1
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. Microbiol Spectr 2024; 12:e0350723. [PMID: 38179941 PMCID: PMC10871548 DOI: 10.1128/spectrum.03507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Species within the genus Neisseria are adept at sharing adaptive allelic variation, with commensal species repeatedly transferring resistance to their pathogenic relative Neisseria gonorrhoeae. However, resistance in commensals is infrequently characterized, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection as epistatic and additive interactions coerce lineages along divergent evolutionary trajectories. Alternatively, similar genetic content present across species due to shared ancestry may constrain existing adaptive solutions. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome-or the reservoir of alleles within the genus as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved resistance to penicillin and azithromycin in 11/16 and 12/16 cases, respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection and mtrRCDE, penA, and rpoB for penicillin selection, thus supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. Though drug-selected loci were limited, we do identify novel resistance-imparting mutations. Continuing to explore paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.IMPORTANCENeisseria gonorrhoeae is a global threat to public health due to its rapid acquisition of antibiotic resistance to all first-line treatments. Recent work has documented that alleles acquired from close commensal relatives have played a large role in the emergence of resistance to macrolides and beta-lactams within gonococcal populations. However, commensals have been relatively underexplored for the resistance genotypes they may harbor. This leaves a gap in our understanding of resistance that could be rapidly acquired by the gonococcus through a known highway of horizontal gene exchange. Here, we characterize resistance mechanisms that can emerge in commensal Neisseria populations via in vitro selection to multiple antimicrobials and begin to define the number of paths to resistance. This study, and other similar works, may ultimately aid both surveillance efforts and clinical diagnostic development by nominating novel and conserved resistance mechanisms that may be at risk of rapid dissemination to pathogen populations.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
2
|
Frost KM, Charron-Smith SL, Cotsonas TC, Dimartino DC, Eisenhart RC, Everingham ET, Holland EC, Imtiaz K, Kornowicz CJ, Lenhard LE, Lynch LH, Moore NP, Phadke K, Reed ML, Smith SR, Ward LL, Wadsworth CB. Rolling the evolutionary dice: Neisseria commensals as proxies for elucidating the underpinnings of antibiotic resistance mechanisms and evolution in human pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559611. [PMID: 37808746 PMCID: PMC10557713 DOI: 10.1101/2023.09.26.559611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Species within the genus Neisseria are especially adept at sharing adaptive allelic variation across species' boundaries, with commensal species repeatedly transferring resistance to their pathogenic relative N. gonorrhoeae. However, resistance in commensal Neisseria is infrequently characterized at both the phenotypic and genotypic levels, limiting our ability to predict novel and potentially transferable resistance mechanisms that ultimately may become important clinically. Unique evolutionary starting places of each Neisseria species will have distinct genomic backgrounds, which may ultimately control the fate of evolving populations in response to selection, as epistatic and additive interactions may coerce lineages along divergent evolutionary trajectories. However alternatively, similar genetic content present across species due to shared ancestry may constrain the adaptive solutions that exist. Thus, identifying the paths to resistance across commensals may aid in characterizing the Neisseria resistome - or the reservoir of alleles within the genus, as well as its depth. Here, we use in vitro evolution of four commensal species to investigate the potential for and repeatability of resistance evolution to two antimicrobials, the macrolide azithromycin and the β-lactam penicillin. After 20 days of selection, commensals evolved elevated minimum inhibitory concentrations (MICs) to penicillin and azithromycin in 11/16 and 12/16 cases respectively. Almost all cases of resistance emergence converged on mutations within ribosomal components or the mtrRCDE efflux pump for azithromycin-based selection, and mtrRCDE or penA for penicillin selection; thus, supporting constrained adaptive solutions despite divergent evolutionary starting points across the genus for these particular drugs. However, continuing to explore the paths to resistance across different experimental conditions and genomic backgrounds, which could shunt evolution down alternative evolutionary trajectories, will ultimately flesh out the full Neisseria resistome.
Collapse
Affiliation(s)
- Kelly M. Frost
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Sierra L. Charron-Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Terence C. Cotsonas
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Daniel C. Dimartino
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Rachel C. Eisenhart
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eric T. Everingham
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Elle C. Holland
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kainat Imtiaz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Cory J. Kornowicz
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Lydia E. Lenhard
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liz H. Lynch
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Nadia P. Moore
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Kavya Phadke
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Makayla L. Reed
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Samantha R. Smith
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Liza L. Ward
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Crista B. Wadsworth
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| |
Collapse
|
3
|
Rendón MA, Lona B, Ma M, So M. RpoN and the Nps and Npa two-component regulatory system control pilE transcription in commensal Neisseria. Microbiologyopen 2019; 8:e00713. [PMID: 30079633 PMCID: PMC6528607 DOI: 10.1002/mbo3.713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023] Open
Abstract
Over 20 genes are involved in the biogenesis and function of the Neisseria Type IV pilus (Tfp). In the pathogenic species, RpoD and the integration host factor (IHF) protein regulate expression of pilE, encoding the Tfp structural subunit. We previously reported that in commensal species, pilE transcription is regulated by RpoN, IHF, and activator Npa. Npa has many hallmarks of response regulators in two-component regulatory systems, leading us to search for its response regulator partner. We report that Npa partners with sensor kinase Nps to control pilE transcription. Among the genes involved in Tfp biogenesis and function, only pilE is controlled by RpoN and Npa/Nps. We summarize our findings in a model, and discuss the implications of the differential regulation of pilE the context of Neisseria Tfp biogenesis.
