1
|
Rout M, Dahiya SS, Subramaniam S, Acharya R, Samanta R, Biswal JK, Mohapatra JK, Singh RP. Complete coding region sequence analyses and antigenic characterization of emerging lineage G-IX of foot- and-mouth disease virus serotype Asia1. Vet Q 2024; 44:1-10. [PMID: 38903046 PMCID: PMC11195457 DOI: 10.1080/01652176.2024.2367215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Foot-and-mouth disease Virus (FMDV) serotype Asia1 is prevalent in the Indian subcontinent, with only G-III and G-VIII reported in India until 2020. However, in 2019, a novel genetic group within serotype Asia1, designated as G-IX, emerged in Bangladesh, followed by its detection in India in 2020. This report presents analyses of the complete coding region sequences of the G-IX lineage isolates. The length of the open reading frame (ORF) of the two G-IX isolates was 6990 nucleotides without any deletion or insertion. The G-IX isolates showed the highest sequence similarity with an isolate of G-III at the ORF, L, P2, and P3 regions, and with an isolate of G-VIII at the P1 region. Phylogenetic analysis based on the capsid region (P1) supports the hypothesis that G-VIII and G-IX originated from a common ancestor, as speculated earlier. Further, VP1 region-based phylogenetic analyses revealed the re-emergence of G-VIII after a gap of 3 years. One isolate of G-VIII collected during 2023 revealed a codon insertion in the G-H loop of VP1. The vaccine matching studies support the suitability of the currently used Indian vaccine strain IND63/1972 to contain outbreaks due to viruses belonging to G-IX.
Collapse
Affiliation(s)
- Manoranjan Rout
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Shyam Singh Dahiya
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Saravanan Subramaniam
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Ramakant Acharya
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Reshama Samanta
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Jitendra Kumar Biswal
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Jajati Keshari Mohapatra
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| | - Rabindra Prasad Singh
- International Centre for Foot and Mouth Disease, ICAR-National Institute on Foot and Mouth Disease, Bhubaneswar, India
| |
Collapse
|
2
|
Litz B, Sehl-Ewert J, Breithaupt A, Landmesser A, Pfaff F, Romey A, Blaise-Boisseau S, Beer M, Eschbaumer M. Leaderless foot-and-mouth disease virus serotype O did not cause clinical disease and failed to establish a persistent infection in cattle. Emerg Microbes Infect 2024; 13:2348526. [PMID: 38683015 PMCID: PMC11100440 DOI: 10.1080/22221751.2024.2348526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated an FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.
Collapse
Affiliation(s)
- Benedikt Litz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anja Landmesser
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Aurore Romey
- Animal Health Laboratory, Foot-and-Mouth Disease Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- Animal Health Laboratory, Foot-and-Mouth Disease Reference Laboratory, Virology JRU, ANSES, INRAE, ENVA, Paris-Est University, Maisons-Alfort, France
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Tegegne H, Ejigu E, Woldegiorgis D. Analysis of the immunological response elicited by a polyvalent foot and mouth disease vaccine and its compatibility with a diva test in Jimma Town, Ethiopia. Virol J 2024; 21:250. [PMID: 39375730 PMCID: PMC11459695 DOI: 10.1186/s12985-024-02485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
The research was conducted in Jimma town, Oromiya Regional State, from October 2022 to June 2023, with the aim of assessing the immune response of polyvalent FMD (Foot and Mouth Disease) vaccine. The study involved 34 cattle in a longitudinal study, divided into two groups: 29 vaccinated and 5 unvaccinated. The vaccinated cattle received an inactivated polyvalent FMD virus vaccine produced by the National Veterinary Institute. Blood samples were collected on days 0, 14, 21, 35, 80, and 125 after vaccination and tested using Virus Neutralization Test and 3ABC ELISA. The results showed a significant increase in neutralizing antibodies against structural proteins in all vaccinated cattle on day 14 after vaccination for all three serotypes. (A/ETH/21/2000, p = 0.015; O/ETH/38/2005, p = 0.017; SAT2/ETH/64/2009, p = 0.007). On day, fourteen of post-vaccination vaccinated group showed immune response equal or above 1.5 log10 in a proportion of 69%, 73% and 94% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The status of raised antibody titer on day 125 post-vaccination showed decreasing by 14%, 18% and 4% for serotype A/ETH/21/2000, O/ETH/38/2005 and SAT2/ETH/64/2009 respectively. The DIVA test, or 3ABC ELISA, used to differentiate infected from vaccinated animals, revealed the absence of immune response to the Non-structural protein in the vaccinated cattle group. Conversely, the unvaccinated group showed no recorded antibody titer to both structural and non-structural proteins. In summary, the commercially available FMD vaccine, comprising serotype A, O, and SAT2, triggers an immune response to the structural protein rather than the non-structural protein after the initial administration. This outcome implies that FMD vaccines from the National Veterinary Institute align with the DIVA test. Nevertheless, additional efforts may be necessary to bolster the strength and duration of the vaccine-induced immune response.
Collapse
Affiliation(s)
- Hailehizeb Tegegne
- Department of Veterinary Science, College of Agriculture and Environmental Science, Debre Tabor University, Debre Tabor, Amhara, Ethiopia.
| | - Eyoel Ejigu
- Departement of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Dese Woldegiorgis
- Departement of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
4
|
Pantanam A, Mana N, Semkum P, Lueangaramkul V, Phecharat N, Lekcharoensuk P, Theerawatanasirikul S. Dual effects of ipecac alkaloids with potent antiviral activity against foot-and-mouth disease virus as replicase inhibitors and direct virucides. Int J Vet Sci Med 2024; 12:134-147. [PMID: 39359867 PMCID: PMC11445910 DOI: 10.1080/23144599.2024.2408189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Foot-and-Mouth Disease (FMD) is a contagious, blistering disease caused by the Foot-and-Mouth Disease virus (FMDV), which affects livestock globally. Currently, no commercial antiviral agent is available for effective disease control. This study investigated the antiviral potential of natural-derived alkaloids against FMDV in BHK-21 cells. Twelve alkaloids were assessed for their antiviral activities at various stages of FMDV infection, including pre-viral entry, post-viral entry, and prophylactic assays, as well as attachment and penetration assays by evaluating cytopathic effect reduction and directed-virucidal effects. The results showed that ipecac alkaloids, cephaeline (CPL) and emetine (EMT), exhibited dual effects with robust antiviral efficacy by reducing cytopathic effect and inhibiting FMDV replication in a dose-dependent manner. Evaluation through immunoperoxidase monolayer assay and RT-PCR indicated effectiveness at post-viral entry stage, with sub-micromolar EC50 values for CPL and EMT at 0.05 and 0.24 µM, respectively, and high selective indices. Prophylactic effects prevented infection with EC50 values of 0.23 and 0.64 µM, respectively. Directed-virucidal effects demonstrated significant reduction of extracellular FMDV, with CPL exhibiting a dose-dependent effect. Furthermore, the replicase (3Dpol) inhibition activity was identified using the FMDV minigenome assay, which revealed strong inhibition with IC50 values of 0.15 µM for CPL and 4.20 µM for EMT, consistent with the decreased negative-stranded RNA production. Molecular docking confirmed the interaction of CPL and EMT with residues in the active site of FMDV 3Dpol. In conclusion, CPL and EMT exhibited promising efficacy through their dual effects and provide an alternative approach for controlling FMD in livestock.
Collapse
Affiliation(s)
- Achiraya Pantanam
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Natjira Mana
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Varanya Lueangaramkul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
5
|
Pyatla MKG, Elango S, Deore PS, Das LJ, Venkatesan G, Chandra Mohan S, Priyanka M, Krishnaswamy N, Umapathi V, Dechamma HJ. Genetic trans-complementation of L-protease fails to rescue the infectious foot-and-mouth disease virus from the Lb pro defective genome. Microb Pathog 2024; 195:106908. [PMID: 39218377 DOI: 10.1016/j.micpath.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Outbreaks of the foot-and-mouth disease (FMD) have major economic impact on the global livestock industry by affecting the animal health and product safety. L-protease, a non-structural protein of FMDV, is a papain-like cysteine proteinase involved in viral protein processing as well as cleavage of host proteins for promoting the virus growth. FMDV synthesizes two forms of leader proteinase, Lpro (Labpro and Lbpro), where the deletion of Labpro is lethal and Lbpro deletion is reported to be attenuated. Defective replicons have been used by trans-complementing the deleted gene to produce one time replicating virus; thus, the bio-safety procedure can be compromised in the production units. Attempts are made to rescue of ΔLbproFMDV Asia1 virus by co-expressing the Lbpro protein carried in pcDNA plasmid. Mutant FMDV cDNA, pAsia-ΔLbpro, was constructed by PCR mediated mutagenesis using inverse primers. Transfection of BHK-21 cells with in-vitro transcribed RNA from the constructs failed to produce an infective mutant FMDV. Genetic trans-complementation of the Lbpro, which was done by co-transfecting the pcDNALbpro plasmid DNA along with the pAsia-ΔLbpro RNA in BHK-21 cells also failed to produce viable virus. Expression experiments of reporter genes and indirect immune-fluorescence confirmed the production of the viral proteins in wild type FMDV pAsiaWT; however, it was absent in the pAsia-ΔLbpro indicating that the leaderless virus was unable to produce infectious progeny and infect the cells. Failure to produce virus either by Lbpro deleted mutant clone or by genetic complementation suggests little chance of reversion of the disabled virus with large deletions of FMDV genome.
Collapse
Affiliation(s)
- Manoj Kumar Goud Pyatla
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Subhadra Elango
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Padmaja Shashikant Deore
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Lekshmi J Das
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Gnanavel Venkatesan
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - S Chandra Mohan
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Mahadappa Priyanka
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India
| | - Narayanan Krishnaswamy
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - V Umapathi
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - H J Dechamma
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| |
Collapse
|
6
|
Clarke JD, Duyvesteyn HM, Perez-Martin E, Latišenko U, Porta C, Humphreys KV, Hay AL, Ren J, Fry EE, van den Born E, Charleston B, Bonnet-Di Placido M, Owens RJ, Stuart DI, Hammond JA. A broadly reactive ultralong bovine antibody that can determine the integrity of foot-and-mouth disease virus capsids. J Gen Virol 2024; 105:002032. [PMID: 39422666 PMCID: PMC11488517 DOI: 10.1099/jgv.0.002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Foot-and-mouth disease vaccination using inactivated virus is suboptimal, as the icosahedral viral capsids often disassemble into antigenically distinct pentameric units during long-term storage, or exposure to elevated temperature or lowered pH, and thus raise a response that is no longer protective. Furthermore, as foot-and-mouth disease virus (FMDV)'s seven serotypes are antigenically diverse, cross-protection from a single serotype vaccine is limited, and most existing mouse and bovine antibodies and camelid single-domain heavy chain-only antibodies are serotype-specific. For quality control purposes, there is a real need for pan-serotype antibodies that clearly distinguish between pentamer (12S) and protective intact FMDV capsid. To date, few cross-serotype bovine-derived antibodies have been reported in the literature. We identify a bovine antibody with an ultralong CDR-H3, Ab117, whose structural analysis reveals that it binds to a deep, hydrophobic pocket on the interior surface of the capsid via the CDR-H3. Main-chain and hydrophobic interactions provide broad serotype specificity. ELISA analysis confirms that Ab117 is a novel pan-serotype and conformational epitope-specific 12S reagent, suitable for assessing capsid integrity.
