | - Khalid M Bindayna
- Microbiology, Immunology and Infectious Diseases, Arabian Gulf University, Manama, BHR
| |
Collapse
|
14
|
Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z. Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. SMART MEDICINE 2022; 1:e20220015. [PMID: 39188734 PMCID: PMC11235639 DOI: 10.1002/smmd.20220015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 08/28/2024]
Abstract
The World Health Organization has designated Staphylococcus aureus as a global health concern. This designation stems from the emergence of multiple drug-resistant strains that already account for hundreds of thousands of deaths globally. The development of novel treatment strategies to eradicate S. aureus or mitigate its pathogenic potential is desperately needed. In the effort to develop emerging strategies to combat S. aureus, phage display is uniquely positioned to assist in this endeavor. Leveraging bacteriophages, phage display enables researchers to better understand interactions between proteins and their antagonists. In doing so, researchers have the capacity to design novel inhibitors, biosensors, disinfectants, and immune modulators that can target specific S. aureus strains. In this review, we highlight how phage display can be leveraged to design novel solutions to combat S. aureus. We further discuss existing uses of phage display as a detection, intervention, and prevention platform against S. aureus and provide outlooks on how this technology can be optimized for future applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Kyle Jackson
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Michael Chan
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Ahmed Saif
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Leon He
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Tohid F. Didar
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Zeinab Hosseinidoust
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
15
|
Tao Y, Sun D, Ren X, Zhao Y, Zhang H, Jiang T, Guan J, Tang Y, Song W, Li S, Wang L. Bavachin Suppresses Alpha-Hemolysin Expression and Protects Mice from Pneumonia Infection by Staphylococcus aureus. J Microbiol Biotechnol 2022; 32:1253-1261. [PMID: 36224757 PMCID: PMC9668093 DOI: 10.4014/jmb.2207.07048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus (S. aureus) infection causes dramatic harm to human health as well as to livestock development. As an important virulence factor, alpha-hemolysin (hla) is critical in the process of S. aureus infection. In this report, we found that bavachin, a natural flavonoid, not only efficiently inhibited the hemolytic activity of hla, but was also capable of inhibiting it on transcriptional and translational levels. Moreover, further data revealed that bavachin had no neutralizing activity on hla, which did not affect the formation of hla heptamers and exhibited no effects on the hla thermal stability. In vitro assays showed that bavachin was able to reduce the S. aureus-induced damage of A549 cells. Thus, bavachin repressed the lethality of pneumonia infection, lung bacterial load and lung tissue inflammation in mice, providing potent protection to mice models in vivo. Our results indicated that bavachin has the potential for development as a candidate hla inhibitor against S. aureus.
Collapse
Affiliation(s)
- Ye Tao
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Dazhong Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun 130021, P.R. China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Changchun, P.R. China
| | - Hengjian Zhang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,Corresponding authors W. Song E-mail:
| | - Shuqiang Li
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun 130062, P.R. China,
S. Li E-mail:
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,
L. Wang E-mail:
| |
Collapse
|
16
|
First Genome-Based Characterisation and Staphylococcal Enterotoxin Production Ability of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Strains Isolated from Ready-to-Eat Foods in Algiers (Algeria). Toxins (Basel) 2022; 14:toxins14110731. [PMID: 36355981 PMCID: PMC9694651 DOI: 10.3390/toxins14110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus is a pathogenic microorganism of humans and animals, able to cause foodborne intoxication due to the production of staphylococcal enterotoxins (SEs) and to resist antibiotic treatment as in the case of methicillin-resistant S. aureus (MRSA). In this study, we performed a genomic characterisation of 12 genetically diverse S. aureus strains isolated from ready-to-eat foods in Algiers (Algeria). Moreover, their ability to produce some classical and new staphylococcal enterotoxins (SEs) was investigated. The 12 S. aureus strains resulted to belong to nine known sequence types (STs) and to the novel ST7199 and ST7200. Furthermore, S. aureus SA46 was assigned to the European clone MRSA-ST80-SCCmec-IV. The 12 strains showed a wide endowment of se and sel (staphylococcal enterotoxin-like toxin) genes (sea, seb, sed, seg, seh, sei, selj, sek, sem, sen, seo, seq, ser, selu2, selw, selx, sey, sel30; ψent1-ψent2), including variants and pseudogenes, and harboured the enterotoxin gene cluster (egc) types 1 and 5. Additionally, they produced various amounts of SEA (64.54-345.02 ng/mL), SEB (2871.28-14739.17 ng/mL), SED (322.70-398.94 ng/mL), SEH (not detectable-239.48 ng/mL), and SER (36,720.10-63,176.06 ng/mL) depending on their genotypes. The genetic determinants related to their phenotypic resistance to β-lactams (blaZ, mecA), ofloxacin (gyrA-S84L), erythromycin (ermB), lincomycin (lmrS), kanamycin (aph(3')-III, ant(6)-I), and tetracyclin (tet(L), tet(38)) were also detected. A plethora of virulence-related genes, including major virulence genes such as the tst gene, determinant for the toxic shock syndrome toxin-1, and the lukF-PV and lukS-PV genes, encoding the panton-valentine leukocidin (PVL), were present in the S. aureus strains, highlighting their pathogenic potential. Furthermore, a phylogenomic reconstruction including worldwide foodborne S. aureus showed a clear clustering based on ST and geographical origin rather than the source of isolation.
Collapse
|
17
|
Bhowmick S, Beckmann M, Shen J, Mur LAJ. Identification and metabolomic characterization of potent anti-MRSA phloroglucinol derivatives from Dryopteris crassirhizoma Nakai (Polypodiaceae). Front Pharmacol 2022; 13:961087. [PMID: 36339560 PMCID: PMC9630833 DOI: 10.3389/fphar.2022.961087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used to treat infectious diseases and could offer potential drug leads. This study evaluates the in vitro antimicrobial activities from commercially sourced Dryopteris crassirhizoma Nakai (Polypodiaceae) whose authenticity was confirmed by DNA barcoding based on the ribulose bisphosphate carboxylase (rbcL) gene. Powdered rhizomes were sequentially extracted using n-hexane, dichloromethane, ethyl acetate, and methanol at ambient temperature. The dried extracts at different concentrations were tested for antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium smegmatis. D. crassirhizoma extracts exhibited significant antimicrobial activities only against MRSA (minimum inhibitory concentration: 3.125 μg/ml n-hexane extract). Activity-led fractionations of D. crassirhizoma and characterization by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) targeted a fraction (A3), with two anti-MRSA phloroglucinol derivatives, flavaspidic acid AB and norflavaspidic acid AB—being greatly enriched in the latter. The impact of A3 on MRSA cells was examined using untargeted metabolomic analysis and compared to that of other established antibiotics (all treatments normalized to MIC50 at 6 h). This suggested that norflavaspidic acid AB had distinctive effects, one of which involved targeting bioenergetic transformation, metabolism, and particularly acetyl-CoA, on MRSA cells. No cytotoxicity was observed for the norflavaspidic acid AB-enriched fraction against murine HepG2 cells. This study requires further experimental validation but can have indicated a naturally available compound that could help counter the threat of clinically relevant strains with antibiotic resistance.