Collapse
Affiliation(s)
- María A. Rendón
- The BIO5 Institute and Department of ImmunobiologyUniversity of ArizonaTucsonArizona
| | - Beatriz Lona
- The BIO5 Institute and Department of ImmunobiologyUniversity of ArizonaTucsonArizona
- Present address:
Sterility Assurance Labs
| | - Mancheong Ma
- The BIO5 Institute and Department of ImmunobiologyUniversity of ArizonaTucsonArizona
| | - Magdalene So
- The BIO5 Institute and Department of ImmunobiologyUniversity of ArizonaTucsonArizona
| |
Collapse
|
4
|
Schubert B, Maddamsetti R, Nyman J, Farhat MR, Marks DS. Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings. Nat Microbiol 2018; 4:328-338. [PMID: 30510172 DOI: 10.1038/s41564-018-0309-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022]
Abstract
Genome analysis should allow the discovery of interdependent loci that together cause antibiotic resistance. In practice, however, the vast number of possible epistatic interactions erodes statistical power. Here, we extend an approach that has been successfully used to identify epistatic residues in proteins to infer genomic loci that are strongly coupled. This approach reduces the number of tests required for an epistatic genome-wide association study of antibiotic resistance and increases the likelihood of identifying causal epistasis. We discovered 38 loci and 240 epistatic pairs that influence the minimum inhibitory concentrations of 5 different antibiotics in 1,102 isolates of Neisseria gonorrhoeae that were confirmed in a second dataset of 495 isolates. Many known resistance-affecting loci were recovered; however, the majority of associations occurred in unreported genes, such as murE. About half of the discovered epistasis involved at least one locus previously associated with antibiotic resistance, including interactions between gyrA and parC. Still, many combinations involved unreported loci and genes. While most variation in minimum inhibitory concentrations could be explained by identified loci, epistasis substantially increased explained phenotypic variance. Our work provides a systematic identification of epistasis affecting antibiotic resistance in N. gonorrhoeae and a generalizable approach for epistatic genome-wide association studies.
Collapse
Affiliation(s)
- Benjamin Schubert
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,cBio Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rohan Maddamsetti
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Jackson Nyman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
5
|
|
6
|
Hill SA, Masters TL, Wachter J. Gonorrhea - an evolving disease of the new millennium. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:371-389. [PMID: 28357376 PMCID: PMC5354566 DOI: 10.15698/mic2016.09.524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Neisseria gonorrhoeae (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge. More severe sequellae include salpingitis and pelvic inflammatory disease which may lead to sterility and/or ectopic pregnancy. Occasionally, the organism can disseminate as a bloodstream infection. Epidemiology, incidence and prevalence: Gonorrhea is a global disease infecting approximately 60 million people annually. In the United States there are approximately 300, 000 cases each year, with an incidence of approximately 100 cases per 100,000 population. Treatment and curability: Gonorrhea is susceptible to an array of antibiotics. Antibiotic resistance is becoming a major problem and there are fears that the gonococcus will become the next "superbug" as the antibiotic arsenal diminishes. Currently, third generation extended-spectrum cephalosporins are being prescribed. Molecular mechanisms of infection: Gonococci elaborate numerous strategies to thwart the immune system. The organism engages in extensive phase (on/off switching) and antigenic variation of several surface antigens. The organism expresses IgA protease which cleaves mucosal antibody. The organism can become serum resistant due to its ability to sialylate lipooligosaccharide in conjunction with its ability to subvert complement activation. The gonococcus can survive within neutrophils as well as in several other lymphocytic cells. The organism manipulates the immune response such that no immune memory is generated which leads to a lack of protective immunity.
Collapse
Affiliation(s)
- Stuart A. Hill
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Thao L. Masters
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Jenny Wachter
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| |
Collapse
|
7
|
Zheng W, Mutha NVR, Heydari H, Dutta A, Siow CC, Jakubovics NS, Wee WY, Tan SY, Ang MY, Wong GJ, Choo SW. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform. PeerJ 2016; 4:e1698. [PMID: 27017950 PMCID: PMC4806638 DOI: 10.7717/peerj.1698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 01/27/2023] Open
Abstract
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.