Collapse
Affiliation(s)
- John D. Clarke
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- The Pirbright Institute, Woking, GU24 0NF, UK
- Diamond Light Source, Didcot, OX11 0DE, UK
| | - Helen M.E. Duyvesteyn
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | - Claudine Porta
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | - Jingshan Ren
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elizabeth E. Fry
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | - Raymond J. Owens
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Structural Biology, The Rosalind Franklin Institute, Didcot, OX11 0QX, UK
| | - David I. Stuart
- The Division of Structural Biology, Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Didcot, OX11 0DE, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | | |
Collapse
|
7
|
Somagond A, Patel BHM, Pattanaik AK, Krishnaswamy N, Mahadappa P, Singh M, Gaur GK, Dutt T. Evaluation of feeding different forms of therapeutic diet on the feed intake, digestibility, feed efficiency, and growth of calves experimentally infected with foot-mouth disease virus. Vet Res Commun 2024; 48:3403-3410. [PMID: 39093527 DOI: 10.1007/s11259-024-10477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Oral ulcers induce acute weight loss due to anorexia in foot-and-mouth disease virus (FMDV) infected cattle. We hypothesized that providing a palatable form of a therapeutic diet (TD) in different physical forms would increase the feed intake, digestibility and restoration of body weight. A TD was formulated with 19% CP and 2.9 Mcal ME/kg on dry matter basis. Bull calves of 10-12 months with mean body weight of 123 ± 1.3 kg were experimentally infected with FMDV (n = 18) and offered one of the following three forms of the TD (n = 6/group) for 6 weeks post-FMDV infection (WPI): (i) TD in mash form (TDM) (ii) TD in cooked form (TDC) and (iii) TDC + customised nutrient supplement (TDCNS) such as Zn, Cu, Cr, Mn, and Se. The CNS was fed before the TDC. A group of uninfected control (n = 4) was fed TDM. Green fodder was offered in the afternoon. Dry matter intake (DMI) of TD and green fodder were recorded at 24 h interval till WPI 6. Body weight (BW) was recorded at weekly interval. Digestibility trial was conducted at WPI 6. The palatability of the TD was scored from 1- 4 and healing of tongue ulcers was analyzed by Kaplan-Meier survival curve. The results indicated that the physical form of TD increased the total DMI by WPI 3, which was supported by the restoration of BW and higher palatability score. The digestibility of all the proximate principles except EE was significantly higher (P < 0.05) in the groups that were fed TDC. It was concluded that feeding TD irrespective of the physical form, restored the ADG and DMI in the calves by WPI 3. Further, feeding cooked form of TD increased the digestibility in the FMDV infected calves and supplementation of CNS hastened the healing of glossal ulcers.
Collapse
Affiliation(s)
- Arun Somagond
- Indian Council of Agricultural Research (ICAR), Indian Veterinary Research Institute (IVRI), Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - B H Manjunatha Patel
- Indian Council of Agricultural Research (ICAR), Indian Veterinary Research Institute (IVRI), Hebbal Campus, Bengaluru, Karnataka, 560 024, India.
| | | | - Narayanan Krishnaswamy
- Indian Council of Agricultural Research (ICAR), Indian Veterinary Research Institute (IVRI), Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - Priyanka Mahadappa
- Indian Council of Agricultural Research (ICAR), Indian Veterinary Research Institute (IVRI), Hebbal Campus, Bengaluru, Karnataka, 560 024, India
| | - Mukesh Singh
- ICAR-IVRI, Izatnagar, Uttar Pradesh, 243 122, India
| | | | - Triveni Dutt
- ICAR-IVRI, Izatnagar, Uttar Pradesh, 243 122, India
| |
Collapse
|
8
|
Gao Z, Liu X, Lei Y, Shao J, Zhang G, Hou Z, Zhou G, Wu J, Guo H, Chang H, Liu W. Dendritic cell-based biomimetic nanoparticles for foot-and-mouth disease induce robust cellular immunity. Antiviral Res 2024; 231:106011. [PMID: 39332536 DOI: 10.1016/j.antiviral.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of ruminants and swine, badly affecting the livestock industry worldwide. In clinical practice, vaccination is a frequently employed strategy to prevent foot-and-mouth disease (FMDV). However, commercial inactivated vaccines for FMD mainly rely on humoral immunity, exhibiting poor cellular immune responses and causing adverse reactions. Here, we use the double emulsion method to prepare poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) encapsulated with IL-2 cytokines, wrap the dendritic cell (DC) membrane carrying FMDV antigen information on the surface of the nanoparticles, obtaining a biomimetic nanoparticle vaccine Biom@DC with uniform size. This vaccine can effortlessly move through lymph nodes due to its nanoscale size advantage. It also possesses DC ability to present antigens, and antigen presentation can be made more effective with high biocompatibility. The sustained release of IL-2 encapsulated in the core of PLGA-NP in vivo can effectively promote the body's cellular immune response. Immune tests on mice have shown that Biom@DC may greatly increase T cell activation and proliferation both in vivo and in vitro, while also significantly reducing the fraction of inhibitory Treg cells. Furthermore, in the micro serum neutralization assay for FMDV, it has been demonstrated that the group vaccinated with Biom@DC exhibits a clear neutralizing effect. Given its strong immunogenicity, Biom@DC has the potential to develop into a novel, potent anti-FMDV vaccination.
Collapse
Affiliation(s)
- Zhan Gao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; School of Materials Science and Engineering, Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yao Lei
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhuo Hou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
9
|
Lee S, Baker CM, Sellens E, Stevenson MA, Roche S, Hall RN, Breed AC, Firestone SM. A systematic review of epidemiological modelling in response to lumpy skin disease outbreaks. Front Vet Sci 2024; 11:1459293. [PMID: 39376926 PMCID: PMC11456570 DOI: 10.3389/fvets.2024.1459293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Lumpy skin disease (LSD) is an infectious disease currently spreading worldwide and poses a serious global threat. However, there is limited evidence and understanding to support the use of models to inform decision-making in LSD outbreak responses. This review aimed to identify modelling approaches that can be used before and during an outbreak of LSD, examining their characteristics and priorities, and proposing a structured workflow. We conducted a systematic review and identified 60 relevant publications on LSD outbreak modelling. The review identified six categories of question to be addressed following outbreak detection (origin, entry pathway, outbreak severity, risk factors, spread, and effectiveness of control measures), and five analytical techniques used to address them (descriptive epidemiology, risk factor analysis, spatiotemporal analysis, dynamic transmission modelling, and simulation modelling). We evaluated the questions each analytical technique can address, along with their data requirements and limitations, and accordingly assigned priorities to the modelling. Based on this, we propose a structured workflow for modelling during an LSD outbreak. Additionally, we emphasise the importance of pre-outbreak preparation and continuous updating of modelling post-outbreak for effective decision-making. This study also discusses the inherent limitations and uncertainties in the identified modelling approaches. To support this workflow, high-quality data must be collected in standardised formats, and efforts should be made to reduce inherent uncertainties of the models. The suggested modelling workflow can be used as a process to support rapid response for countries facing their first LSD occurrence and can be adapted to other transboundary diseases.
Collapse
Affiliation(s)
- Simin Lee
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher M. Baker
- School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Parkville, VIC, Australia
- The Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Emily Sellens
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Mark A. Stevenson
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sharon Roche
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | | | - Andrew C. Breed
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Song BM, Lee GH, Kang SM, Tark D. Evaluation of vaccine efficacy with 2B/T epitope conjugated porcine IgG-Fc recombinants against foot-and-mouth disease virus. J Vet Med Sci 2024; 86:999-1007. [PMID: 39069487 PMCID: PMC11422696 DOI: 10.1292/jvms.23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The inactivated vaccine is effective in controlling foot-and-mouth disease (FMD), but it has drawbacks such as the need for a biosafety level 3 laboratory facility to handle live foot-and-mouth disease virus (FMDV), high production costs, and biological safety risks. In response to these challenges, we developed a new recombinant protein vaccine (2BT-pIgG-Fc) containing porcine IgG-Fc to enhance protein stability in the body. This vaccine incorporates two-repeat B-cell and one-single T-cell epitope derived from O/Jincheon/SKR/2014. Our study confirmed that 2BT-pIgG-Fc and a commercial FMDV vaccine induced FMDV-specific antibodies in guinea pigs at 28 days post-vaccination. The percentage inhibition (PI) value of 2BT-pIgG-Fc was 90.43%, and the commercial FMDV vaccine was 81.75%. The PI value of 2BT-pIgG-Fc was 8.68% higher than that of commercial FMDV vaccine. In pigs, the primary target animals for FMDV, all five individuals produced FMDV-specific antibodies 42 days after vaccination with 2BT-pIgG-Fc. Furthermore, serum from 2BT-pIgG-Fc-vaccinated pigs exhibited neutralizing ability against FMDV infection. Intriguingly, the 2BT-pIgG-Fc recombinant demonstrated FMDV-specific antibody production rates and neutralization efficiency similar to commercial inactivated vaccines. This study illustrates the potential to enhance vaccine efficacy by strategically combining well-known antigenic domains in the development of recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Byeong-Min Song
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Gun-Hee Lee
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
11
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
12
|
Yin M, Qian P, Wang H, Zhao Q, Zhang H, Zheng Z, Zhang M, Lu Z, Li X. Foot-and-mouth disease virus (FMDV) negatively regulates ZFP36 protein expression to alleviate its antiviral activity. J Virol 2024; 98:e0111424. [PMID: 39194213 PMCID: PMC11406947 DOI: 10.1128/jvi.01114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.
Collapse
Affiliation(s)
- Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
| | - Haoyuan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiongqiong Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huiyan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zixuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
13
|
Asadbeigi A, Bakhtiarizadeh MR, Saffari M, Modarressi MH, Sadri N, Kafi ZZ, Fazilaty H, Ghalyanchilangeroudi A, Esmaeili H. Protection of animals against devastating RNA viruses using CRISPR-Cas13s. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102235. [PMID: 39021763 PMCID: PMC11253668 DOI: 10.1016/j.omtn.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The intrinsic nature of CRISPR-Cas in conferring immunity to bacteria and archaea has been repurposed to combat pathogenic agents in mammalian and plant cells. In this regard, CRISPR-Cas13 systems have proved their remarkable potential for single-strand RNA viruses targeting. Here, different types of Cas13 orthologs were applied to knockdown foot-and-mouth disease virus (FMDV), a highly contagious disease of a wide variety of species with genetically diverse strains and is widely geographically distributed. Using programmable CRISPR RNAs capable of targeting conserved regions of the viral genome, all Cas13s from CRISPR system type VI (subtype A/B/D) could comprehensively target and repress different serotypes of FMDV virus. This approach has the potential to destroy all strains of a virus as targets the ultra-conserved regions of genome. We experimentally compared the silencing efficiency of CRISPR and RNAi by designing the most effective short hairpin RNAs according to our developed scoring system and observed comparable results. This study showed successful usage of various Cas13 enzymes for suppression of FMDV, which provides a flexible strategy to battle with other animal infectious RNA viruses, an underdeveloped field in the biotechnology scope.