Collapse
Affiliation(s)
- Sumana Bhowmick
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, United States
- Institute of Biological, Environmental and Rural Studies, Aberystwyth University, Aberystwyth, United Kingdom
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Studies, Aberystwyth University, Aberystwyth, United Kingdom
| | - Jianying Shen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianying Shen, ; Luis A. J. Mur,
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Studies, Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Jianying Shen, ; Luis A. J. Mur,
| |
Collapse
|
18
|
Mazandarani A, Goudarzi S, Jafarabadi M, Azimi Nekoo E. Effects of Cold Plasma on Staphylococcus Aureus. J Family Reprod Health 2022; 16:212-216. [PMID: 36569254 PMCID: PMC9759435 DOI: 10.18502/jfrh.v16i3.10583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective: To investigate the effect of cold plasma on Staphylococcus aureus destruction at different treatment times. Materials and methods: Staphylococcus aureus was cultured on 4 plates of LB Agar medium each at 1.5 × 103 CFU / mL (colony-forming unit per milliliter) and one group was selected as the control group and the other 3 groups were treated with plasma for 5, 7 and 10 minutes. They were incubated for 24 hours at 37 °C. Finally, the number of colonies formed was counted. Results: It was shown that treatment with cold atmospheric plasma significantly reduced bacterial colonies and in comparison to the control plate with a colony count of 1.5 × 103 CFU/mL treatment with air plasma for 10 minutes decreased the Pseudomonas colony count to zero. Conclusion: It was observed that the cold atmospheric plasma jet device manufactured in atomic Energy Organization of Iran can significantly kill bacteria in a short time. Increasing the duration of treatment significantly reduces bacterial colonies.
Collapse
Affiliation(s)
- Abolfazl Mazandarani
- Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization, Tehran, Iran
| | - Shervin Goudarzi
- Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization, Tehran, Iran
| | - Mina Jafarabadi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Azimi Nekoo
- Jacobi Medical Center/Albert Einstein University, New York, United States
| |
Collapse
|
19
|
Divergent Analyses of Genetic Relatedness and Evidence-Based Assessment of Therapeutics of Staphylococcus aureus from Semi-intensive Dairy Systems. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5313654. [PMID: 35769677 PMCID: PMC9236795 DOI: 10.1155/2022/5313654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022]
Abstract
Use of antibiotics without following standard guidelines is routine practice in developing countries which is giving rise to genetic divergence and increased drug resistance. The current study analyzed genetic divergence and drug resistance by S. aureus and therapeutic efficacy of novel antibiotic combinations. The study revealed that 42.30% (minimum 20%-maximum 70%) of milk samples are positive for S. aureus. Study also revealed seven SNPs in the S. aureus nuc gene (c.53A>G, c.61A>G, c.73T>C, c.93C>A, c.217C>T, c.280T>C, and c.331T>A). Local isolates Staph-2 and Staph-3 were closely related to Bos taurus nuc gene (bovine S. aureus), while Staph-1 was closely related to Homo sapiens (human S. aureus) indicating shifting of host. Change of two amino acids and staphylococcal nuclease conserved domain was observed in all local isolates of S. aureus. The isoelectric points predicted by protParam of Staph-1, Staph-2, and Staph-3 proteins were 9.30, 9.20, and 9.20, respectively. The antibiotic susceptibility profile of S. aureus presented highest resistance against penicillin (46.67%) and glycopeptide (43.33%). When a single antibiotic regimen was adopted in a field trial, the highest efficacy was reported in the case of oxytetracycline (80%) while lowest was presented by azithromycin. Among antibiotics' combined regimen, the highest efficacy (80%) was presented by gentamicin with oxytetracycline: cefotaxime with vancomycin; and ciprofloxacin with vancomycin. The current study concluded rising percentages of S. aureus from dairy milk, proofs of genetic host shifts, and altered responses of in on field therapeutics.
Collapse
|
20
|
Yu H, Liu Y, Yang F, Xie Y, Guo Y, Cheng Y, Yao W. Combined an acoustic pressure simulation of ultrasonic radiation and experimental studies to evaluate control efficacy of high-intensity ultrasound against Staphylococcus aureus biofilm. ULTRASONICS SONOCHEMISTRY 2021; 79:105764. [PMID: 34601447 PMCID: PMC8496304 DOI: 10.1016/j.ultsonch.2021.105764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
This study evaluated efficacy of high-intensity ultrasound (HIU) on controlling or stimulating Staphylococcus aureus biofilm. Acoustic pressure distribution on the surface of glass slide cultivated S. aureus biofilm was first simulated as a standardized parameter to reflect sono-effect. When the power of HIU was 240 W with acoustic pressure of -1.38×105 Pa, a reasonably high clearance rate of S. aureus biofilm was achieved (96.02%). As an all-or-nothing technique, the HIU did not cause sublethal or injury of S. aureus but inactivate the cell directly. A further evaluation of HIU-induced stimulation of biofilm was conducted at a low power level (i.e. 60 W with acoustic pressure of -6.91×104 Pa). The low-power-long-duration HIU treatment promoted the formation of S. aureus biofilm and enhanced its resistance as proved by transcriptional changes of genes in S. aureus, including up-regulations of rbf, sigB, lrgA, icaA, icaD, and down-regulation of icaR. These results indicate that the choose of input power is determined during the HIU-based cleaning and processing. Otherwise, the growth of S. aureus and biofilm formation are stimulated when treats by an insufficiently high power of HIU.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
21
|
Liao X, Wang J, Jiang G, Lingyu M, Jiang G, Wang J, Huang B. Identification of ruthenium (II) complexes with furan-substituted ligands as possible antibacterial agents against Staphylococcus aureus. Chem Biol Drug Des 2021; 98:885-893. [PMID: 34453495 DOI: 10.1111/cbdd.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Abstract
The growing burden of antibiotic resistance worldwide calls for developing new classes of antimicrobial strategy. Recently years, the use of adjuvants that rescue antibiotics identified as a promising strategy for overcoming bacterial resistance. In this study, three ruthenium complexes functionalized with furan-substituted ligands([Ru(phen)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-1), [Ru(dmp)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-2) and [Ru(dmb)2 (CAPIP)](ClO4 )2 (Ru(Ⅱ)-3) (dmb=4,4'-dimethyl-2,2'-bipyridine, phen=1,10-phenanthroline, dmp=2,9-dimethyl-1,10-phenanthroline, CAPIP=(E)-2- (2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline)) were designed and synthesized. The antimicrobial activities of all compounds against S. aureus were assessed by growth inhibition assays. The MIC values of three complexes range from 0.015 to 0.050 mg/ml. Subsequently, the Ru(II)-2 complexes which exhibited strongest antibacterial activity were further tested against bacteria biofilms formation and toxin secretion. In addition, aimed to test whether ruthenium complexes have potential value as antimicrobial adjuvants, the synergism between Ru(Ⅱ)-2 and some antibiotics against S. aureus were examined through checkerboard method. Interestingly, Ru(Ⅱ)-2 could not only effectively inhibit biofilms formation of S. aureus and inhibit the hemolysin toxin secretion, but also selectivity show synergism with two common antibiotics. More importantly, mouse infection study also verified Ru(Ⅱ)-2 were highly effective against S. aureus in vivo.