Collapse
Affiliation(s)
- Wenning Zheng
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Naresh V R Mutha
- Genome Informatics Research Laboratory, HIR Building, University of Malaya , Kuala Lumpur , Malaysia
| | - Hamed Heydari
- Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia; Computer Science and Engineering Department, University of NE-Lincoln, Lincoln NE, United States of America
| | - Avirup Dutta
- Genome Informatics Research Laboratory, HIR Building, University of Malaya , Kuala Lumpur , Malaysia
| | - Cheuk Chuen Siow
- Genome Informatics Research Laboratory, HIR Building, University of Malaya , Kuala Lumpur , Malaysia
| | - Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Wei Yee Wee
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Shi Yang Tan
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Mia Yang Ang
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Guat Jah Wong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Genome Informatics Research Laboratory, HIR Building, University of Malaya, Kuala Lumpur, Malaysia; Genome Solutions Sdn Bhd, Suite 8, Innovation Incubator UM, Level 5, Research Management & Innovation Complex, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Sequence conservation of pilus subunits in Neisseria meningitidis. Vaccine 2010; 28:4817-26. [PMID: 20457291 DOI: 10.1016/j.vaccine.2010.04.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 12/11/2022]
Abstract
The rapid onset and dramatic consequences of Neisseria meningitidis infections make the design of a broadly protective vaccine a priority for public health. There is an ongoing quest for meningococcal components that are surface exposed, widely conserved and can induce protective antibodies. Type IV pili (Tfp) are filamentous structures with a key role in pathogenesis that extend beyond the surface of the bacteria and have demonstrated vaccine potential. However, extensive antigenic variation of PilE, the major subunit of Tfp, means that they are currently considered to be unsuitable vaccine components. Recently it has been shown that Tfp also contain low abundance pilins ComP, PilV and PilX in addition to PilE. This prompted us to examine the prevalence and sequence diversity of these proteins in a panel of N. meningitidis disease isolates. We found that all minor pilins are highly conserved and the major pilin genes are also highly conserved within the ST-8 and ST-11 clonal complexes. These data have important implications for the re-consideration of pilus subunits as vaccine antigens.
Collapse
|
10
|
Examination of type IV pilus expression and pilus-associated phenotypes in Kingella kingae clinical isolates. Infect Immun 2010; 78:1692-9. [PMID: 20145101 DOI: 10.1128/iai.00908-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kingella kingae is a gram-negative bacterium that is being recognized increasingly as a cause of septic arthritis and osteomyelitis in young children. Previous work established that K. kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. PilA1 is the major pilus subunit in K. kingae type IV pili and is essential for pilus assembly. To develop a better understanding of the role of K. kingae type IV pili during colonization and invasive disease, we examined a collection of clinical isolates for pilus expression and in vitro adherence. In addition, in a subset of isolates we performed nucleotide sequencing to assess the level of conservation of PilA1. The majority of respiratory and nonendocarditis blood isolates were piliated, while the majority of joint fluid, bone, and endocarditis blood isolates were nonpiliated. The piliated isolates formed either spreading/corroding or nonspreading/noncorroding colonies and were uniformly adherent, while the nonpiliated isolates formed domed colonies and were nonadherent. PilA1 sequence varied significantly from strain to strain, resulting in substantial variability in antibody reactivity. These results suggest that type IV pili may confer a selective advantage on K. kingae early in infection and a selective disadvantage on K. kingae at later stages in the pathogenic process. We speculate that PilA1 is immunogenic during natural infection and undergoes antigenic variation to escape the immune response.
Collapse
|
11
|
Siju J, Kumar AA, Shivachandra SB, Chaudhuri P, Srivastava SK, Singh VP. Cloning and Characterization of Type 4 Fimbrial Gene (ptfA) of Pasteurella multocida Serogroup B:2 (Strain P52). Vet Res Commun 2006; 31:397-404. [PMID: 17216317 DOI: 10.1007/s11259-006-3372-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2005] [Indexed: 11/28/2022]
Affiliation(s)
- J Siju
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, U.P. India
| | | | | | | | | | | |
Collapse
|
12
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|
13
|
Winther-Larsen HC, Wolfgang M, Dunham S, van Putten JPM, Dorward D, Løvold C, Aas FE, Koomey M. A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol Microbiol 2005; 56:903-17. [PMID: 15853879 DOI: 10.1111/j.1365-2958.2005.04591.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Type IV pili (Tfp) play central roles in prokaryotic cell biology and disease pathogenesis. As dynamic filamentous polymers, they undergo rounds of extension and retraction modelled as pilin subunit polymerization and depolymerization events. Currently, the molecular mechanisms and components influencing Tfp dynamics remain poorly understood. Using Neisseria gonorrhoeae as a model system, we show that mutants lacking any one of a set of five proteins sharing structural similarity to the pilus subunit are dramatically reduced in Tfp expression and that these defects are suppressed in the absence of the PilT pilus retraction protein. Thus, these molecules are not canonical assembly factors but rather act as effectors of pilus homeostasis by promoting extension/polymerization events in the presence of PilT. Furthermore, localization studies support the conclusion that these molecules form a Tfp-associated complex and influence levels of PilC, the epithelial cell adhesin, in Tfp-enriched shear fractions. This is the first time that the step at which individual pilin-like proteins impact on Tfp expression has been defined. The findings have important implications for understanding Tfp dynamics and fundamental Tfp structure/function relationships.
Collapse
|
14
|
Kirchner M, Meyer TF. The PilC adhesin of the Neisseria type IV pilus - binding specificities and new insights into the nature of the host cell receptor. Mol Microbiol 2005; 56:945-57. [PMID: 15853882 DOI: 10.1111/j.1365-2958.2005.04600.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Type IV pili of Neisseria gonorrhoeae and Neisseria meningitidis mediate the first contact to human mucosal epithelial cells, an interaction which is also critical for the interaction with vascular endothelial cells. The PilC proteins have been characterized as the principal pilus-associated adhesin. Here we show that PilC2 exhibits a defined cell and tissue tropism, as it binds to human epithelial and endothelial cell lines, but not to human T cells or fibroblasts. Piliated gonococci and PilC2 exhibit similar patterns of binding to human epithelial and endothelial cells, supporting the function of PilC as the key pilus adhesin. Although CD46 has previously been suggested to be a pilus receptor, several observations indicate that neisserial type IV pili and the pilus adhesin PilC2 interact with epithelial cells in a CD46 independent manner. Biochemical approaches were used to characterize the nature of host cell factors mediating binding of piliated gonococci and PilC2 protein. Our data indicate that the putative host cell receptor for gonococcal pili and the PilC2 pilus adhesin is a surface protein. Glycostructures were found to not be involved in binding. Moreover, we observed the uptake of purified PilC2 protein together with its receptor via receptor-mediated endocytosis and subsequent receptor re-exposure on the cell surface. Our data support the existence of a specific pilus receptor and provide intriguing information on the nature of the receptor.