Collapse
Affiliation(s)
- Adnan Asadbeigi
- Cancer Institute, Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | | | - Mojtaba Saffari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417613151, Iran
| | - Naser Sadri
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Hossein Esmaeili
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| |
Collapse
|
14
|
Al-Ebshahy E, El-Ansary RE, Zhang J, Badr Y, Rady A, El-Ashram S, Ma Y, Yuan M, Elgendy E. Sequence and phylogenetic analysis of FMD virus isolated from two outbreaks in Egypt. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105651. [PMID: 39089501 DOI: 10.1016/j.meegid.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Despite intensive control efforts, Foot and mouth disease (FMD) outbreaks continue to occur regularly in Egypt and resulting in dramatic economic losses to the livestock industry. During 2018 and 2022, FMD was clinically suspected among previously vaccinated cattle in Beheira and Kafr El-Sheikh provinces, Egypt. FMDV RNA was detected in 18 (45%) out of 40 epithelial tissue samples using real-time RT-PCR based on a pan-FMDV primers set. The 2018 outbreak isolates (n = 8) included the FMDV serotypes A and SAT2, whereas all isolates (n = 10) from the 2022 outbreak belonged to the FMDV serotype A. Four selected isolates, designated FMDV/SAT2/EGY/Beheira/2018, FMDV/A/EGY/Kafr El-Sheikh/2018, FMDV/A/EGY/Kafr El-Sheikh/2022 and FMDV/A/EGY/Behiera/2022, were characterized on the basis of partial VP1 gene sequence analysis. The FMDV/SAT2/EGY/Beheira/2018 strain was clustered within the Lib-12 lineage of the topotype VII and shared 79.2-98.4% nucleotide identity with other Egyptian SAT2 strains available in Genbank database. On the other hand, the three FMDV serotype A sequences shared 74.4-99.1% nucleotide identity with each other. Also, they were phylogenetically classified within two distinct topotypes. The FMDV/A/Egy/Kafr El-Sheikh/2018 strain was grouped within the Asian topotype, meanwhile the FMDV/A/EGY/Kafr El-Sheikh/2022 and FMDV/A/EGY/Behiera/2022 strains were grouped together within the genotype IV of the African topotype. Interestingly, the deduced amino acid sequences of the four strains displayed numerous variations in comparison to the vaccine strains currently used in Egypt. In addition, most of these variations were present in prominent antigenic positions in the VP1 protein. These findings raise a crucial need to validate the protective potential of the vaccine strains against the newly emerging FMDV field strains and to update the vaccination strategy accordingly.
Collapse
Affiliation(s)
- Emad Al-Ebshahy
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Abees10th, Alexandria 21944, Egypt
| | - Ramy E El-Ansary
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Yassien Badr
- Department of Infectious Diseases and epidemics, Faculty of Veterinary Medicine, Damanhour University, 22511 Damanhour, El Beheira, Egypt
| | - Alaa Rady
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Abees10th, Alexandria 21944, Egypt
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Yabin Ma
- Hebei Animal Husbandry and Breeding Work Station, Shijiazhuang 050061, China
| | - Ming Yuan
- Hebei Animal Husbandry and Breeding Work Station, Shijiazhuang 050061, China.
| | - Emad Elgendy
- Department of Virology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
15
|
Wu Y, Li L, Bai W, Li T, Qian X, Liu Y, Wang S, Liu C, Wan F, Zhang D, Liu Y, Wu K, Ling Y, Zhou H, Meng F, Zhang Y, Cao J. RNA-Seq analysis reveals the different mechanisms triggered by bovine and equine after infection with FMDV. Vet Med Sci 2024; 10:e1569. [PMID: 39287214 PMCID: PMC11406511 DOI: 10.1002/vms3.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Foot-and-mouth disease virus (FMDV) is an important pathogen of the MicroRNA virus family. Infection of livestock can cause physical weakness, weight loss, reduced milk production, and a significant reduction in productivity for an extended period. It also causes a high mortality rate in young animals, seriously affecting livestock production. The host range of FMDV is mainly limited to cloven-hoofed animals such as cattle and sheep, while odd-toed ungulates such as horses and donkeys have natural resistance to FMDV. The mechanism underlying this resistance in odd-toed ungulates remains unclear. OBJECTIVE This study aimed to analyze the differences between FMDV-infected cattle and horses to provide valuable insights into the host-FMDV interaction mechanisms, thereby contributing to the control of foot-and-mouth disease and promoting the development of the livestock industry. METHODS We observed the distribution of integrins, which help FMDV enter host cells, in the nasopharyngeal tissues of cattle and horses using immunohistochemistry. Then, we employed high-throughput RNA sequencing (RNA-Seq) to study the changes in host gene expression in the nasopharyngeal epithelial tissues of cattle and horses after FMDV infection. We performed enrichment analysis of GO and KEGG pathways after FMDV infection and validated related genes through qPCR. RESULTS The immunohistochemical results showed that both cattle and horses had four integrin receptors that could assist FMDV entry into host cells. The transcriptome analysis revealed that after FMDV infection, pro-apoptotic genes such as caspase-3 (CASP3) and cytochrome C (CYCS) were upregulated in cattle, while apoptosis-inhibiting genes such as NAIP and BCL2A1 were downregulated. In contrast, the expression trend of related genes in horses was opposite to that in cattle. Additionally, autophagy-related genes such as beclin 1, ATG101, ATG4B, ATG4A, ATG13, and BCL2A1 were downregulated in cattle after FMDV infection, indicating that cattle did not clear the virus through autophagy. However, key autophagy genes including ATG1, ATG3, ATG9, ATG12, and ATG16L1 were significantly upregulated in horses after viral infection. CONCLUSION Both water buffaloes and Mongolian horses express integrin receptors that allow FMDV entry into cells. Therefore, the resistance of Mongolian horses to FMDV may result from more changes in intracellular mechanisms, including processes such as autophagy and apoptosis. Significant differences were observed between water buffaloes and Mongolian horses in these processes, suggesting that these processes influence FMDV replication and synthesis.
Collapse
|
16
|
Wang X, Liao Y, Abdullah SW, Wu J, Zhang Y, Ren M, Dong H, Bai M, Sun S, Guo H. FGFR1-mediated enhancement of foot-and-mouth disease virus entry. Vet Microbiol 2024; 298:110237. [PMID: 39217891 DOI: 10.1016/j.vetmic.2024.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV. Our findings revealed that two compounds specifically targeting fibroblast growth factor receptor 1 (FGFR1) and FMS-like tyrosine kinase 3 (FLT3) significantly disrupted FMDV entry. Furthermore, additional evaluation through gene knockdown and overexpression confirmed the promotion effect of FGFR1 and FLT3 on FMDV entry. Interestingly, we discovered that the increasement of FMDV entry facilitated by FGFR1 and FLT3 can be ascribed to increased macropinocytic uptake. Additionally, in-depth mechanistic study demonstrated that FGFR1 interacts with FMDV VP3 and undergoes phosphorylation during FMDV entry. Furthermore, the FGFR1 inhibitor inhibited FMDV-induced activation of p21-activated kinase 1 (PAK1) on Thr212 and Thr423 sites. Consistent with these findings, the ectopic expression of FGFR1 resulted in a concomitant increase in phosphorylation level of PAK1 on Thr212 and Thr423 sites. Taken together, our findings represent the initial exploration of FGFR1's involvement in FMDV macropinocytic entry, providing novel insights with potential implications for the development of antiviral strategies.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Avenue de l'Hôpital, 11, Liège 4000, Belgium
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| |
Collapse
|
17
|
Wu X, Yang Y, Ru Y, Hao R, Zhao D, Ren R, Lu B, Li Y, Sun S, Zheng H, Wang W. Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication. BMC Genomics 2024; 25:796. [PMID: 39179961 PMCID: PMC11342673 DOI: 10.1186/s12864-024-10703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.
Collapse
Affiliation(s)
- Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Dongmei Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ruifang Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Bingzhou Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yajun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shengzhen Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
18
|
Zhou S, Liu N, Tian Y, Pan H, Han Y, Li Z, Zhang J, Guan S, Chen H, Song Y. Enzymatic characterization and dominant sites of foot-and-mouth disease virus 2C protein. Heliyon 2024; 10:e35449. [PMID: 39170175 PMCID: PMC11336754 DOI: 10.1016/j.heliyon.2024.e35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) 2C protein is a conserved non-structural protein and crucial for replication of the virus. In this study, FMDV 2C protein was prepared and the enzymatic activities were investigated in detail. The protein could digest ssDNA or ssRNA into a small fragment at about 10 nt, indicating that the protein has nuclease activity. But it did not show digestion to blunt-end dsDNA or dsRNA. The nuclease activity of 2C protein could be inhibited in 2 mM Zn2+ or Ca2+ while enhanced by Mg2+ or Mn2+. FMDV 2C protein exhibited unwinding activity to all the three kinds of dsDNA and dsRNA (5' protruded, 3' protruded, and blunt-end). The unwinding velocity to 5' protruded dsRNA was higher than to the blunt-end dsRNA. 2C protein only showed unwinding activity in high concentration of Mg2+, but no unwinding activity in physiological concentrations of Mg2+ and Ca2+, as well as in cell lysate. The 2C protein could catalyze two structured ssRNA to form double strand, thus it was proved to have RNA chaperone activity. The Mg2+ and ATP in different concentrations did not show promotion to the RNA chaperone activity. Finally, six mutant proteins (K116A, D160A, D170A, N207A, R226A, and F316A) were constructed and the enzymatic activities were analyzed. All the six mutations reduced the ATPase activity, D170A and F361A could inactivate the nuclease activity, while the N207A and F316A could inactivate the helicase activity. Our study provides a comprehensive understanding of the enzymatic activities of FMDV 2C protein.
Collapse
Affiliation(s)
- Saisai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Nankun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hong Pan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuaiyin Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Tommeurd W, Thueng-in K, Theerawatanasirikul S, Tuyapala N, Poonsuk S, Petcharat N, Thangthamniyom N, Lekcharoensuk P. Identification of Conserved Linear Epitopes on Viral Protein 2 of Foot-and-Mouth Disease Virus Serotype O by Monoclonal Antibodies 6F4.D11.B6 and 8D6.B9.C3. Antibodies (Basel) 2024; 13:67. [PMID: 39189238 PMCID: PMC11348169 DOI: 10.3390/antib13030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.