Collapse
Affiliation(s)
- Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Jing Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Guijuan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Mao Lingyu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
22
|
Bacterial Carriage of Genes Encoding Fibronectin-Binding Proteins Is Associated with Long-Term Persistence of Staphylococcus aureus in the Nasal and Gut Microbiota of Infants. Appl Environ Microbiol 2021; 87:e0067121. [PMID: 34020939 PMCID: PMC8276802 DOI: 10.1128/aem.00671-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus can colonize both the anterior nares and the gastrointestinal tract. However, colonization at these sites in the same individuals has not been studied, and the traits that facilitate colonization and persistence at these sites have not been compared. Samples from the nostrils and feces collected on 9 occasions from 3 days to 3 years of age in 65 infants were cultured; 54 samples yielded S. aureus. The numbers of nasal and fecal S. aureus strains increased rapidly during the first weeks and were similar at 1 month of age (>40% of infants colonized). Thereafter, nasal carriage declined, while fecal carriage remained high during the first year of life. Individual strains were identified, and their colonization patterns were related to their carriage of genes encoding adhesins and superantigenic toxins. Strains retrieved from both the nose and gut (n = 44) of an infant were 4.5 times more likely to colonize long term (≥3 weeks at both sites) than strains found only in the rectum/feces (n = 56) or only in the nose (n = 32) (P ≤ 0.001). Gut colonization was significantly associated with carriage of the fnbA gene, and long-term colonization at either site was associated with carriage of fnbA and fnbB. In summary, gut colonization by S. aureus was more common than nasal carriage by S. aureus in the studied infants. Gut strains may provide a reservoir for invasive disease in vulnerable individuals. Fibronectin-binding adhesins and other virulence factors may facilitate commensal colonization and confer pathogenic potential. IMPORTANCES. aureus may cause severe infections and frequently colonizes the nose. Nasal carriage of S. aureus increases 3-fold the risk of invasive S. aureus infection. S. aureus is also commonly found in the gut microbiota of infants and young children. However, the relationships between the adhesins and other virulence factors of S. aureus strains and its abilities to colonize the nostrils and gut of infants are not well understood. Our study explores the simultaneous colonization by S. aureus of the nasal and intestinal tracts of newborn infants through 3 years of follow-up. We identify bacterial virulence traits that appear to facilitate persistent colonization of the nose and gut by S. aureus. This expands our current knowledge of the interplay between bacterial commensalism and pathogenicity. Moreover, it may contribute to the development of targeted strategies for combating S. aureus infection.
Collapse
|
23
|
Jiang Y, Xu Q, Jiang L, Zheng R. Isolation and Characterization of a Lytic Staphylococcus aureus Phage WV against Staphylococcus aureus Biofilm. Intervirology 2021; 64:169-177. [PMID: 34229320 DOI: 10.1159/000515282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive, pathogenic bacterium that causes a wide range of symptoms in humans and can form biofilm, which is a multicellular community of microorganisms that attaches to nonbiological and biological surfaces. METHODS Here, we aimed to isolate and characterize an S. aureus phage and examine the bactericidal activity alone and in conjunction with streptomycin treatment. RESULTS We isolated a virulent phage, WV, from a slaughterhouse in Jiangsu, China. This strain belonged to the family Myoviridae and presented a genome size of 141,342 bp. The optimal pH of the preservation buffer was 6-7, optimal growth temperature was 37°C, and optimal multiplicity of infection was 0.01. Phage WV can sterilize most clinical strains of S. aureus that had been isolated from clinical patients in the First People's Hospital of the Yunnan Province. Against low-concentration S. aureus culture, streptomycin demonstrated a greater antibiofilm effect than that of phage WV. By contrast, in high-concentration S. aureus culture, phage WV demonstrated greater antibiofilm effect than that of streptomycin. The use of phage WV and streptomycin together had a substantially greater overall antibiofilm effect than that achieved using either component alone. CONCLUSION This study provides strong evidence for the effectiveness of phage application for the reduction of S. aureus biofilm growth and suggests that phages can be considered as a viable alternative to antibiotics in clinical settings.
Collapse
Affiliation(s)
- Yaxian Jiang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qian Xu
- Department of Blood Transfusion, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Liming Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
24
|
Rohmer C, Wolz C. The Role of hlb-Converting Bacteriophages in Staphylococcus aureus Host Adaption. Microb Physiol 2021; 31:109-122. [PMID: 34126612 DOI: 10.1159/000516645] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
As an opportunistic pathogen of humans and animals, Staphylococcus aureus asymptomatically colonizes the nasal cavity but is also a leading cause of life-threatening acute and chronic infections. The evolution of S. aureus resulting from short- and long-term adaptation to diverse hosts is tightly associated with mobile genetic elements. S. aureus strains can carry up to four temperate phages, many of which possess accessory genes encoding staphylococcal virulence factors. More than 90% of human nasal isolates of S. aureus have been shown to carry Sa3int phages, whereas invasive S. aureus isolates tend to lose these phages. Sa3int phages integrate as prophages into the bacterial hlb gene, disrupting the expression of the sphingomyelinase Hlb, an important virulence factor under specific infection conditions. Virulence factors encoded by genes carried by Sa3int phages include staphylokinase, enterotoxins, chemotaxis-inhibitory protein, and staphylococcal complement inhibitor, all of which are highly human specific and probably essential for bacterial survival in the human host. The transmission of S. aureus from humans to animals is strongly correlated with the loss of Sa3int phages, whereas phages are regained once a strain is transmitted from animals to humans. Thus, both the insertion and excision of prophages may confer a fitness advantage to this bacterium. There is also growing evidence that Sa3int phages may perform "active lysogeny," a process during which prophages are temporally excised from the chromosome without forming intact phage particles. The molecular mechanisms controlling the peculiar life cycle of Sa3int phages remain largely unclear. Nevertheless, their regulation is likely fine-tuned to ensure bacterial survival within different hosts.