Collapse
Affiliation(s)
- Marieluise Kirchner
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, 10117 Berlin, Germany
| | | |
Collapse
|
15
|
Collins RF, Frye SA, Balasingham S, Ford RC, Tønjum T, Derrick JP. Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 2005; 280:18923-30. [PMID: 15753075 DOI: 10.1074/jbc.m411603200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type IV pili are cell surface organelles found on many Gram-negative bacteria. They mediate a variety of functions, including adhesion, twitching motility, and competence for DNA uptake. The type IV pilus is a helical polymer of pilin protein subunits and is capable of rapid polymerization or depolymerization, generating large motor forces in the process. Here we show that a specific interaction between the outer membrane secretin PilQ and the type IV pilus fiber can be detected by far-Western analysis and sucrose density gradient centrifugation. Transmission electron microscopy of preparations of purified pili, to which the purified PilQ oligomer had been added, showed that PilQ was uniquely located at one end of the pilus fiber, effectively forming a "mallet-type" structure. Determination of the three-dimensional structure of the PilQ-type IV pilus complex at 26-angstroms resolution showed that the cavity within the protein complex was filled. Comparison with a previously determined structure of PilQ at 12-angstroms resolution indicated that binding of the pilus fiber induced a dissociation of the "cap" feature and lateral movement of the "arms" of the PilQ oligomer. The results demonstrate that the PilQ structure exhibits a dynamic response to the binding of its transported substrate and suggest that the secretin could play an active role in type IV pilus assembly as well as secretion.
Collapse
Affiliation(s)
- Richard F Collins
- Faculty of Life Sciences, The University of Manchester, Faculty of Life Sciences, Sackville Street, P. O. Box 88, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Andrews TD, Gojobori T. Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis. Genetics 2004; 166:25-32. [PMID: 15020403 PMCID: PMC1470718 DOI: 10.1534/genetics.166.1.25] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.
Collapse
Affiliation(s)
- T Daniel Andrews
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
| | | |
Collapse
|
17
|
Hegge FT, Hitchen PG, Aas FE, Kristiansen H, Løvold C, Egge-Jacobsen W, Panico M, Leong WY, Bull V, Virji M, Morris HR, Dell A, Koomey M. Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc Natl Acad Sci U S A 2004; 101:10798-803. [PMID: 15249686 PMCID: PMC490014 DOI: 10.1073/pnas.0402397101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several major bacterial pathogens and related commensal species colonizing the human mucosa express phosphocholine (PC) at their cell surfaces. PC appears to impact host-microbe biology by serving as a ligand for both C-reactive protein and the receptor for platelet-activating factor. Type IV pili of Neisseria gonorrhoeae (Ng) and Neisseria meningitidis, filamentous protein structures critical to the colonization of their human hosts, are known to react variably with monoclonal antibodies recognizing a PC epitope. However, the structural basis for this reactivity has remained elusive. To address this matter, we exploited the finding that the PilE pilin subunit in Ng mutants lacking the PilV protein acquired the PC epitope independent of changes in pilin primary structure. Specifically, we show by using mass spectrometry that PilE derived from the pilV background is composed of a mixture of subunits bearing O-linked forms of either phosphoethanolamine (PE) or PC at the same residue, whereas the wild-type background carries only PE at that same site. Therefore, PilV can influence pilin structure and antigenicity by modulating the incorporation of these alternative modifications. The disaccharide covalently linked to Ng pilin was also characterized because it is present on the same peptides bearing the PE and PC modifications and, contrary to previous reports, was found to be linked by means of 2,4-diacetamido-2,4,6-trideoxyhexose. Taken together, these findings provide new insights into Ng type IV pilus structure and antigenicity and resolve long-standing issues regarding the nature of both the PC epitope and the pilin glycan.