Collapse
Affiliation(s)
- Wantanee Tommeurd
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
| | - Kanyarat Thueng-in
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Sirin Theerawatanasirikul
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nongnaput Tuyapala
- Protein-Ligand Engineering and Molecular Biology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Sukontip Poonsuk
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nantawan Petcharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Research and Development Department, Animal Health and Diagnostic Center, CPF (Thailand) Public Company Limited, Bangkok 10530, Thailand;
| | - Porntippa Lekcharoensuk
- Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand; (W.T.); (S.T.)
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
20
|
Shao J, Liu W, Gao S, Chang H, Guo H. A recombinant multi-epitope trivalent vaccine for foot-and-mouth disease virus serotype O in pigs. Virology 2024; 596:110103. [PMID: 38781710 DOI: 10.1016/j.virol.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In order to develop a safe and effective broad-spectrum vaccine for foot-and-mouth disease (FMDV), here, we developed a recombinant FMD multiple-epitope trivalent vaccine based on three distinct topotypes of FMDV. Potency of the vaccine was evaluated by immune efficacy in pigs. The results showed that the vaccine with no less than 25 μg of antigen elicited FMDV serotype O specific antibodies and neutralization antibodies by primary-booster regime, and offered immune protection to pigs. More importantly, the vaccine elicited not only the same level of neutralization antibodies against the three distinct topotypes of FMDV, but also provided complete protection in pigs from the three corresponding virus challenge. None of the fully protected pigs were able to generate anti-3ABC antibodies throughout the experiment, which implied the vaccine can offer sterilizing immunity. The vaccine elicited lasting-long high-level antibodies and effectively protected pigs from virulent challenge within six months of immunization. Therefore, we consider that this vaccine may be used in the future for the prevention and control of FMD.
Collapse
Affiliation(s)
- Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, WOAH/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China.
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, WOAH/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, WOAH/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, WOAH/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China.
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, WOAH/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, China
| |
Collapse
|
21
|
Humphries B, Ward MP. Critically appraised topic: the use of vaccination to control the spread of foot-and-mouth disease in Australian livestock in the event of an incursion. Aust Vet J 2024; 102:407-415. [PMID: 38840308 DOI: 10.1111/avj.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
With recent outbreaks of foot-and-mouth disease (FMD) in Indonesia and Bali, industry, government and public concern for its incursion into Australia is increasing. The potential impact of an outbreak on the agricultural industry and national economy could be devastating. To date, research conducted in relation to FMD in Australia predominantly concerns simulations and models performed to predict various outcomes. This project critically appraises the current literature regarding the simulated use of vaccination and its effectiveness for controlling the spread of FMD in Australia in the event of an outbreak. Findings from 10 modelling studies suggest that vaccination is effective at controlling the size and duration of an outbreak (under certain conditions), however, there is less clarity about cost-effectiveness.
Collapse
Affiliation(s)
- B Humphries
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - M P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| |
Collapse
|
22
|
Susilo J, Setyawan EMN, Hartanto S, Wibowo MH, Budiyanto A. Effect of GnRH treatment as a potential solution for ovarian disorders in dairy cows infected with foot and mouth disease in Indonesian smallholder farms. Open Vet J 2024; 14:2079-2084. [PMID: 39308740 PMCID: PMC11415909 DOI: 10.5455/ovj.2024.v14.i8.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background The outbreak of foot and mouth disease (FMD) in Indonesia induces reproductive disorders in dairy cows that lead to economic losses to smallholder dairy farms. Aim The study was to assess the influence of FMD on reproductive traits and evaluate the effect of gonadotropin hormone-releasing hormone (GnRH) administrations on the reproductive performance in FMD-infected dairy cows. Methods The study was conducted in Jemowo village, Taman Sari sub-district, Boyolali district, Central Java, Indonesia. A total of 155 cows were used to identify the reproductive disorders on FMD-infected dairy cows aged 2-10 years old. Cows were raised in similar conditions and fed diets. A single dose of 2 ml GnRH was injected intramuscularly into 96 ovarian disorder cows. Reproductive performance was measured by service per conception (S/C), conception rate (CR), and pregnancy rate (PR). A descriptive study was conducted to demonstrate the results. Results The study showed that 61.9% of FMD-infected cows had reproductive disorders, whereby 53.5% ovarian hypofunction, 4.52% silent heat, 1.94% repeat breeder, 1.29% ovarian atrophy, and 0.65% endometritis. FMD-infected cows injected with GnRH had a 98% reproductive recovery rate. Moreover, the S/C, CR, and PR of cows injected with GnRH were 2.02%, 51%, and 85%. Conclusion GnRH administrations enhanced the reproductive traits of FMD-infected dairy cows indicated by the improvement of CR and PR.
Collapse
Affiliation(s)
- Joko Susilo
- Department of Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
- Lampung Disease Investigation Center, Lampung, Indonesia
| | - Erif Maha Nugraha Setyawan
- Department of Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Slamet Hartanto
- Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Michael Haryadi Wibowo
- Department of Microbiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta
| | - Agung Budiyanto
- Department of Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
23
|
Gee E, Young JR, Khounsy S, Phommachanh P, Christensen P, Theppangna W, Hughes T, Brownlie T, Temmerath A, Inthavong A, Inthapanya P, Punyasith S, Blacksell SD, Ward MP. Investigation of the association between foot-and-mouth disease clinical signs and abattoir serological data in large ruminants in northern Lao People's Democratic Republic. Front Vet Sci 2024; 11:1392885. [PMID: 39135894 PMCID: PMC11317388 DOI: 10.3389/fvets.2024.1392885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious and endemic disease in Lao PDR. However, surveillance is weak, and outbreaks are not routinely reported. To address this, serum samples were routinely collected from cattle and buffalo from provincial abattoirs between November 2021 and December 2022. A total of 2,663 serum samples were collected from large ruminants (n = 1,625 cattle; n = 1,038 buffalo) from 17 provinces. Samples were tested for specific antibodies directed against FMD non-structural protein (NSP) to determine the proportion of animals exposed to FMD virus. In addition to sampling from abattoirs, further independent data was collected to report clinical signs and outcomes from 94 districts in 12 northern provinces. These incident reports were recorded by district staff using a Google Form and summarised monthly in the National Animal Disease Reporting System. Information was collected on species, incident date, herd size, location and which clinical signs the animals presented. Overall, 46% of the tested animals returned a positive result using ID Screen® FMD NSP Competition ELISA. Results from serological testing were then compared with reported clinical signs from the same district. In districts reporting 'mouth problems' (regardless of other clinical signs) the median FMD seroprevalence was 49.7%, compared to 31.6% in districts not reporting mouth problems (p = 0.021). This finding suggests that reporting clinical cases of 'mouth problems' could be a potential predictor of FMD infection at a district level in cattle and buffalo in Lao PDR. Furthermore, in districts reporting 'fever', 'mouth problems', and 'nose/mouth secretions' together, the median FMD seroprevalence was 46.2%, compared to 24.4% in districts not reporting these signs (p = 0.033). In districts reporting 'mouth problems' and 'nose/mouth secretions' the median FMD seroprevalence was 49.4%, compared to 25.5% in districts not reporting these signs (p = 0.037). In districts reporting both 'fever' and 'mouth problems,' the median FMD seroprevalence was 46.4% compared to 25% in districts not reporting these signs (p = 0.017). Based on serological data generated by abattoir surveillance, this study identified clinical signs most predictive of FMD seroprevalence. These novel findings can be used to guide passive surveillance efforts in the future specifically in northern Laos and help support improved FMD surveillance more broadly in FMD endemic countries in Southeast Asia.
Collapse
Affiliation(s)
- Emily Gee
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - James R. Young
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Syseng Khounsy
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Peter Christensen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watthana Theppangna
- National Animal Health Laboratory, Vientiane, Lao People's Democratic Republic
| | - Tom Hughes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Conservation Medicine, Sungai Buloh, Selangor, Malaysia
| | | | - Adisone Temmerath
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Alex Inthavong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phoummavanh Inthapanya
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sivone Punyasith
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
24
|
Mana N, Theerawatanasirikul S, Semkum P, Lekcharoensuk P. Naturally Derived Terpenoids Targeting the 3D pol of Foot-and-Mouth Disease Virus: An Integrated In Silico and In Vitro Investigation. Viruses 2024; 16:1128. [PMID: 39066290 PMCID: PMC11281344 DOI: 10.3390/v16071128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for secondary metabolite terpenoids targeting the RNA-dependent RNA polymerase (RdRp), or 3Dpol, of FMDV. Subsequently, we identified the potential antiviral activity of the 32 top-ranked terpenoids, revealing that continentalic acid, dehydroabietic acid (abietic diterpenoids), brusatol, bruceine D, and bruceine E (tetracyclic triterpenoids) significantly reduced cytopathic effects and viral infection in the terpenoid-treated, FMDV-infected BHK-21 cells in a dose-dependent manner, with nanomolar to low micromolar levels. The FMDV minigenome assay demonstrated that brusatol and bruceine D, in particular, effectively blocked FMDV 3Dpol activity, exhibiting IC50 values in the range of 0.37-0.39 µM and surpassing the efficacy of the antiviral drug control, ribavirin. Continentalic acid and bruceine E exhibited moderate inhibition of FMDV 3Dpol. The predicted protein-ligand interaction confirmed that these potential terpenoids interacted with the main catalytic and bystander residues of FMDV 3Dpol. Additionally, brusatol and bruceine D exhibited additive effects when combined with ribavirin. In conclusion, terpenoids from natural resources show promise for the development of anti-FMD agents.
Collapse
Affiliation(s)
- Natjira Mana
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.M.); (P.S.)