Collapse
Affiliation(s)
- Carina Rohmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
25
|
Hu DL, Li S, Fang R, Ono HK. Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00007-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractStaphylococcal superantigen (SAg) toxins are the most notable virulence factors associated with Staphylococcus aureus, which is a pathogen associated with serious community and hospital acquired infections in humans and various diseases in animals. Recently, SAg toxins have become a superfamily with 29 types, including staphylococcal enterotoxins (SEs) with emetic activity, SE-like toxins (SEls) that do not induce emesis in primate models or have yet not been tested, and toxic shock syndrome toxin-1 (TSST-1). SEs and SEls can be subdivided into classical types (SEA to SEE) and novel types (SEG to SElY, SE01, SE02, SEl26 and SEl27). The genes of SAg toxins are located in diverse accessory genetic elements and share certain structural and biological properties. SAg toxins are heat-stable proteins that exhibit pyrogenicity, superantigenicity and capacity to induce lethal hypersensitivity to endotoxin in humans and animals. They have multiple pathogenicities that can interfere with normal immune function of host, increase the chances of survival and transmission of pathogenic bacteria in host, consequently contribute to the occurrence and development of various infections, persistent infections or food poisoning. This review focuses on the following aspects of SAg toxins: (1) superfamily members of classic and novelty discovered staphylococcal SAgs; (2) diversity of gene locations and molecular structural characteristics; (3) biological characteristics and activities; (4) multi-pathogenicity of SAgs in animal and human diseases, including bovine mastitis, swine sepsis, abscesses and skin edema in pig, arthritis and septicemia in poultry, and nosocomial infections and food-borne diseases in humans.
Collapse
|
26
|
Guan Z, Liu Y, Liu C, Wang H, Feng J, Yang G. Staphylococcus aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56 bright NK Cells. Front Cell Infect Microbiol 2021; 11:658141. [PMID: 33854984 PMCID: PMC8039520 DOI: 10.3389/fcimb.2021.658141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 01/12/2023] Open
Abstract
IFN-γ is produced upon stimulation with S. aureus and may play a detrimental role during infection. However, whether hemolysins play a role in the mechanism of IFN-γ production has not been fully characterized. In this study, we demonstrated that Hlb, one of the major hemolysins of S. aureus, upregulated IFN-γ production by CD56bright NK cells from human peripheral blood mononuclear cells (PBMCs). Further investigation showed that Hlb increased calcium influx and induced phosphorylation of ERK1/2. Either blocking calcium or specifically inhibiting phosphorylation of ERK1/2 decreased the production of IFN-γ induced by Hlb. Moreover, we found that this process was dependent on the sphingomyelinase activity of Hlb. Our findings revealed a novel mechanism of IFN-γ production in NK cells induced by Hlb, which may be involved in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Zhangchun Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yu Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Chenghua Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Huiting Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Guang Yang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
27
|
Staphylococcal Enterotoxin C Subtypes Are Differentially Associated with Human Infections and Immunobiological Activities. mSphere 2021; 6:6/1/e01153-20. [PMID: 33504664 PMCID: PMC7885323 DOI: 10.1128/msphere.01153-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal enterotoxin C has four subtypes that cause human diseases, designated SEC-1 to -4. This study shows that SEC-2 and SEC-3 are the most toxic subtypes in a rabbit model and are associated with human vaginal infections or colonization in association with another superantigen, toxic shock syndrome toxin 1. Staphylococcus aureus causes significant infections, responsible for toxic shock syndrome (TSS), hemorrhagic pneumonia, and many other infections. S. aureus secretes virulence factors, which include superantigens such as staphylococcal enterotoxins (SEs). We examined differences in immunobiological activities and disease associations among the four human SEC subtypes. We sequenced the sec gene from 35 human isolates to determine SEC subtypes. Upon finding differences in disease association, we used a [3H]thymidine uptake assay to examine SEC-induced superantigenicity. We also employed a rabbit model of SEC-induced TSS. SEC-2 and SEC-3 were associated with menstrual TSS and vaginal isolates from healthy women, whereas SEC-4 was produced by USA400 isolates causing purpura fulminans and hemorrhagic pneumonia. SEC subtypes differed in potency in a TSS rabbit model and in superantigenicity. There was no difference in superantigenicity when tested on human peripheral blood mononuclear cells. Despite differences, all SECs reacted with polyclonal antibodies raised against the other SEC subtypes. The associations of SEC subtypes with different infections suggest that S. aureus produces virulence factors according to host niches. IMPORTANCE Staphylococcal enterotoxin C has four subtypes that cause human diseases, designated SEC-1 to -4. This study shows that SEC-2 and SEC-3 are the most toxic subtypes in a rabbit model and are associated with human vaginal infections or colonization in association with another superantigen, toxic shock syndrome toxin 1. SEC-4 is associated with purpura fulminans and hemorrhagic pneumonia. SEC-1 is uncommon. The data suggest that there is some selective pressure for the SEC subtypes to be associated with certain human niches.
Collapse
|
28
|
Antibacterial and Antivirulence Activity of Manuka Honey against Genetically Diverse Staphylococcus pseudintermedius Strains. Appl Environ Microbiol 2020; 86:AEM.01768-20. [PMID: 32801179 PMCID: PMC7531947 DOI: 10.1128/aem.01768-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius. Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use. Staphylococcus pseudintermedius causes opportunistic infections in dogs. It also has significant zoonotic potential, with the emergence of multidrug resistance leading to difficulty treating both animal and human infections. Manuka honey has previously been reported to inhibit many bacterial pathogens, including methicillin-resistant Staphylococcus aureus, and is successfully utilized in both clinical and veterinary practice. Here, we evaluated the ability of manuka honey to inhibit strains of S. pseudintermedius grown alone and in combination with antibiotics, as well as its capacity to modulate virulence within multiple S. pseudintermedius isolates. All 18 of the genetically diverse S. pseudintermedius strains sequenced and tested were inhibited by ≤12% (wt/vol) medical-grade manuka honey, although tolerance to five clinically relevant antibiotics was observed. The susceptibility of the isolates to four of these antibiotics was significantly increased (P ≤ 0.05) when combined with sublethal concentrations of honey, although sensitivity to oxacillin was decreased. Virulence factor (DNase, protease, and hemolysin) activity was also significantly reduced (P ≤ 0.05) in over half of isolates when cultured with sublethal concentrations of honey (13, 9, and 10 isolates, respectively). These findings highlight the potential for manuka honey to be utilized against S. pseudintermedius infections. IMPORTANCEStaphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius. Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use.
Collapse
|
29
|
Molecular characterization of methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from human milk samples in Brazil. Braz J Microbiol 2020; 51:1813-1817. [PMID: 32822004 DOI: 10.1007/s42770-020-00367-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk is the best nutrient for infants. The donor human milk is stored in a milk bank before pasteurization. However, the human milk is not sterile and could be colonized with different types of bacteria. Many studies have shown S. aureus to be the most prevalent potential pathogen detected in human milk. This study characterized 22 methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from raw human milk for the presence of virulence genes and agr type. Moreover, the genotypic as identified characterization was realized. The presence of virulence genes sei, seg, sec, seh, and etb was identified in resistant and sensitive strains. We observed the predominance of agr type II. The presence of SCCmec IV (67%, 4/6) and V (33%, 2/6) characterized resistant strains as CA-MRSA. Endemic lineages detected (ST1635/CC5-t002, ST5/CC5-t002, ST72/CC5-t126, ST1/CC1-t127, ST45/CC45-t065, and ST398/t1451) could be related to epidemic clones, such as USA800/ST5, USA700/ST72, USA400/ST1, USA600/ST45, and ST398. This study made it possible to understand the characteristics of virulence and clonality of some strains that circulate in breast milk in our region. The discovery of human milk colonization by MSSA and MRSA strains with molecular characteristics similar to infectious clones spread globally demonstrates the importance of monitoring strains that can spread and cause serious infections.