Collapse
Affiliation(s)
- Finn Terje Hegge
- Centre for Molecular Biology and Neuroscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tinsley CR, Voulhoux R, Beretti JL, Tommassen J, Nassif X. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili. J Biol Chem 2004; 279:27078-87. [PMID: 15105427 DOI: 10.1074/jbc.m313404200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many proteins, especially membrane and exported proteins, are stabilized by intramolecular disulfide bridges between cysteine residues without which they fail to attain their native functional conformation. The formation of these bonds is catalyzed in Gram-negative bacteria by enzymes of the Dsb system. Thus, the activity of DsbA has been shown to be necessary for many phenotypes dependent on exported proteins, including adhesion, invasion, and intracellular survival of various pathogens. The Dsb system in Neisseria meningitidis, the causative agent of cerebrospinal meningitis, has not, however, been studied. In a previous work where genes specific to N. meningitidis and not present in the other pathogenic Neisseria were isolated, a meningococcus-specific dsbA gene was brought to light (Tinsley, C. R., and Nassif, X. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11109-11114). Inactivation of this gene, however, did not result in deficits in the phenotypes commonly associated with DsbA. A search of available genome data revealed that the meningococcus contains three dsbA genes encoding proteins with different predicted subcellular locations, i.e. a soluble periplasmic enzyme and two membrane-bound lipoproteins. Cell fractionation experiments confirmed the localization in the inner membrane of the latter two, which include the previously identified meningococcus-specific enzyme. Mutational analysis demonstrated that the deletion of any single enzyme was compensated by the action of the remaining two on bacterial growth, whereas the triple mutant was unable to grow at 37 degrees C. Remarkably, however, the combined absence of the two membrane-bound enzymes led to a phenotype of sensitivity to reducing agents and loss of functionality of the pili. Although in many species a single periplasmic DsbA is sufficient for the correct folding of various proteins, in the meningococcus a membrane-associated DsbA is required for a wild type DsbA+ phenotype even in the presence of a functional periplasmic DsbA.
Collapse
Affiliation(s)
- Colin R Tinsley
- INSERM U570, Faculte de Medecine Necker, 156 Rue de Vaugirard, 75730 Paris CEDEX 15, France
| | | | | | | | | |
Collapse
|
19
|
Collins RF, Ford RC, Kitmitto A, Olsen RO, Tønjum T, Derrick JP. Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J Bacteriol 2003; 185:2611-7. [PMID: 12670986 PMCID: PMC152620 DOI: 10.1128/jb.185.8.2611-2617.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PilQ secretin from the pathogenic bacterium Neisseria meningitidis is an integral outer membrane protein complex which plays a crucial role in the biogenesis of type IV pili. We present here the first three-dimensional structure of this type of secretin at 2.5-nm resolution, obtained by single-particle averaging methods applied to the purified protein complex visualized in a negative stain. In projection, the PilQ complex is circular, with a donut-like appearance. When viewed from the side it has a rounded, conical profile. The complex was demonstrated to have 12-fold rotational symmetry, and this property was used to improve the quality of the density map by symmetry averaging. The dominant feature of the structure is a cavity, 10 nm deep, within the center of the molecule. The cavity is funnel-shaped in cross section, measures 6.5 nm in diameter at the top of the complex, and tapers to a closed point, effectively blocking formation of a continuous pore through the PilQ complex. These results suggest that the complex would have to undergo a conformational change in order to accommodate an assembled pilus fiber of diameter 6.5 nm running through the outer membrane.
Collapse
Affiliation(s)
- Richard F Collins
- Department of Biomolecular Sciences, UMIST, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Park HSM, Wolfgang M, Koomey M. Modification of type IV pilus-associated epithelial cell adherence and multicellular behavior by the PilU protein of Neisseria gonorrhoeae. Infect Immun 2002; 70:3891-903. [PMID: 12065533 PMCID: PMC128069 DOI: 10.1128/iai.70.7.3891-3903.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of type IV pili (Tfp) correlates with the ability of Neisseria gonorrhoeae to colonize the human host, as well as with adherence to human epithelial tissue, twitching motility, competence for natural transformation, and autoagglutination. N. gonorrhoeae PilF (required for Tfp biogenesis) and PilT (required for twitching motility and transformation) share significant identities with members of a family of putative ATPases involved in membrane trafficking of macromolecules. An open reading frame downstream of the pilT locus encoding a 408-amino-acid protein with 33% identity with the gonococcal PilT protein and 45% identity with the PilU protein in Pseudomonas aeruginosa was characterized, and the corresponding gene was designated pilU. Unlike N. gonorrhoeae pilT mutants, pilU mutants express twitching motility and are competent for DNA transformation. However, loss-of-function mutations in pilU increased bacterial adherence to ME-180 human epithelial cells eightfold and disrupted in vitro Tfp-associated autoagglutination. Comparative alignment of N. gonorrhoeae PilU with other members of the TrbB-like family of traffic ATPases revealed a conserved carboxy-terminal domain unique to family members which are not essential for Tfp biogenesis but which specifically modify Tfp-associated phenotypes. Studies of the pilT-pilU locus by using Northern blotting, transcriptional fusions, and reverse transcription-PCR showed that the two genes encoding closely related proteins with dissimilar effects on Tfp phenotypes are transcribed from a single promoter.
Collapse
Affiliation(s)
- Hae-Sun Moon Park
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
21
|
Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP, Koomey M. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc Natl Acad Sci U S A 2001; 98:15276-81. [PMID: 11752467 PMCID: PMC65020 DOI: 10.1073/pnas.261574998] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IV pili (Tfp) of Neisseria gonorrhoeae, the Gram-negative etiologic agent of gonorrhea, facilitate colonization of the human host. Tfp are assumed to play a key role in the initial adherence to human epithelial cells by virtue of the associated adhesin protein PilC. To examine the structural and functional basis for adherence in more detail, we identified potential genes encoding polypeptides sharing structural similarities to PilE (the Tfp subunit) within the N. gonorrhoeae genome sequence database. We show here that a fiber subunit-like protein, termed PilV, is essential to organelle-associated adherence but dispensable for Tfp biogenesis and other pilus-related phenotypes, including autoagglutination, competence for natural transformation, and twitching motility. The adherence defect in pilV mutants cannot be attributed to reduced levels of piliation, defects in fiber anchoring to the bacterial cell surface, or to unstable pilus expression related to organelle retraction. PilV is expressed at low levels relative to PilE and copurifies with Tfp fibers in a PilC-dependent fashion. Purified Tfp from pilV mutants contain PilC adhesin at reduced levels. Taken together, these data support a model in which PilV functions in adherence by promoting the functional display of PilC in the context of the pilus fiber.