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.M.); (P.S.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.M.); (P.S.)
| |
Collapse
|
25
|
Liu H, Xue Q, Yang F, Cao W, Liu P, Liu X, Zhu Z, Zheng H. Foot-and-mouth disease virus VP1 degrades YTHDF2 through autophagy to regulate IRF3 activity for viral replication. Autophagy 2024; 20:1597-1615. [PMID: 38516932 PMCID: PMC11210904 DOI: 10.1080/15548627.2024.2330105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024] Open
Abstract
Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses. GTPBP4 deficiency promotes the antiviral innate immune response, resulting in the ability of GTPBP4 to promote FMDV replication. Meanwhile, GTPBP4-deficient mice are more resistant to FMDV infection. To antagonize the host's antiviral immunity, FMDV structural protein VP1 promotes the expression of GTPBP4, and the 209th site of VP1 is responsible for this effect. Mechanically, FMDV VP1 promotes autophagy during virus infection and interacts with and degrades YTHDF2 (YTH N6-methyladenosine RNA binding protein F2) in an AKT-MTOR-dependent autophagy pathway, resulting in an increase in GTPBP4 mRNA and protein levels. Increased GTPBP4 inhibits IRF3 binding to the Ifnb/Ifn-β promoter, suppressing FMDV-induced type I interferon production. In conclusion, our study revealed an underlying mechanism of how VP1 negatively regulates innate immunity through the autophagy pathway, which would contribute to understanding the negative regulation of host innate immune responses and the function of GTPBP4 and YTHDF2 during FMDV infection.Abbreviation: 3-MA:3-methyladenine; ACTB: actin beta; ATG: autophagy related; ChIP:chromatin immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2-phenylindole; dpi: days post-infection; EV71:enterovirus 71; FMDV: foot-and-mouth disease virus; GTPBP4/NOG1: GTPbinding protein 4; HIF1A: hypoxia inducible factor 1 subunit alpha;hpt:hours post-transfection; IFNB/IFN-β:interferon beta; IRF3: interferon regulatory factor 3; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAVS: mitochondriaantiviral signaling protein; MOI: multiplicity of infection; MTOR:mechanistic target of rapamycin kinase; m6A: N(6)-methyladenosine;qPCR:quantitativePCR; SIRT3:sirtuin 3; SQSTM1/p62: sequestosome 1; STING1: stimulator ofinterferon response cGAMP interactor 1; siRNA: small interfering RNA;TBK1: TANK binding kinase 1; TCID50:50% tissue culture infectious doses; ULK1: unc-51 like autophagyactivating kinase 1; UTR: untranslated region; WT: wild type; YTHDF2:YTH N6-methyladenosine RNA binding protein F2.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
26
|
Cho G, Kim H, Kim DW, Hwang SY, Hwang JH, Chae YR, Lee YH, Jeong OM, Park JW, Park SH, Park JH. Establishment of the Foot-and-Mouth Disease Virus Type Asia1 Expressing the HiBiT Protein: A Useful Tool for a NanoBiT Split Luciferase Assay. Viruses 2024; 16:1002. [PMID: 39066165 PMCID: PMC11281472 DOI: 10.3390/v16071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that affects cloven-hoofed animals and causes severe economic losses in the livestock industry. Given that this high-risk pathogen has to be handled in a biosafety level (BSL)-3 facility for safety reasons and the limited availability of BSL-3 laboratories, experiments on FMDV call for more attention. Therefore, we aimed to develop an FMDV experimental model that can be handled in BSL-2 laboratories. The NanoBiT luciferase (Nano-luc) assay is a well-known assay for studying protein-protein interactions. To apply the NanoBiT split luciferase assay to the diagnosis and evaluation of FMD, we developed an inactivated HiBiT-tagged Asia1 Shamir FMDV (AS-HiBiT), a recombinant Asia1 shamir FMDV with HiBiT attached to the VP1 region of Asia1 shamir FMDV. In addition, we established LgBiT-expressing LF-BK cell lines, termed LgBit-LF-BK cells. It was confirmed that inactivated AS-HiBiT infected LgBiT-LF-BK cells and produced a luminescence signal by binding to the intracellular LgBiT of LgBiT-LF-BK cells. In addition, the luminescence signal became stronger as the number of LgBiT-LF-BK cells increased or the concentration of inactivated AS-HiBiT increased. Moreover, we confirmed that inactivated AS-HiBiT can detect seroconversion in sera positive for FMDV-neutralizing antibodies. This NanoBiT split luciferase assay system can be used for the diagnosis and evaluation of FMD and expanded to FMD-like virus models to facilitate the evaluation of FMDV vaccines and antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sung-Han Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (G.C.); (H.K.); (D.-W.K.); (S.Y.H.); (J.-H.H.); (Y.R.C.); (Y.-H.L.); (O.-M.J.); (J.-W.P.)
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (G.C.); (H.K.); (D.-W.K.); (S.Y.H.); (J.-H.H.); (Y.R.C.); (Y.-H.L.); (O.-M.J.); (J.-W.P.)
| |
Collapse
|
27
|
Eltahir YM, Ishag HZA, Parekh K, Wood BA, Ludi A, King DP, Bensalah OK, Khan RA, Shah AAM, Kayaf K, Mohamed MS. Foot and Mouth Disease Vaccine Matching and Post-Vaccination Assessment in Abu Dhabi, United Arab Emirates. Vet Sci 2024; 11:272. [PMID: 38922019 PMCID: PMC11209342 DOI: 10.3390/vetsci11060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Despite the annual vaccination of livestock against foot and mouth disease (FMD) in the United Arab Emirates (UAE), outbreaks of the disease continue to be reported. The effective control of field outbreaks by vaccination requires that the vaccines used are antigenically matched to circulating field FMD viruses. In this study, a vaccine matching analysis was performed using the two-dimensional virus neutralization test (VNT) for three field isolates belonging to the O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages collected from different FMD outbreaks that occurred within the Abu Dhabi Emirate in 2021 affecting Arabian oryx (Oryx leucoryx), goat, and sheep. In addition, post-vaccination antibodies in sheep and goats were measured using solid-phase competitive ELISA (SPCE) for FMDV serotypes A and O at five months after a single vaccine dose and a further 28 days later after a second dose of the FMD vaccine. An analysis of vaccine matching revealed that five out of the six vaccine strains tested were antigenically matched to the UAE field isolates, with r1-values ranging between 0.32 and 0.75. These results suggest that the vaccine strains (O-3039 and O1 Manisa) included in the FMD vaccine used in the Abu Dhabi Emirate are likely to provide protection against outbreaks caused by the circulating O/ME-SA/PanAsia-2/ANT-10 and O/ME-SA/SA-2018 lineages. All critical residues at site 1 and site 3 of VP1 were conserved in all isolates, although an analysis of the VP1-encoding sequences revealed 14-16 amino acid substitutions compared to the sequence of the O1 Manisa vaccine strain. This study also reports on the results of post-vaccination monitoring where the immunization coverage rates against FMDV serotypes A and O were 47% and 69% five months after the first dose of the FMD vaccine, and they were increased to 81 and 88%, respectively, 28 days after the second dose of the vaccine. These results reinforce the importance of using a second booster dose to maximize the impact of vaccination. In conclusion, the vaccine strains currently used in Abu Dhabi are antigenically matched to circulating field isolates from two serotype O clades (O/ME-SA/PanAsia-2/ANT-10 sublineage and O/ME-SA/SA-2018 lineage). The bi-annual vaccination schedule for FMD in the Abu Dhabi Emirate has the potential to establish a sufficient herd immunity, especially when complemented by additional biosecurity measures for comprehensive FMD control. These findings are pivotal for the successful implementation of the region's vaccination-based FMD control policy, showing that high vaccination coverage and the wide-spread use of booster doses in susceptible herds is required to achieve a high level of FMDV-specific antibodies in vaccinated animals.
Collapse
Affiliation(s)
- Yassir M. Eltahir
- Animals Extension and Health Services Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Hassan Zackaria Ali Ishag
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Krupali Parekh
- FAO World Reference Laboratory for FMD (WRLFMD), The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Britta A. Wood
- FAO World Reference Laboratory for FMD (WRLFMD), The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Anna Ludi
- FAO World Reference Laboratory for FMD (WRLFMD), The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Donald P. King
- FAO World Reference Laboratory for FMD (WRLFMD), The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Oum Keltoum Bensalah
- Animals Extension and Health Services Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Rashid A. Khan
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Asma Abdi Mohamed Shah
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Kaltham Kayaf
- Animal Development and Health Department, Ministry of Climate Change and Environment, Dubai P.O. Box 1509, United Arab Emirates
| | - Meera Saeed Mohamed
- Animals Extension and Health Services Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| |
Collapse
|
28
|
Ishida H, Nakamura M, Murakami H, Kazama K, Oba M, Takemae H, Mizutani T, Ouchi Y, Kawakami J, Tsuzuku S, Nagai M. Detection and genetic analysis of bovine rhinitis B virus in Japan. Arch Virol 2024; 169:125. [PMID: 38753082 DOI: 10.1007/s00705-024-06046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/05/2024] [Indexed: 06/13/2024]
Abstract
Bovine rhinitis B virus (BRBV) (genus Aphthovirus, family Picornaviridae) is a significant etiological agent of the bovine respiratory disease complex. Despite global reports on BRBV, genomic data for Japanese strains are not available. In this study, we aimed to obtain genomic information on BRBV in Japan and analyze its genetic characteristics. In nasal swabs from 66 cattle, BRBV was detected in 6 out of 10 symptomatic and 4 out of 56 asymptomatic cattle. Using metagenomic sequencing and Sanger sequencing, the nearly complete genome sequences of two Japanese BRBV strains, IBA/2211/2 and LAV/238002, from symptomatic and asymptomatic cattle, respectively, were determined. These viruses shared significant genetic similarity with known BRBV strains and exhibited unique mutations and recombination events, indicating dynamic evolution, influenced by regional environmental and biological factors. Notably, the leader gene was only approximately 80% and 90% identical in its nucleotide and amino acid sequence, respectively, to all of the BRBV strains with sequences in the GenBank database, indicating significant genetic divergence in the Japanese BRBV leader gene. These findings provide insights into the genetic makeup of Japanese BRBV strains, enriching our understanding of their genetic diversity and evolutionary mechanisms.
Collapse
Affiliation(s)
- Hiroho Ishida
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan.
| | - Mikari Nakamura
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kei Kazama
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Mami Oba
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yoshinao Ouchi
- Beef Cattle Institute, Ibaraki Prefecture of Livestock Research Center, Hitachi-Omiya, Ibaraki, Japan
| | - Junko Kawakami
- Ibaraki Prefecture Kennan Livestock Hygiene Service Center, Tsuchiura, Ibaraki, Japan
| | - Satoko Tsuzuku
- Ibaraki Prefecture Kennan Livestock Hygiene Service Center, Tsuchiura, Ibaraki, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
29
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
30
|
Deka P, Das S, Hazarika R, Kayaga R, Dutta B, Deka A, Barman U, Ahmed R, Islam N, Sarma M, Deka I, Rout M, Sharma K, Sharma RK. Foot-and-mouth disease-associated myocarditis is age dependent in suckling calves. Sci Rep 2024; 14:10289. [PMID: 38704437 PMCID: PMC11069542 DOI: 10.1038/s41598-024-59324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.
Collapse
Affiliation(s)
- Pankaj Deka
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India.
| | - Sangeeta Das
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India.
| | - Ritam Hazarika
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Ray Kayaga
- Tanzania Veterinary Laboratory Agency, 131 Barabara Ya Nelson Mandela, P.O BOX 9254, Temeke, Dar Es Salaam, Tanzania
| | - Biswajit Dutta
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Abhijit Deka
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Utpal Barman
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Rofique Ahmed
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Nazrul Islam
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mihir Sarma
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Ilakshy Deka
- Krishi Vigyan Kendra, Kamrup, Assam Agricultural University, Kahikuchi Campus, Guwahati, 781017, India
| | - Manoranjan Rout
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Krishna Sharma
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Rajeev K Sharma
- College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| |
Collapse
|
31
|
Sirdar MM, Fosgate GT, Blignaut B, Heath L, Lazarus DD, Mampane RL, Rikhotso OB, Du Plessis B, Gummow B. A comparison of risk factor investigation and experts' opinion elicitation analysis for identifying foot-and-mouth disease (FMD) high-risk areas within the FMD protection zone of South Africa (2007-2016). Prev Vet Med 2024; 226:106192. [PMID: 38564991 DOI: 10.1016/j.prevetmed.2024.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.