Collapse
|
30
|
Silva JG, Araujo WJ, Leite EL, Dias LM, Vasconcelos PC, Silva NMV, Oliveira RP, Sena MJ, Oliveira CJB, Mota RA. First report of a livestock-associated methicillin-resistant Staphylococcus aureus ST126 harbouring the mecC variant in Brazil. Transbound Emerg Dis 2020; 68:1019-1025. [PMID: 32762020 DOI: 10.1111/tbed.13771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a versatile and highly adaptable pathogen associated with a wide range of infectious diseases in humans and animals. In the last decades, concern has increased worldwide due to the emergence and spread of methicillin-resistant S. aureus (MRSA) strains shortly after this drug became a therapeutic option. In this study, we report the genomic features of the first mecC-mediated, β-lactam resistant MRSA strain associated with livestock in Brazil and in the American continent. Three clonally related phenotypic MRSA isolates originated from a dairy herd were confirmed by polymerase chain reaction as mecC-harbouring MRSA isolates. Whole-genome sequencing was performed by Illumina Miseq platform. Downstream analyses showed that the strain was identified as the sequence type 126 (ST126) and spa type t605. In silico analysis revealed a mecC homolog gene in the orfX region associated with different penicillin-binding proteins. Moreover, genes encoding for efflux pump systems (arlR, mepR, LmrS, norA and mgrA), and antibiotic inactivation enzymes (blaZ and FosB) were also detected. Virulence analyses revealed that the strain harbours genes encoding for exoenzymes (aur, splA, splB and splE), toxin (hlgA, hlgB, hlgC, lukD and lukE) and enterotoxin (sea). The epidemiologic and genomic information provided by this study will support further epidemiological and evolutionary investigations to understand the origin and dissemination of mecC-MRSA among animals and its impact on public health.
Collapse
Affiliation(s)
- José Givanildo Silva
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Wydemberg José Araujo
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Elma Lima Leite
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Larissa Maranhão Dias
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Priscylla Carvalho Vasconcelos
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Núbia Michelle Vieira Silva
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Raylson Pereira Oliveira
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria José Sena
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Celso José Bruno Oliveira
- Laboratório de Análise de Produtos de Origem Animal, Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Brazil
| | - Rinaldo Aparecido Mota
- Laboratório de Doenças Infectocontagiosas dos Animais Domésticos, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, Beloglazova N, Tsilla V, Sas B, Madder A, De Saeger S, Uyttendaele M. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Compr Rev Food Sci Food Saf 2020; 19:1605-1657. [DOI: 10.1111/1541-4337.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Jelena Jovanovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Silvia Monteiro
- Laboratorio Analises, Instituto Superior TecnicoUniversidade de Lisboa Lisbon Portugal
| | - Marlies Decleer
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mirjana Andjelkovic
- Operational Directorate Food, Medicines and Consumer SafetyService for Chemical Residues and Contaminants Brussels Belgium
| | - Astrid Foubert
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Natalia Beloglazova
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
- Nanotechnology Education and Research CenterSouth Ural State University Chelyabinsk Russia
| | - Varvara Tsilla
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Annemieke Madder
- Laboratorium for Organic and Biomimetic Chemistry, Department of Organic and Macromolecular ChemistryGhent University Ghent Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| |
Collapse
|
32
|
Panchatcharam BS, Cooksley CM, Ramezanpour M, Vediappan RS, Bassiouni A, Wormald PJ, Psaltis AJ, Vreugde S. Staphylococcus aureus
biofilm exoproteins are cytotoxic to human nasal epithelial barrier in chronic rhinosinusitis. Int Forum Allergy Rhinol 2020; 10:871-883. [DOI: 10.1002/alr.22566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/22/2020] [Accepted: 03/26/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Beula Subashini Panchatcharam
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Clare M. Cooksley
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Rajan Sundaresan Vediappan
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Ahmed Bassiouni
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Peter J. Wormald
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Alkis J. Psaltis
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| | - Sarah Vreugde
- Department of Surgery‒Otorhinolaryngology Head and Neck SurgeryThe Queen Elizabeth Hospital, University of Adelaide Adelaide SA Australia
| |
Collapse
|
33
|
Abstract
In the 1980s, menstrual toxic shock syndrome (mTSS) became a household topic, particularly among mothers and their daughters. The research performed at the time, and for the first time, exposed the American public as well as the biomedical community, in a major way, to understanding disease progression and investigation. Those studies led to the identification of the cause, Staphylococcus aureus and the pyrogenic toxin superantigen TSS toxin 1 (TSST-1), and many of the risk factors, for example, tampon use. Those studies in turn led to TSS warning labels on the outside and inside of tampon boxes and, as important, uniform standards worldwide of tampon absorbency labeling. This review addresses our understanding of the development and conclusions related to mTSS and risk factors. We leave the final message that even though mTSS is not commonly in the news today, cases continue to occur. Additionally, S. aureus strains cycle in human populations in roughly 10-year intervals, possibly dependent on immune status. TSST-1-producing S. aureus bacteria appear to be reemerging, suggesting that physician awareness of this emergence and mTSS history should be heightened.