Collapse
Affiliation(s)
- H C Winther-Larsen
- Biotechnology Center of Oslo and Department of Microbiology, Institute of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
22
|
Collins RF, Davidsen L, Derrick JP, Ford RC, Tønjum T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol 2001; 183:3825-32. [PMID: 11395444 PMCID: PMC95263 DOI: 10.1128/jb.183.13.3825-3832.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PilQ is a member of the secretin family of outer membrane proteins and is specifically involved in secretion of type IV pili in Neisseria meningitidis, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. The quaternary structure of PilQ from N. meningitidis was analyzed by transmission electron microscopy by using a negative stain. Single particle averaging was carried out with a total data set of 650 individual particles, which produced a projection map generated from 296 particles at an estimated resolution of 2.6 nm. Oligomeric PilQ adopts a donut-like structure with an external ring that is 16.5 nm in diameter surrounding a central cavity that is 6.5 nm in diameter. Self-rotation and power spectrum analysis demonstrated the presence of 12-fold rotational symmetry, showing that PilQ is organized as a ring of 12 identical subunits. A model of the type IV meningococcal pilus fiber, based on the X-ray crystal structure of the N. gonorrhoeae pilin subunit, fitted neatly into the cavity, demonstrating how PilQ could serve as a channel for the growing pilus fiber.
Collapse
Affiliation(s)
- R F Collins
- Department of Biomolecular Sciences, UMIST, Manchester, M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Sergeyenko TV, Los DA. Identification of secreted proteins of the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 2000; 193:213-6. [PMID: 11111026 DOI: 10.1111/j.1574-6968.2000.tb09426.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigated the spectrum of secreted proteins in the cyanobacterium Synechocystis, and identified these proteins by amino-terminal sequencing. In total, seven sequences have been determined that corresponded to the proteins Sll0044, Sll1694, Sll1891, Slr0924, Slr0841, Slr0168, and Slr1855. The protein Sll1694 of 18 kDa that formed one of two major bands on SDS-PAGE was identified as cyanobacterial pilin, PilA. The amino-terminal sequence of another protein that formed a second major band was blocked. The analysis of the data revealed that five of seven proteins had distinct putative leader sequences for secretion.
Collapse
Affiliation(s)
- T V Sergeyenko
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia
| | | |
Collapse
|
24
|
Carrick CS, Fyfe JA, Davies JK. The genome of Neisseria gonorrhoeae retains the remnants of a two-component regulatory system that once controlled piliation. FEMS Microbiol Lett 2000; 186:197-201. [PMID: 10802171 DOI: 10.1111/j.1574-6968.2000.tb09104.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An intact activator-binding site upstream of the sigma(54) promoter of the pilin-encoding pilE gene of Neisseria gonorrhoeae suggests gonococci produce a protein capable of binding this sequence. We cloned a chimeric gene, rsp, that has sequence similarity to both the pilS and pilR genes of Pseudomonas aeruginosa encoding a two-component regulatory system that controls piliation. This gene is transcribed in N. gonorrhoeae and indirect evidence suggests that Rsp binds to the activator-binding site of the pilE gene. Despite this, mutation of rsp has no effect on piliation in N. gonorrhoeae, suggesting that the remnants of this regulatory system have persisted in the genome, despite the loss of its original function.
Collapse
Affiliation(s)
- C S Carrick
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, P.O. Box 53, Clayton, Vic., Australia
| | | | | |
Collapse
|
25
|
Abstract
Colonisation of host tissue by Gram- negative bacteria is facilitated by various adhesins, one of which is type 4 fimbriae (pili). These structures have been associated with pathogenesis in several bacterial species, and have been shown to mediate colonisation of epithelial surfaces. Recently, type 4 fimbriae were identified and characterised from P. multocida strains A, B and D. The type 4 fimbrial subunit protein (PtfA) was identified as an 18-kDa protein which was isolated from whole membrane fractions. We report here the isolation and characterisation of the gene (ptfA) encoding the PtfA protein from P. multocida VP161 (serotype A:1). Part of the gene was cloned on a 2-kb genomic DNA fragment. The complete ptfA gene was obtained using inverse PCR. The gene and its flanking regions were characterised, and the deduced PtfA amino acid sequence was compared to type 4 subunit protein sequences from other bacterial species. The ptfA gene was amplified and sequenced from several P. multocida strains. Comparison of these sequences revealed variation within the type 4 subunit gene of P. multocida.