Collapse
Affiliation(s)
- M M Sirdar
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; World Organisation for Animal Health, WOAH Sub-Regional Representation for Southern Africa, Gaborone, Botswana.
| | - G T Fosgate
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - B Blignaut
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - L Heath
- Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - D D Lazarus
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa
| | - R L Mampane
- Limpopo Veterinary Services, Department of Agriculture and Rural Development, Polokwane, Limpopo, South Africa
| | - O B Rikhotso
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Mpumalanga, South Africa
| | - B Du Plessis
- Mpumalanga Veterinary Services, Department of Agriculture, Rural Development, Land and Environmental Affairs, Mpumalanga, South Africa
| | - B Gummow
- Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort 0110, South Africa; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
32
|
Li Y, Yang R, Yin F, Zhang H, Zhai G, Sun S, Tian B, Zeng Q. Correlation between 146S Antigen Content in Foot-and-Mouth Disease Inactivated Vaccines and Immunogenicity Level and Vaccine Potency Alternative Test Methods. Vet Sci 2024; 11:168. [PMID: 38668435 PMCID: PMC11053669 DOI: 10.3390/vetsci11040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
To investigate the association between 146S antigen contents in FMD inactivated vaccines and levels of antiviral immunity, this study vaccinated 30 kg pigs with three batches of FMD types O and A bivalent inactivated vaccines. Antibody titers and interferon-gamma (IFN-γ) secretion levels were measured on days 7, 14, 21, and 28 after primary immunization and on days 14 and 28 following booster immunization to assess associations between 146S contents and both antibody titers and IFN-γ secretion levels. Furthermore, 30 kg pigs were vaccinated with 46 batches of FMD type O inactivated vaccines and challenged on day 28, after which PD50 values were determined to evaluate the association between 146S content and PD50. The findings suggested that antibody titers and IFN-γ secretion levels at specific time points after immunization were positively associated with 146S contents. Additionally, 146S content showed a positive correlation with PD50, with greater PD50 values recorded for 146S contents ranging from 4.72 to 16.55 µg/dose. This investigation established a significant association between the 146S content in FMD inactivated vaccines and induced immune response against FMDV, thereby emphasizing its critical role in vaccine quality control. The determination of 146S content could serve as a new method for potency testing, offering an alternative to animal challenge tests.
Collapse
Affiliation(s)
- Yongxia Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
- China Agricultural Veterinary Biotechnology Co., Ltd., Lanzhou 730046, China
| | - Ruai Yang
- China Agricultural Veterinary Biotechnology Co., Ltd., Lanzhou 730046, China
| | - Fu Yin
- China Agricultural Veterinary Biotechnology Co., Ltd., Lanzhou 730046, China
| | - Haisheng Zhang
- China Agricultural Veterinary Biotechnology Co., Ltd., Lanzhou 730046, China
| | - Guoyuan Zhai
- China Agricultural Veterinary Biotechnology Co., Ltd., Lanzhou 730046, China
| | - Shiqi Sun
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Bo Tian
- China Agricultural Veterinary Biotechnology Co., Ltd., Lanzhou 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
33
|
Bandaw T, Gebremeskel HF, Muluneh A, Mengistu TS, Kebede IA. Seroprevalence and molecular detection of foot and mouth disease virus in cattle in selected districts of Wolaita Zone, Southern Ethiopia. Sci Rep 2024; 14:7929. [PMID: 38575673 PMCID: PMC10994912 DOI: 10.1038/s41598-024-57404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.
Collapse
Affiliation(s)
- Tamenech Bandaw
- School of Veterinary Medicine, Wolaita Sodo University, P. O. Box 138, Wolaita Sodo, Ethiopia
| | | | | | - Tilaye Shibiru Mengistu
- School of Veterinary Medicine, Wolaita Sodo University, P. O. Box 138, Wolaita Sodo, Ethiopia
| | - Isayas Asefa Kebede
- School of Veterinary Medicine, Ambo University, P. O. Box 19, Guder, Ethiopia.
| |
Collapse
|
34
|
Attreed SE, Silva C, Rodriguez-Calzada M, Mogulothu A, Abbott S, Azzinaro P, Canning P, Skidmore L, Nelson J, Knudsen N, Medina GN, de los Santos T, Díaz-San Segundo F. Prophylactic treatment with PEGylated bovine IFNλ3 effectively bridges the gap in vaccine-induced immunity against FMD in cattle. Front Microbiol 2024; 15:1360397. [PMID: 38638908 PMCID: PMC11024232 DOI: 10.3389/fmicb.2024.1360397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a vesicular disease of cloven-hoofed animals with devastating economic implications. The current FMD vaccine, routinely used in enzootic countries, requires at least 7 days to induce protection. However, FMD vaccination is typically not recommended for use in non-enzootic areas, underscoring the need to develop new fast-acting therapies for FMD control during outbreaks. Interferons (IFNs) are among the immune system's first line of defense against viral infections. Bovine type III IFN delivered by a replication defective adenovirus (Ad) vector has effectively blocked FMD in cattle. However, the limited duration of protection-usually only 1-3 days post-treatment (dpt)-diminishes its utility as a field therapeutic. Here, we test whether polyethylene glycosylation (PEGylation) of recombinant bovine IFNλ3 (PEGboIFNλ3) can extend the duration of IFN-induced prevention of FMDV infection in both vaccinated and unvaccinated cattle. We treated groups of heifers with PEGboIFNλ3 alone or in combination with an adenovirus-based FMD O1Manisa vaccine (Adt-O1M) at either 3 or 5 days prior to challenge with homologous wild type FMDV. We found that pre-treatment with PEGboIFNλ3 was highly effective at preventing clinical FMD when administered at either time point, with or without co-administration of Adt-O1M vaccine. PEGboIFNλ3 protein was detectable systemically for >10 days and antiviral activity for 4 days following administration. Furthermore, in combination with Adt-O1M vaccine, we observed a strong induction of FMDV-specific IFNγ+ T cell response, demonstrating its adjuvanticity when co-administered with a vaccine. Our results demonstrate the promise of this modified IFN as a pre-exposure prophylactic therapy for use in emergency outbreak scenarios.
Collapse
Affiliation(s)
- Sarah E. Attreed
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Christina Silva
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Oak Ridge Institute for Science and Education Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN, United States
| | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Sophia Abbott
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Animal Biosciences and Biotechnology Laboratory, Northeast Area, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States
| | - Paul Azzinaro
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | | | | | - Jay Nelson
- Ambrx Biopharma, Inc., La Jolla, CA, United States
| | - Nick Knudsen
- Ambrx Biopharma, Inc., La Jolla, CA, United States
| | - Gisselle N. Medina
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- National Bio-and Agro-Defense Facility, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Office of Biodefense, Research Resources and Translational Research, National Institute of Allergy and Infectious Disease, Rockville, MD, United States
| |
Collapse
|
35
|
Jin JS, Lee G, Kim JY, Lee S, Park JH, Park SY, Ko YJ. Calcium Chloride as a Novel Stabilizer for Foot-and-Mouth Disease Virus and Its Application in the Vaccine Formulation. Vaccines (Basel) 2024; 12:367. [PMID: 38675749 PMCID: PMC11054701 DOI: 10.3390/vaccines12040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The thermal stability of the in-house-developed foot-and-mouth disease (FMD) type O and A viruses was evaluated, and the O Jincheon virus was found to exhibit the lowest thermal stability. To overcome this instability, we proposed a novel stabilizer, calcium chloride. The thermal stability of FMDVs increased up to a CaCl2 concentration of 10 mM, and it had a decreasing trend at >30 mM. The O Jincheon virus showed a significant decrease in the amount of antigen over time at 4 °C. In contrast, the samples treated with CaCl2 showed stable preservation of the virus without significant antigen loss. After the CaCl2-formulated vaccine was administered twice to pigs, the virus neutralization titer reached approximately 1:1000, suggesting that the vaccine could protect pigs against the FMDV challenge. In summary, the O Jincheon virus is difficult to utilize as a vaccine given its low stability during storage after antigen production. However, following its treatment with CaCl2, it can be easily utilized as a vaccine. This study evaluated CaCl2 as a novel stabilizer in FMD vaccines and may contribute to the development of stable vaccine formulations, especially for inherently unstable FMDV strains.
Collapse
Affiliation(s)
| | | | | | | | | | - Sun Young Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea; (J.S.J.); (G.L.); (J.Y.K.); (S.L.); (J.-H.P.)
| | - Young-Joon Ko
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin-8-ro, Gimcheon-si 39660, Republic of Korea; (J.S.J.); (G.L.); (J.Y.K.); (S.L.); (J.-H.P.)
| |
Collapse
|
36
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
37
|
Kim JY, Park SY, Lee G, Park SH, Jin JS, Kim D, Park JH, Jeong SY, Ko YJ. Determination of Optimal Antigen Yield and Virus Inactivation Conditions for the Production of the Candidate Foot-and-Mouth Disease Recombinant Vaccine Strain Asia1 Shamir-R in a Bioreactor. Viruses 2024; 16:457. [PMID: 38543822 PMCID: PMC10974838 DOI: 10.3390/v16030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 μg/mL, 5.2 μg/mL, and 3.8 μg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.