Collapse
|
34
|
Liu Y, Song Z, Ge S, Zhang J, Xu L, Yang F, Lu D, Luo P, Gu J, Zou Q, Zeng H. Determining the immunological characteristics of a novel human monoclonal antibody developed against staphylococcal enterotoxin B. Hum Vaccin Immunother 2020; 16:1708-1718. [PMID: 32275466 DOI: 10.1080/21645515.2020.1744362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Staphylococci are the main cause of nosocomial infections globally. The exotoxin staphylococcal enterotoxin B (SEB) produced by methicillin-resistant Staphylococcus aureus is a major cause of pathology after a staphylococcal infection. We previously isolated an anti-SEB human monoclonal antibody designated as M0313. Here we further characterize this antibody in vitro and in vivo. Immunoblotting analysis and ELISA results indicated that M0313 accurately recognized and bound to SEB. Its binding affinity to native SEB was measured at the low nM level. M0313 effectively inhibited SEB from inducing mouse splenic lymphocyte and human peripheral blood mononuclear cell proliferation and cytokine release in cell culture. M0313 also neutralized SEB toxicity in BALB/c female mice. Most importantly, M0313 promoted the survival of mice treated with SEB-expressing bacteria. In-vivo imaging revealed that M0313 treatment significantly reduced the replication of SEB-expressing bacteria in mice. The neutralization capacity of M0313 correlated with its ability to block SEB from binding to major histocompatibility complex II and T-cell receptor by binding to the SEB residues 85-102 and 90-92. Thus, the monoclonal antibody M0313 may be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China.,Clinical Laboratory Department, Army 954th Hospital, General Hospital of Tibet Military Region , Tibet, PR China
| | - Shuang Ge
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Limin Xu
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Feng Yang
- Research and Development Department, Chengdu Olymvax Biotechnology Co., Ltd ., Chengdu, Sichuan, PR China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University , Chongqing, PR China
| |
Collapse
|
35
|
Staphylococcus aureus Isolated from Skin from Atopic-Dermatitis Patients Produces Staphylococcal Enterotoxin Y, Which Predominantly Induces T-Cell Receptor Vα-Specific Expansion of T Cells. Infect Immun 2020; 88:IAI.00360-19. [PMID: 31740530 DOI: 10.1128/iai.00360-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
While investigating the virulence traits of Staphylococcus aureus adhering to the skin of atopic-dermatitis (AD) patients, we identified a novel open reading frame (ORF) with structural similarity to a superantigen from genome sequence data of an isolate from AD skin. Concurrently, the same ORF was identified in a bovine isolate of S. aureus and designated SElY (H. K. Ono, Y. Sato'o, K. Narita, I. Naito, et al., Appl Environ Microbiol 81:7034-7040, 2015, https://doi.org/10.1128/AEM.01873-15). Recombinant SElYbov had superantigen activity in human peripheral blood mononuclear cells. It further demonstrated emetic activity in a primate animal model, and it was proposed that SElY be renamed SEY (H. K. Ono, S. Hirose, K. Narita, M. Sugiyama, et al., PLoS Pathog 15:e1007803, 2019, https://doi.org/10.1371/journal.ppat.1007803). Here, we investigated the prevalence of the sey gene in 270 human clinical isolates of various origins in Japan. Forty-two strains were positive for the sey gene, and the positive isolates were from patients with the skin diseases atopic dermatitis and impetigo/staphylococcal scalded skin syndrome (SSSS), with a detection rate of ∼17 to 22%. There were three variants of SEY (SEY1, SEY2, and SEY3), and isolates producing SEY variants formed three distinct clusters corresponding to clonal complexes (CCs) 121, 59, and 20, respectively. Most sey + isolates produced SEY in broth culture. Unlike SEYbov, the three recombinant SEY variants exhibited stability against heat treatment. SEY predominantly activated human T cells with a particular T-cell receptor (TCR) Vα profile, a unique observation since most staphylococcal enterotoxins exert their superantigenic activities through activating T cells with specific TCR Vβ profiles. SEY may act to induce localized inflammation via skin-resident T-cell activation, facilitating the pathogenesis of S. aureus infection in disrupted epithelial barriers.
Collapse
|
36
|
HOVEIDA L, ATAEI B, AMIRMOZAFARI N, NOORMOHAMMADI Z. Species Variety, Antibiotic Susceptibility Patterns and Prevalence of Enterotoxin Genes in Staphylococci Isolated from Foodstuff in Central Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:96-103. [PMID: 32309228 PMCID: PMC7152639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The presence and diversity of Staphylococcus species and their enterotoxin-encoding genes in foodstuffs have not been comprehensively studied in some developing countries. This study aimed to assess the frequency of Staphylococcus spp. and their related virulence factors in foodstuffs in Isfahan, Iran. METHODS Overall, 139 foodstuff samples, collected from Isfahan City (center of Iran) from Sep 2015 to Oct 2016, were processed for the presence of Staphylococcus spp. using standard bacteriological procedures and sequence analysis of 16S rRNA gene. Antimicrobial susceptibilities and prevalence of mecA and toxin-encoded genes (sea, seb, sed, see and tsst1 ) were tested for all of the Staphylococcal isolates. RESULTS Forty-four Gram-positive cocci were recovered from 139 dairy and meat samples. The most prevalent species were S. vitulinus 25.0% (11/44) and S. aureus 20.5% (9/44); respectively. The most prevalent antimicrobial resistance was noted towards penicillin, cefoxitin and tetracycline. The sec, sea, see and tsst1 genes were found in 19%, 9.5%, 3.5%, and 3.5% of the isolates, respectively. CONCLUSION Numerous virulence factors were detected in different Staphylococcus spp. isolated from foodstuffs, more attention should be paid to the presence of the bacteria. Proper hygienic and management practices should be considered in order to increase food safety and prevent extra treatment costs.
Collapse
Affiliation(s)
- Laleh HOVEIDA
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behrooz ATAEI
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding Author:
| | - Nour AMIRMOZAFARI
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra NOORMOHAMMADI
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
37
|
Vaiyapuri M, Joseph TC, Rao BM, Lalitha KV, Prasad MM. Methicillin-Resistant Staphylococcus aureus in Seafood: Prevalence, Laboratory Detection, Clonal Nature, and Control in Seafood Chain. J Food Sci 2019; 84:3341-3351. [PMID: 31769517 DOI: 10.1111/1750-3841.14915] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a versatile pathogen bearing multiple virulence determinants, is increasingly being detected in various food-producing animals, including fish. In addition, it is a potential food poisoning agent. MRSA is not an inherent microbiota of fish; its presence is attributed to pre- or postharvest contamination through fish handlers, water, ice, and processing equipment. Several reviews have been written on MRSA in clinical as well as the food animal-producing sector, but information specific to MRSA in seafood is scant. This review puts forth insights on MRSA detection in seafood, antibiotic resistance, diversity of clones in seafood, and possible control measures in seafood production chain. Emphasis has been given on assessing the variations in the protocols employed for isolation and identification in different food matrices and lay the foundation for researchers to develop optimized procedure.
Collapse
Affiliation(s)
- Murugadas Vaiyapuri
- Microbiology, Fermentation and Biotechnology (MFB) Division, ICAR-Central Inst. of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, India
| | | | | | | | - Mothadaka Mukteswar Prasad
- Microbiology, Fermentation and Biotechnology (MFB) Division, ICAR-Central Inst. of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, 682029, India
| |
Collapse
|
38
|
Abstract
The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus. A primary function of the extracellular proteases of Staphylococcus aureus is to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity to influence the accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring the regulation of the four protease loci by known and novel factors. In so doing, we determined that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, while the spl operon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploring scpA expression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants of S. aureus, identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily, these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appears to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes to S. aureus physiology and pathogenic potential. IMPORTANCE The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus.
Collapse
|
39
|
Toxic Shock Syndrome Toxin 1-Producing Methicillin-Resistant Staphylococcus aureus of Clonal Complex 5, the New York/Japan Epidemic Clone, Causing a High Early-Mortality Rate in Patients with Bloodstream Infections. Antimicrob Agents Chemother 2019; 63:AAC.01362-19. [PMID: 31501145 DOI: 10.1128/aac.01362-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022] Open
Abstract
This study was performed to evaluate the clinical impacts of putative risk factors in patients with Staphylococcus aureus bloodstream infections (BSIs) through a prospective, multicenter, observational study. All 567 patients with S. aureus BSIs that occurred during a 1-year period in six general hospitals were included in this study. Host- and pathogen-related variables were investigated to determine risk factors for the early mortality of patients with S. aureus BSIs. The all-cause mortality rate was 15.0% (85/567) during the 4-week follow-up period from the initial blood culture, and 76.5% (65/85) of the mortality cases occurred within the first 2 weeks. One-quarter (26.8%, 152/567) of the S. aureus blood isolates carried the tst-1 gene, and most (86.2%, 131/152) of them were identified to be clonal complex 5 agr type 2 methicillin-resistant S. aureus (MRSA) strains harboring staphylococcal cassette chromosome mec type II, belonging to the New York/Japan epidemic clone. A multivariable logistic regression showed that the tst-1 positivity of the causative S. aureus isolates was associated with an increased 2-week mortality rate both in patients with S. aureus BSIs (adjusted odds ratio [aOR], 1.62; 95% confidence interval [CI], 0.90 to 2.88) and in patients with MRSA BSIs (aOR, 2.61; 95% CI, 1.19 to 6.03). Two host-related factors, an increased Pitt bacteremia score and advanced age, as well as a pathogen-related factor, carriage of tst-1 by causative MRSA isolates, were risk factors for 2-week mortality in patients with BSIs. Careful management of patients with BSIs caused by the New York/Japan epidemic clone is needed to improve clinical outcomes.