Collapse
Affiliation(s)
- S W Doughty
- Department of Microbiology, Monash University, Clayton, Australia.
| | | | | |
Collapse
|
26
|
Scheuerpflug I, Rudel T, Ryll R, Pandit J, Meyer TF. Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 1999; 67:834-43. [PMID: 9916098 PMCID: PMC96394 DOI: 10.1128/iai.67.2.834-843.1999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike other type 4 pili, the neisserial pili consist of at least two distinct proteins, the highly variable major subunit PilE forming the pilus fiber and the tip-associated adhesin PilC. PilC protein purified either from gonococci or from Escherichia coli interacted with different human epithelial cell lines, primary epithelial and endothelial cells. The binding of PilC protein efficiently prevented the attachment of piliated Neisseria gonorrhoeae and Neisseria meningitidis to these cell types. Fluorescent beads coated with pili prepared from piliated wild-type N. gonorrhoeae also adhered to these cells, in contrast to beads coated with pili prepared from a piliated PilC-deficient mutant. In the latter case, the binding of fluorescent beads was restored after pretreatment of the pilus-loaded beads with purified PilC. Piliated wild-type N. gonorrhoeae, the piliated PilC-deficient mutant, and N. gonorrhoeae pili assembled in Pseudomonas aeruginosa agglutinated human erythrocytes, while nonpiliated gonococci did not. Consistently, purified PilC did not agglutinate or bind to human erythrocytes, suggesting that N. gonorrhoeae PilE is responsible for pilus-mediated hemagglutination.
Collapse
Affiliation(s)
- I Scheuerpflug
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Carrick CS, Fyfe JA, Davies JK. Neisseria gonorrhoeae contains multiple copies of a gene that may encode a site-specific recombinase and is associated with DNA rearrangements. Gene 1998; 220:21-9. [PMID: 9767087 DOI: 10.1016/s0378-1119(98)00424-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 960-bp ORF potentially encoding a site-specific recombinase has been cloned from Neisseria gonorrhoeae MS11-A. This ORF was designated pivNg on the basis of similarity of the deduced amino acid sequence to the Piv proteins of Moraxella spp. that are site-specific invertases. Southern hybridization and sequence analysis revealed that there were multiple copies of pivNg sequence within the genomes of N. gonorrhoeae strains tested, but not in several other neisserial species. Southern hybridization and sequence analysis further suggested that pivNg sequences may be associated with genomic rearrangements.
Collapse
Affiliation(s)
- C S Carrick
- Department of Microbiology, Monash University, Clayton, Victoria, 3168, Australia
| | | | | |
Collapse
|
28
|
Tønjum T, Caugant DA, Dunham SA, Koomey M. Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol Microbiol 1998; 29:111-24. [PMID: 9701807 DOI: 10.1046/j.1365-2958.1998.00910.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretins are a large family of proteins associated with membrane translocation of macromolecular complexes, and a subset of this family, termed PilQ proteins, is required for type IV pilus biogenesis. We analysed the status of PlIQ expression in Neisseria meningitidis (Mc) and found that PlIQ mutants were non-piliated and deficient in the expression of pilus-associated phenotypes. Sequence analysis of the 5' portion of the pilQ ORF of the serogroup B Mc strain 44/76 showed the presence of seven copies of a repetitive sequence element, in contrast to the situation in N. gonorrhoeae (Gc) strains, which carry either two or three copies of the repeat. The derived amino acid sequence of the consensus nucleotide repeat was an octapeptide PAKQQAAA, designated as the small basic repeat (SBR). This gene segment was studied in more detail in a collection of 52 Mc strains of diverse origin by screening for variability in the size of the PCR-generated DNA fragments spanning the SBRs. These strains were found to harbour from four to seven copies of the repetitive element. No association between the number of copies and the serogroup, geographic origin or multilocus genotype of the strains was evident. The presence of polymorphic repeat elements in Mc PilQ is unprecedented within the secretin family. To address the potential function of the repeat containing domain, Mc strains were constructed so as to express chimeric PilQ molecules in which the number of SBR repeats was increased or in which the repeat containing domain was replaced in toto by the corresponding region of the Pseudomonas aeruginosa (Pa) PilQ protein. Although the strain expressing PilQ with an increased number of SBRs was identical to the parent strain in pilus phenotypes, a strain expressing PilQ with the equivalent Pa domain had an eightfold reduction in pilus expression level. The findings suggest that the repeat containing domain of PilQ influences Mc pilus expression quantitatively but not qualitatively.