Collapse
Affiliation(s)
- Jae Young Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Sun Young Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Gyeongmin Lee
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Sang Hyun Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Jong-Sook Jin
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Dohyun Kim
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| | - Seong-Yun Jeong
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon-si 39660, Republic of Korea; (J.Y.K.); (G.L.); (D.K.)
| |
Collapse
|
38
|
Kim HW, Ko MK, Shin S, Park SH, Park JH, Kim SM, Lee MJ. Isoprinosine as a foot-and-mouth disease vaccine adjuvant elicits robust host defense against viral infection through immunomodulation. Front Cell Infect Microbiol 2024; 14:1331779. [PMID: 38510965 PMCID: PMC10951065 DOI: 10.3389/fcimb.2024.1331779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
39
|
Wu J, Sun C, Guan J, Abdullah SW, Wang X, Ren M, Qiao L, Sun S, Guo H. Nuclear ribonucleoprotein RALY downregulates foot-and-mouth disease virus replication but antagonized by viral 3C protease. Microbiol Spectr 2024; 12:e0365823. [PMID: 38323828 PMCID: PMC10913732 DOI: 10.1128/spectrum.03658-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chao Sun
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junyong Guan
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
40
|
Guessoum M, Adnane M, Baazizi R, Derguini MS. Spatial and temporal distribution of foot-and-mouth disease outbreaks in Algeria from 2014 to 2022. Vet World 2024; 17:509-517. [PMID: 38680156 PMCID: PMC11045538 DOI: 10.14202/vetworld.2024.509-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Foot-and-mouth disease (FMD), a major transboundary animal ailment in Algeria, is a serious economic burden on the livestock sector. This study aimed to investigate the spatiotemporal distribution of FMD in Algeria and identifies the factors contributing to this phenomenon. Materials and Methods Data on FMD cases occurring in Algeria from 2014 to 2022 were collected from various sources, including archives at the Ministry of Agriculture, peer-reviewed journal articles, conference proceedings, reference laboratory reports, and unpublished scientific reports. The data were compiled and analyzed using MS Office Excel® and SPSS® software. Results A total of 22,690 FMD cases and 1,141 outbreaks were reported in Algeria between 2014 and 2022. The apex of infections occurred in 2014 (34.5%), followed by an increase in the number of infections in 2019 and 2017. The prevalence of FMD extended to 91.6% of the districts of the country, particularly in the north (center) and eastern regions. Cows were the most affected, with 654 outbreaks and more than 3,665 cases. Although FMD affected all four regions, there was a statistically significant long-term decline in the incidence. Conclusion These spatial and temporal trends underscore the robust disease control methodologies implemented by the Algerian government, such as the strategic immunization of livestock to fortify their viral resistance, stringent constraints on animal mobility, and enlightenment of farmers regarding the hazards associated with unrestricted livestock movement to effectively curb FMD dissemination.
Collapse
Affiliation(s)
- Meryem Guessoum
- Local Animal Resources Management Laboratory, National Veterinary School, BP161 El-Harrach, Algiers, Algeria
| | - Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
| | - Ratiba Baazizi
- Department of Clinic, National Veterinary High School, ENSV, Algiers, Algeria
| | - Madina-Saliha Derguini
- Veterinary Inspection of Algiers, Department of Agricultural Services, Ministry of Agriculture, Algeria
| |
Collapse
|
41
|
Seoke L, Fosgate GT, Opperman PA, Malesa RP, Lazarus DD, Sirdar MM, Heath L. Optimization of a foot-and-mouth disease virus Southern African Territories-specific solid-phase competitive ELISA for small ruminant serum samples. J Vet Diagn Invest 2024; 36:192-204. [PMID: 38111309 DOI: 10.1177/10406387231218202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
We optimized and verified a single-spot solid-phase competitive ELISA (ss-SPCE) to detect antibodies against structural proteins of Southern African Territories (SAT) serotypes of foot-and-mouth disease virus (FMDV) in small ruminants. Sera from goats vaccinated and experimentally challenged with a SAT1 FMDV pool were tested in duplicate at 4 dilutions (1:10, 1:15, 1:22.5, 1:33.8) to optimize the assay. To assess the performance of the assay in naturally infected animals, we evaluated 316 goat and sheep field sera collected during active SAT2 outbreaks. Relative to results of the virus neutralization test, the optimal serum dilution and cutoff percentage inhibition (PI) were 1:15 and 50%, respectively. At these values, the Spearman rank correlation coefficient was 0.85 (p < 0.001), and the sensitivity and specificity (95% CI) were 80.3% (72.6, 87.2) and 91.1% (84.1, 95.9), respectively. Relative to the liquid-phase blocking ELISA and the nonstructural protein ELISA, the ss-SPCE exhibited divergent performance characteristics between the goat and sheep field sera. Repeatability was better for goats, but the correlation and agreement among all 3 assays were better for the sheep sera. The prevalence of SAT2 FMDV infection in the sampled sheep was 23.6%; sampled goats were seemingly FMDV-free. The ss-SPCE is an appropriate FMDV detection tool to investigate the role of small ruminants in the epidemiology of FMD in Africa.
Collapse
Affiliation(s)
- LaToya Seoke
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Transboundary Animal Diseases Program, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Pamela A Opperman
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Refiloe P Malesa
- Transboundary Animal Diseases Program, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - David D Lazarus
- Epidemiology and Training Program of Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| | - Mohamed M Sirdar
- World Organisation for Animal Health Sub-Regional Representative for Southern Africa, Gaborone, Botswana
| | - Livio Heath
- Transboundary Animal Diseases Program, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort, South Africa
| |
Collapse
|
42
|
Ellis J, Brown E, Colenutt C, Schley D, Gubbins S. Inferring transmission routes for foot-and-mouth disease virus within a cattle herd using approximate Bayesian computation. Epidemics 2024; 46:100740. [PMID: 38232411 DOI: 10.1016/j.epidem.2024.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
To control an outbreak of an infectious disease it is essential to understand the different routes of transmission and how they contribute to the overall spread of the pathogen. With this information, policy makers can choose the most efficient methods of detection and control during an outbreak. Here we assess the contributions of direct contact and environmental contamination to the transmission of foot-and-mouth disease virus (FMDV) in a cattle herd using an individual-based model that includes both routes. Model parameters are inferred using approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) applied to data from transmission experiments and the 2007 epidemic in Great Britain. This demonstrates that the parameters derived from transmission experiments are applicable to outbreaks in the field, at least for closely related strains. Under the assumptions made in the model we show that environmental transmission likely contributes a majority of infections within a herd during an outbreak, although there is a lot of variation between simulated outbreaks. The accumulation of environmental contamination not only causes infections within a farm, but also has the potential to spread between farms via fomites. We also demonstrate the importance and effectiveness of rapid detection of infected farms in reducing transmission between farms, whether via direct contact or the environment.
Collapse
Affiliation(s)
- John Ellis
- The Pirbright Institute, Pirbright, Surrey, UK.
| | - Emma Brown
- The Pirbright Institute, Pirbright, Surrey, UK
| | | | | | | |
Collapse
|
43
|
Li Y, Qiu S, Lu H, Niu B. Spatio-temporal analysis and risk modeling of foot-and-mouth disease outbreaks in China. Prev Vet Med 2024; 224:106120. [PMID: 38309135 DOI: 10.1016/j.prevetmed.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
FMD is an acute contagious disease that poses a significant threat to the health and safety of cloven-hoofed animals in Asia, Europe, and Africa. The impact of FMD exhibits geographical disparities within different regions of China. The present investigation undertook an exhaustive analysis of documented occurrences of bovine FMD in China, spanning the temporal range from 2011 to 2020. The overarching objective was to elucidate the temporal and spatial dynamics underpinning these outbreaks. Acknowledging the pivotal role of global factors in FMD outbreaks, advanced machine learning techniques were harnessed to formulate an optimal prediction model by integrating comprehensive meteorological data pertinent to global FMD. Random Forest algorithm was employed with top three contributing factors including Isothermality(bio3), Annual average temperature(bio1) and Minimum temperature in the coldest month(bio6), all relevant to temperature. By encompassing both local and global factors, our study provides a comprehensive framework for understanding and predicting FMD outbreaks. Furthermore, we conducted a phylogenetic analysis to trace the origin of Foot-and-mouth disease virus (FMDV), pinpointing India as the country posing the greatest potential hazard by leveraging the spatio-temporal attributes of the collected data. Based on this finding, a quantitative risk model was developed for the legal importation of live cattle from India to China. The model estimated an average probability of 0.002254% for FMDV-infected cattle imported from India to China. TA sensitivity analysis identified two critical nodes within the model: he possibility of false negative clinical examination in infected cattle at destination (P5) and he possibility of false negative clinical examination in infected cattle at source(P3). This comprehensive approach offers a thorough evaluation of FMD landscape within China, considering both domestic and global perspectives, thereby augmenting the efficacy of early warning mechanisms.
Collapse
Affiliation(s)
- Yi Li
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Songyin Qiu
- Chinese Academy of Inspection and Quarantine, Beijing, PR China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
44
|
Yin C, Zhao H, Xia X, Pan Z, Li D, Zhang L. Picornavirus 2C proteins: structure-function relationships and interactions with host factors. Front Cell Infect Microbiol 2024; 14:1347615. [PMID: 38465233 PMCID: PMC10921941 DOI: 10.3389/fcimb.2024.1347615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Picornaviruses, which are positive-stranded, non-enveloped RNA viruses, are known to infect people and animals with a broad spectrum of diseases. Among the nonstructural proteins in picornaviruses, 2C proteins are highly conserved and exhibit multiple structural domains, including amphipathic α-helices, an ATPase structural domain, and a zinc finger structural domain. This review offers a comprehensive overview of the functional structures of picornaviruses' 2C protein. We summarize the mechanisms by which the 2C protein enhances viral replication. 2C protein interacts with various host factors to form the replication complex, ultimately promoting viral replication. We review the mechanisms through which picornaviruses' 2C proteins interact with the NF-κB, RIG-I, MDA5, NOD2, and IFN pathways, contributing to the evasion of the antiviral innate immune response. Additionally, we provide an overview of broad-spectrum antiviral drugs for treating various enterovirus infections, such as guanidine hydrochloride, fluoxetine, and dibucaine derivatives. These drugs may exert their inhibitory effects on viral infections by targeting interactions with 2C proteins. The review underscores the need for further research to elucidate the precise mechanisms of action of 2C proteins and to identify additional host factors for potential therapeutic intervention. Overall, this review contributes to a deeper understanding of picornaviruses and offers insights into the antiviral strategies against these significant viral pathogens.
Collapse
Affiliation(s)
- Chunhui Yin
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haomiao Zhao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyi Xia
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhengyang Pan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Daoqun Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
45
|
Kim JY, Park SY, Park SH, Lee G, Jin JS, Kim D, Park JH, Jeong SY, Ko YJ. Evaluation of Foot-and-Mouth Disease (FMD) Virus Asia1 Genotype-V as an FMD Vaccine Candidate: Study on Vaccine Antigen Production Yield and Inactivation Kinetics. Vaccines (Basel) 2024; 12:185. [PMID: 38400168 PMCID: PMC10892639 DOI: 10.3390/vaccines12020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
South Korea has experienced outbreaks of foot-and-mouth disease (FMD) of serotypes O and A, leading to nationwide vaccination with a bivalent vaccine. Since the FMD virus (FMDV) Asia1 group-V genotype occurred in North Korea in 2007, an Asia1/MOG/05 vaccine strain belonging to the Asia1 group-V genotype was developed using a genetic recombination method (Asia1/MOG/05-R). This study aimed to evaluate the antigen productivity and viral inactivation kinetics of Asia1/MOG/05-R to assess its commercial viability. The antigen yield of Asia1/MOG/05-R produced in flasks and bioreactors was approximately 4.0 μg/mL. Binary ethylenimine (BEI) inactivation kinetics of Asia1/MOG/05-R showed that 2 mM and 1.0 mM BEI treatment at 26 °C and 37 °C, respectively, resulted in a virus titer <10-7 TCID50/mL within 24 h, meeting the inactivation kinetics criteria. During incubation at 26 °C and 37 °C, 10% antigen loss occurred, but not due to BEI treatment. When pigs were inoculated twice with the Asia1/MOG/05-R antigen, the virus neutralization titer increased to approximately 1:1000; therefore, it can sufficiently protect against Asia1/MOG/05-R and Asia1 Shamir viruses. The Asia1/MOG/05-R will be useful as a vaccine strain for domestic antigen banks.