Collapse
|
40
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
41
|
Hietala V, Horsma-Heikkinen J, Carron A, Skurnik M, Kiljunen S. The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Front Microbiol 2019; 10:1674. [PMID: 31396188 PMCID: PMC6664067 DOI: 10.3389/fmicb.2019.01674] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The production of phages for therapeutic purposes demands fast, efficient and scalable purification procedures. Phage lysates have a wide range of impurities, of which endotoxins of gram-negative bacteria and protein toxins produced by many pathogenic bacterial species are harmful to humans. The highest allowed endotoxin concentration for parenterally applied medicines is 5 EU/kg/h. The aim of this study was to evaluate the feasibility of different purification methods in endotoxin and protein toxin removal in the production of phage preparations for clinical use. In the purification assays, we utilized three phages: Escherichia phage vB_EcoM_fHoEco02, Acinetobacter phage vB_ApiM_fHyAci03, and Staphylococcus phage vB_SauM_fRuSau02. The purification methods tested in the study were precipitation with polyethylene glycol, ultracentrifugation, ultrafiltration, anion exchange chromatography, octanol extraction, two different endotoxin removal columns, and different combinations thereof. The efficiency of the applied purification protocols was evaluated by measuring phage titer and either endotoxins or staphylococcal enterotoxins A and C (SEA and SEC, respectively) from samples taken from different purification steps. The most efficient procedure in endotoxin removal was the combination of ultrafiltration and EndoTrap HD affinity column, which was able to reduce the endotoxin-to-phage ratio of vB_EcoM_fHoEco02 lysate from 3.5 × 104 Endotoxin Units (EU)/109 plaque forming units (PFU) to 0.09 EU/109 PFU. The combination of ultrafiltration and anion exchange chromatography resulted in ratio 96 EU/109 PFU, and the addition of octanol extraction step into this procedure still reduced this ratio threefold. The other methods tested either resulted to less efficient endotoxin removal or required the use of harmful chemicals that should be avoided when producing phage preparations for medical use. Ultrafiltration with 100,000 MWCO efficiently removed enterotoxins from vB_SauM_fRuSau02 lysate (from 1.3 to 0.06 ng SEA/109 PFU), and anion exchange chromatography reduced the enterotoxin concentration below 0.25 ng/ml, the detection limit of the assay.
Collapse
Affiliation(s)
- Ville Hietala
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Horsma-Heikkinen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Annelie Carron
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Saija Kiljunen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Sasai N, Nakaminami H, Iwasaki M, Iwao M, Misegawa K, Hasui M, Sato M, Yamamoto S, Yoshida T, Asano T, Senoue M, Ikeda M, Noguchi N. Clonal change of methicillin-resistant Staphylococcus aureus isolated from patients with impetigo in Kagawa, Japan. J Dermatol 2019; 46:301-307. [PMID: 30803017 DOI: 10.1111/1346-8138.14820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 11/29/2022]
Abstract
Recently, the USA300 clone, which is a Panton-Valentine leukocidin (PVL)-positive clonal complex 8-staphylococcal cassette chromosome mec type IV (CC8-IV) community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strain, emerged in community and hospital settings in Japan. Hence, clonal types of CA-MRSA strains are predicted to be changing. Nonetheless, long-term surveillance of CA-MRSA has not been conducted in Japan. Here, we investigated the transition and current status of CA-MRSA strains isolated from outpatients with impetigo; the samples were collected between 2007 and 2016 in Kagawa, Japan. The detection rate (22.8%, 488/2139 strains) of MRSA slightly decreased in these 10 years. Molecular epidemiological analyses showed that the prevalence of the CC89-II clone, which is a typical CA-MRSA genotype of causative agents of impetigo, significantly decreased from 48.0% (48/100 strains) in 2007-2009 to 21.9% (16/73 strains) in 2013-2016. By contrast, a non-USA300 CC8-IV clone, which is a highly pathogenic CA-MRSA/J clone, significantly increased in prevalence from 9.0% (9/100 strains) to 32.9% (24/73 strains). The prevalence of PVL-positive CA-MRSA strains increased annually from 2012 (0%) to 2015 (6.7%), whereas only one of these strains turned out to be the USA300 clone. Antibiotic susceptibility data revealed that the rates of resistance to gentamicin and clindamycin among CA-MRSA strains decreased along with the decreased prevalence of the CC89-II clone and increased prevalence of the CA-MRSA/J clone. Our data strongly suggest that the clonal types and antibiotic susceptibility of CA-MRSA isolated from patients with impetigo dramatically changed during the last 10 years in Japan.
Collapse
Affiliation(s)
- Nao Sasai
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Manami Iwasaki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Miku Iwao
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kotaro Misegawa
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Mikiko Hasui
- Takamatsu Dermatological Research Group, Takamatsu, Japan
| | - Minoru Sato
- Takamatsu Dermatological Research Group, Takamatsu, Japan
| | | | - Tomoko Yoshida
- Takamatsu Dermatological Research Group, Takamatsu, Japan
| | - Takashi Asano
- Takamatsu Dermatological Research Group, Takamatsu, Japan
| | - Mitsura Senoue
- Takamatsu Dermatological Research Group, Takamatsu, Japan
| | - Masami Ikeda
- Takamatsu Dermatological Research Group, Takamatsu, Japan.,Department of Dermatology, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
43
|
Tanaka M, Kamitani S, Kitadokoro K. Staphylococcus aureus lipase: purification, kinetic characterization, crystallization and crystallographic study. Acta Crystallogr F Struct Biol Commun 2018; 74:567-570. [PMID: 30198889 PMCID: PMC6130426 DOI: 10.1107/s2053230x18010506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/21/2018] [Indexed: 11/11/2022] Open
Abstract
Staphylococcus aureus lipase (SAL), a triacylglycerol esterase, is an important virulence factor in S. aureus and may be a therapeutic target for infectious diseases caused by S. aureus. For the purposes of anti-SAL drug development using structure-based drug design, X-ray crystallographic analysis of SAL overexpressed in Escherichia coli was performed. The recombinant protein was purified using a three-step protocol involving immobilized metal-affinity chromatography, cation-exchange chromatography and anion-exchange chromatography flowthrough methods, yielding 40 mg of protein per litre of bacterial culture. Crystals were obtained using the sitting-drop vapor-diffusion technique. Diffraction data to 3.0 Å resolution were collected on the BL44XU beamline at SPring-8 at the zinc peak of 1.2842 Å for SAD phasing. The crystals belonged to space group P4122 or P4322, with unit-cell parameters a = 131.0, b = 131.0, c = 250.6 Å, and are likely to contain four SAL molecules (408 residues) per asymmetric unit.