Collapse
Affiliation(s)
- Jae Young Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Sun Young Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Sang Hyun Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Gyeongmin Lee
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Jong-Sook Jin
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Dohyun Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Jong-Hyeon Park
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| | - Seong-Yun Jeong
- Department of Biomedical Science, Graduate School, Catholic University of Daegu, Daegu 38430, Republic of Korea;
| | - Young-Joon Ko
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si 177, Republic of Korea; (J.Y.K.); (S.Y.P.); (S.H.P.); (G.L.); (J.-S.J.); (D.K.); (J.-H.P.)
| |
Collapse
|
46
|
Peng Y, Yan H, Zhang J, Peng R, Feng X, Su J, Yi H, Lu Y, Chen Z. Potent immune responses against thermostable Foot-and-Mouth disease virus VP1 nanovaccine adjuvanted with polymeric thermostable scaffold. Vaccine 2024; 42:732-737. [PMID: 38220487 DOI: 10.1016/j.vaccine.2023.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Foot-and-mouth disease (FMD) is an acute zoonosis causes significant economic losses. Vaccines able to stimulate efficient protective immune responses are urgently needed. In this study, Escherichia coli-derived recombinant VP1 of serotype A and O FMD virus (FMDV) was conjugated to thermostable scaffold lumazine synthase (LS) or Quasibacillus thermotolerans encapsulin (QtEnc) using a robust plug-and-display SpyTag/SpyCatcher system to generate multimeric nanovaccines. These nanovaccines induced highly potent antibody responses in vaccinated mice. On day 14 after the first immunisation, antibody titres were approximately 100 times higher than those of monomer antigens. Both vaccines induced high and long-term IgG antibody production. Moreover, the QtEnc-VP1 nanovaccine induced higher antibody titres than the LS-VP1 nanovaccine. The nanovaccines also induced Th1-biased immune responses and higher levels of neutralising antibodies. These data indicated that FMDV nanovaccines generated by conjugating VP1 with a thermostable scaffold are highly immunogenic and ideal candidates for FMDV control in low-resource areas.
Collapse
Affiliation(s)
- Yuanli Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Haozhen Yan
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jinsong Zhang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Ruihao Peng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Xiangning Feng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jiayue Su
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Huaimin Yi
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Yuying Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China; NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
47
|
Theerawatanasirikul S, Lueangaramkul V, Semkum P, Lekcharoensuk P. Antiviral mechanisms of sorafenib against foot-and-mouth disease virus via c-RAF and AKT/PI3K pathways. Vet Res Commun 2024; 48:329-343. [PMID: 37697209 DOI: 10.1007/s11259-023-10211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that poses a significant threat to the global livestock industry. However, specific antiviral treatments against FMDV are currently unavailable. This study aimed to evaluate the antiviral activity of anticancer drugs, including kinase and non-kinase inhibitors against FMDV replication in BHK-21 cells. Sorafenib, a multi-kinase inhibitor, demonstrated a significant dose-dependent reduction in FMDV replication. It exhibited a half maximal effective concentration (EC50) value of 2.46 µM at the pre-viral entry stage and 2.03 µM at the post-viral entry stage. Further intracellular assays revealed that sorafenib effectively decreased 3Dpol activity with a half maximal inhibitory concentration (IC50) of 155 nM, while not affecting 3Cpro function. The study indicates that sorafenib influences host protein pathways during FMDV infection, primarily by potentiating the c-RAF canonical pathway and AKT/PI3K pathway. Molecular docking analysis demonstrated specific binding of sorafenib to the active site of FMDV 3Dpol, interacting with crucial catalytic residues, including D245, D338, S298, and N307. Additionally, sorafenib exhibited significant binding affinity to the active site motifs of cellular kinases, namely c-RAF, AKT, and PI3K, which play critical roles in the viral life cycle. The findings suggest that sorafenib holds promise as a therapeutic agent against FMDV infection. Its mechanism of action may involve inhibiting FMDV replication by reducing 3Dpol activity and regulating cellular kinases. This study provides insights for the development of novel therapeutic strategies to combat FMDV infections.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| | - Varanya Lueangaramkul
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Center of Advanced Studies in Agriculture and Food, Kasetsart University, Bangkok, 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
- Center of Advanced Studies in Agriculture and Food, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
48
|
Al-Rawahi WA, Elshafie EI, Baqir S, Al-Ansari A, Wadsworth J, Hicks HM, Knowles NJ, Di Nardo A, King DP, Zientara S, Al Salloom F, Sangula A, Bernelin-Cottet C, Bakkali-Kassimi L, Al Riyami B. Detection of foot-and-mouth disease viruses from the A/AFRICA/G-I genotype in the Sultanate of Oman. Prev Vet Med 2024; 223:106113. [PMID: 38194859 DOI: 10.1016/j.prevetmed.2023.106113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Rapid identification and characterization of circulating foot-and-mouth disease virus (FMDV) strains is crucial for effective disease control. In Oman, a few serological and molecular studies have been conducted to identify the strains of FMDV responsible for the outbreaks that have been occurring within the country. In this study, 13 oral epithelial tissue samples from cattle were collected from suspected cases of FMD in Ash Sharqiyah North, Al Batinah North, Dhofar and Ad Dhakhyilia governorates of Oman between 2018 and 2021. FMDV RNA was detected in all samples by real-time RT-PCR and viruses were isolated after one- or two-blind passages in the porcine Instituto Biologico-Rim Suino-2 cell line. Antigen capture ELISA characterized all isolates as serotype A and VP1 phylogenetic analysis placed all sequences within a single clade of the G-I genotype within the A/AFRICA topotype. These sequences shared the closest nucleotide identities to viruses circulating in Bahrain in 2021 (93.5% to 99.5%) and Kenya in 2017 (93.4% to 99.1%). To the best of our knowledge, this is the first time that A/AFRICA/G-I viruses have been detected in Oman. Together with the closely related viruses detected recently in Bahrain, these findings reinforce the importance of deploying effective quarantine control measures to minimize the risks of transboundary transmission of FMD associated with the importation of cattle from East Africa.
Collapse
Affiliation(s)
- Wafa Ahmed Al-Rawahi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Elshafie Ibrahim Elshafie
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Senan Baqir
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Aliya Al-Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| | - Jemma Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Hayley M Hicks
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Antonello Di Nardo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Stephan Zientara
- ANSES, Laboratory for Animal Health, UMR1161 (ANSES, INRAe, Enva), 14 Rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Fajer Al Salloom
- National Veterinary Laboratory, Ministry of Municipalities Affairs & Agriculture, Animal Wealth Directorate, Block 553, Building 2219, Road 55, Budaiya, Bahrain
| | - Abraham Sangula
- National Foot and Mouth Disease Laboratory, Embakasi, Road A, off Enterprise Road, P.O. Box 18021-00500, Nairobi, Kenya
| | - Cindy Bernelin-Cottet
- ANSES, Laboratory for Animal Health, UMR1161 (ANSES, INRAe, Enva), 14 Rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Labib Bakkali-Kassimi
- ANSES, Laboratory for Animal Health, UMR1161 (ANSES, INRAe, Enva), 14 Rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Bahja Al Riyami
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Sultanate of Oman.
| |
Collapse
|
49
|
Ivani Z, Ranjbar MM, Hemati B, Harzandi N, Azimi SM. Evaluation of specific chicken IgY antibody value developing diagnostic capture antibody ELISA kit against Foot and Mouth disease. ARCHIVES OF RAZI INSTITUTE 2024; 79:201-210. [PMID: 39192966 PMCID: PMC11345473 DOI: 10.32592/ari.2024.79.1.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/25/2023] [Indexed: 08/29/2024]
Abstract
The most preferred method for the detection of foot-and-mouth disease (FMD) viral antigen and identification of viral serotype is the enzyme-linked immunosorbent assay (ELISA). Diagnostic tests with high sensitivity are necessary both to distinguish infected vaccinated animals and execute disease control programs for the identification of the carrier animals. The current strategies for the detection of FMD virus are mainly based on the capture antibody (sandwich) ELISA test. The usage of laying pullets as an animal bioreactor for the production of specific egg yolk antibodies (IgY) has increased in recent years due to its high yield, affinity, low price, and quick production turnover. The present study aimed to produce a concentrated and purified IgY polyclonal antibody to design a capture antibody ELISA kit against the FMD virus (FMDV) serotype A. At first, laying hens were immunized with inactivated FMDV serotype virus, and then, on days 14, 21, and 28 following vaccination, the eggs and sera were collected. Afterward, the IgY polyclonal antibodies were extracted and purified from the chicken egg yolk using a polyethylene glycol 6000-ethanol precipitation procedure. Extracts were filtered, purified by ion exchange chromatography, and dialyzed. The purified IgY concentration, estimated by Bradford assay, confirmed its presence by SDS-PAGE and Western blot and also its specific immune reaction by Ouchterlony double immunodiffusion and Dot blot tests. Moreover, for achieving the optimum concentration of antigen/antibody (sera) in sandwich ELISA, a checkerboard titration test was set up based on indirect ELISA results. Eventually, 119 previously confirmed samples (including 80 positive and 39 negative) by both real-time polymerase chain reaction (quantitative PCR, qPCR) and a commercial ELISA kit were used for evaluation of the sensitivity and accuracy of our developed Capture antibody ELISA kit. In this manner, the sensitivity and specificity of our designed kit were 100% and 98%, respectively. Accordingly, the present developed capture ELISA kit based on IgY had high sensitivity and specificity for FMD virus detection and it could be used in the future for both commercial detecting and serotyping applications.
Collapse
Affiliation(s)
- Z Ivani
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - M M Ranjbar
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - B Hemati
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - N Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - S M Azimi
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
50
|
Zhao S, Miao C, Gao X, Li Z, Eriksson JE, Jiu Y. Vimentin cage - A double-edged sword in host anti-infection defense. Curr Opin Cell Biol 2024; 86:102317. [PMID: 38171142 DOI: 10.1016/j.ceb.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Vimentin, a type III intermediate filament, reorganizes into what is termed the 'vimentin cage' in response to various pathogenic infections. This cage-like structure provides an envelope to key components of the pathogen's life cycle. In viral infections, the vimentin cage primarily serves as a scaffold and organizer for the replication factory, promoting viral replication. However, it also occasionally contributes to antiviral functions. For bacterial infections, the cage mainly supports bacterial proliferation in most observed cases. These consistent structural alterations in vimentin, induced by a range of viruses and bacteria, highlight the vimentin cage's crucial role. Pathogen-specific factors add complexity to this interaction. In this review, we provide a thorough overview of the functions and mechanisms of the vimentin cage and speculate on vimentin's potential as a novel target for anti-pathogen strategies.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenglin Miao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuedi Gao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zhifang Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland.
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|