Collapse
Affiliation(s)
- Mutsumi Tanaka
- Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Hashigami-cho, 5 Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigeki Kamitani
- Graduate School of Comprehensive Rehabilitation, College of Health and Human Sciences, Osaka Prefecture University, 3-7-30 Habikino, Osaka 583-8555, Japan
| | - Kengo Kitadokoro
- Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Hashigami-cho, 5 Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
44
|
Mekonnen SA, Lam TJGM, Hoekstra J, Rutten VPMG, Tessema TS, Broens EM, Riesebos AE, Spaninks MP, Koop G. Characterization of Staphylococcus aureus isolated from milk samples of dairy cows in small holder farms of North-Western Ethiopia. BMC Vet Res 2018; 14:246. [PMID: 30139356 PMCID: PMC6107951 DOI: 10.1186/s12917-018-1558-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023] Open
Abstract
Background Staphylococcus aureus is a contagious, opportunistic pathogen that causes clinical or subclinical mastitis in dairy cattle. The genetic background and antimicrobial resistance of isolates from Ethiopian dairy farms has not been studied. Therefore, the aim of this study was to characterize S. aureus from Ethiopian hand milked dairy cows, by spa, MLST and virulence factor typing, and by assessment of antimicrobial susceptibility. A total of 79 S. aureus isolates from intramammary infections was studied. A PCR was used to detect lukM-lukF’ and pvl genes encoding the bovine and human associated bi-component leukocidins, and the toxic shock syndrome toxin gene-1 (tst). Antimicrobial susceptibility was determined using the broth microdilution method. Results Twenty different spa types were identified, most isolates were t042 (58%), and the closely related t15786 (11%). The proportion of isolates positive for lukM-lukF’, tst and pvl was low at 0.04, 0.10 and 0.09 respectively, with lukM-lukF’ often co-occurring with tst, but not with pvl. Methicillin-resistance was not found, but resistance to penicillin/ampicillin (86%) and tetracycline (54%) was very common. Conclusions We found a high degree of relatedness among bovine S. aureus isolates in North-Western Ethiopia, suggesting contagious within and between farm transmission of strains that are often resistant to commonly used antimicrobials. This highlights the need for effective preventive measures that aim at limiting transmission of bacteria rather than using antimicrobials to control S. aureus mastitis in Ethiopia. Electronic supplementary material The online version of this article (10.1186/s12917-018-1558-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S A Mekonnen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands. .,Faculty of Veterinary Medicine, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
| | - T J G M Lam
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands.,GD Animal Health, P.O. Box 9, 7400 AA, Deventer, The Netherlands
| | - J Hoekstra
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - V P M G Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - T S Tessema
- Institute of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - E M Broens
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - A E Riesebos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands
| | - M P Spaninks
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - G Koop
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584, CL, Utrecht, The Netherlands
| |
Collapse
|
45
|
Smith IDM, Milto KM, Doherty CJ, Amyes SGB, Simpson AHRW, Hall AC. A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Joint Res 2018; 7:457-467. [PMID: 30123495 PMCID: PMC6076354 DOI: 10.1302/2046-3758.77.bjr-2017-0165.r1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Staphylococcus aureus (S. aureus) is the most commonly implicated organism in septic arthritis, a condition that may be highly destructive to articular cartilage. Previous studies investigating laboratory and clinical strains of S. aureus have demonstrated that potent toxins induced significant chondrocyte death, although the precise toxin or toxins that were involved was unknown. In this study, we used isogenic S. aureus mutants to assess the influence of alpha (Hla)-, beta (Hlb)-, and gamma (Hlg)-haemolysins, toxins considered important for the destruction of host tissue, on in situ bovine chondrocyte viability. Methods Bovine cartilage explants were cultured with isogenic S. aureus mutants and/or their culture supernatants. Chondrocyte viability was then assessed within defined regions of interest in the axial and coronal plane following live- and dead-cell imaging using the fluorescent probes 5-chloromethylfluorescein diacetate and propidium iodide, respectively, and confocal laser-scanning microscopy. Results Hla-producing mutants caused substantial chondrocyte death compared with the toxin-deficient control (Hla-Hlb-Hlg-), whilst mutants producing Hlb and Hlg in the absence of Hla induced minimal chondrocyte death. Coronal studies established that Hla-induced chondrocyte death started in the superficial zone of cartilage and spread to deeper layers, whereas Hlb and Hlg toxins were without significant effect. Conclusion This study identified Hla as a highly potent S. aureus toxin that caused rapid chondrocyte death in bovine cartilage, with other toxins or metabolic products produced by the bacteria playing a minor role. The identification of Hla in mediating chondrocyte death may assist in the development of therapeutic strategies aimed at reducing the extent of cartilage damage during and after an episode of septic arthritis. Cite this article: I. D. M. Smith, K. M. Milto, C. J. Doherty, S. G. B. Amyes, A. H. R. W. Simpson, A. C. Hall. A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Joint Res 2018;7:457–467. DOI: 10.1302/2046-3758.77.BJR-2017-0165.R1.
Collapse
Affiliation(s)
- I D M Smith
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - K M Milto
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - C J Doherty
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK
| | - S G B Amyes
- Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK
| | - A H R W Simpson
- Musculoskeletal Research Unit, Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
| | - A C Hall
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Appl Environ Microbiol 2018; 84:AEM.00886-18. [PMID: 29776929 DOI: 10.1128/aem.00886-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023] Open
Abstract
Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 μg/ml of LysGH15, and the MICs ranged from 8 μg/ml to 32 μg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 μg/ml. At a higher dose (100 μg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 μg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections.IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 μg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.
Collapse
|
47
|
Contribution of toxic shock syndrome toxin-1 to systemic inflammation investigated by a mouse model of cervicovaginal infection with Staphylococcus aureus. Med Microbiol Immunol 2018; 207:297-306. [DOI: 10.1007/s00430-018-0551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
|
48
|
Harada D, Nakaminami H, Miyajima E, Sugiyama T, Sasai N, Kitamura Y, Tamura T, Kawakubo T, Noguchi N. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. J Infect Chemother 2018; 24:563-569. [DOI: 10.1016/j.jiac.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 11/29/2022]
|
49
|
Barrett S, Delaney S, Kavanagh K, Montagner D. Evaluation of in vitro and in vivo antibacterial activity of novel Cu(II)-steroid complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel) 2018; 10:toxins10060252. [PMID: 29921792 PMCID: PMC6024779 DOI: 10.3390/toxins10060252] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.
Collapse
|