Collapse
Affiliation(s)
- T Tønjum
- Institute of Microbiology, National Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
29
|
Liles MR, Viswanathan VK, Cianciotto NP. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 1998; 66:1776-82. [PMID: 9529113 PMCID: PMC108120 DOI: 10.1128/iai.66.4.1776-1782.1998] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Accepted: 01/27/1998] [Indexed: 02/07/2023] Open
Abstract
Previously, we had isolated by transposon mutagenesis a Legionella pneumophila mutant that appeared defective for intracellular iron acquisition. While sequencing in the proximity of the mini-Tn10 insertion, we found a locus that had a predicted protein product with strong similarity to PilB from Pseudomonas aeruginosa. PilB is a component of the type II secretory pathway, which is required for the assembly of type IV pili. Consequently, the locus was cloned and sequenced. Within this 4-kb region were three genes that appeared to be organized in an operon and encoded homologs of P. aeruginosa PilB, PilC, and PilD, proteins essential for pilus production and type II protein secretion. Northern blot analysis identified a transcript large enough to include all three genes and showed a substantial increase in expression of this operon when L. pneumophila was grown at 30 degrees C as opposed to 37 degrees C. The latter observation was then correlated with an increase in piliation when bacteria were grown at the lower temperature. Southern hybridization analysis indicated that the pilB locus was conserved within L. pneumophila serogroups and other Legionella species. These data represent the first isolation of type II secretory genes from an intracellular parasite and indicate that the legionellae express temperature-regulated type IV pili.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
30
|
Abstract
Genetics, cell biology, and whole-genome sequencing of pathogens have changed dramatically the opportunities to investigate the epidemiology, pathogenesis, diagnosis, and control of microbial diseases. For example, recombinant DNA and PCR are powerful tools used to isolate genes whose role in pathogenicity can be investigated in biologically relevant virulence assays. Vaccines that target one or more of these genes can then be developed. Complete genome sequences of microbes provide an inventory of the genes encoding every virulence factor and potential immunogen. Candidate vaccines can be selected and developed using various approaches, including the recent innovation of immunisation with nucleic acids. Although many successful vaccines have been and will continue to be developed through empirical approaches, molecular microbiology provides a rational basis for discovery, development, and implementation of safer, more effective and, potentially cheaper vaccines.
Collapse
Affiliation(s)
- E R Moxon
- Institute of Molecular Medicine and Oxford University Department of Paediatrics, John Radcliffe Hospital, UK
| |
Collapse
|
31
|
Carrick CS, Fyfe JA, Davies JK. The normally silent sigma54 promoters upstream of the pilE genes of both Neisseria gonorrhoeae and Neisseria meningitidis are functional when transferred to Pseudomonas aeruginosa. Gene X 1997; 198:89-97. [PMID: 9370268 DOI: 10.1016/s0378-1119(97)00297-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pilE gene encodes the pilin subunit in Neisseria gonorrhoeae and Neisseria meningitidis. Transcriptional analysis of promoters upstream of pilE in N. gonorrhoeae has been described previously (Fyfe et al. (1995) J. Bacteriol. 177, 3781-3787). Transcription from the sigma54-dependent promoter P3 was detected in Pseudomonas aeruginosa. Here we show that this transcription is dependent on the P. aeruginosa transcriptional activator PilR, and a specific upstream sequence with a high degree of similarity to the PilR-binding site found upstream of the P. aeruginosa pilin gene. This implies there is an upstream activator site (UAS) present 5' of pilE. Sequencing upstream of the N. meningitidis MC58 c2 pilE gene shows this region to be very similar to that in N. gonorrhoeae. P3 and the UAS are conserved, although insertions were noted on either side of the UAS. Transcriptional analysis has shown that the N. meningitidis P3 promoter is used in P. aeruginosa, provided PilR and an upstream region that includes sequence similar to the UAS are present. Transcription from the N. meningitidis PpilE is stronger than from the N. gonorrhoeae equivalent. N. meningitidis uses the sigma70 promoter P1 to transcribe pilE.
Collapse
Affiliation(s)
- C S Carrick
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
32
|
Deitsch KW, Moxon ER, Wellems TE. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev 1997; 61:281-93. [PMID: 9293182 PMCID: PMC232611 DOI: 10.1128/mmbr.61.3.281-293.1997] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathogenic microbes have evolved highly sophisticated mechanisms for colonizing host tissues and evading or deflecting assault by the immune response. The ability of these microbes to avoid clearance prolongs infection, thereby promoting their long-term survival within individual hosts and, through transmission, between hosts. Many pathogens are capable of extensive antigenic changes in the face of the multiple constitutive and dynamic components of host immune defenses. As a result, highly diverse populations that have widely different virulence properties can arise from a single infecting organism (clone). In this review, we consider the molecular and genetic features of antigenic variation and corresponding host-parasite interactions of different pathogenic bacterial, fungal, and protozoan microorganisms. The host and microbial molecules involved in these interactions often determine the adhesive, invasive, and antigenic properties of the infecting organisms and can dramatically affect the virulence and pathobiology of individual infections. Pathogens capable of such antigenic variation exhibit mechanisms of rapid mutability in confined chromosomal regions containing specialized genes designated contingency genes. The mechanisms of hypermutability of contingency genes are common to a variety of bacterial and eukaryotic pathogens and include promoter alterations, reading-frame shifts, gene conversion events, genomic rearrangements, and point mutations.
Collapse
Affiliation(s)
- K W Deitsch
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
33
|
McNeil G, Virji M. Phenotypic variants of meningococci and their potential in phagocytic interactions: the influence of opacity proteins, pili, PilC and surface sialic acids. Microb Pathog 1997; 22:295-304. [PMID: 9160299 DOI: 10.1006/mpat.1996.0126] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In previous studies we have examined the roles of meningococcal surface structures (capsule, lipopolysaccharides, pili and opacity proteins: Opa and Opc) in bacterial interactions with human epithelial, endothelial and mononuclear phagocytic cells. In the current investigations, using defined derivatives of a serogroup A strain C751 and a serogroup B strain MC58, we studied the roles of these structures with human polymorphonuclear phagocytes (PMN). In addition, we examined the potential influence of the pilus-associated protein, PilC, previously known to affect epithelial cell interactions. The data show, that, as with monocytes, opacity proteins affect bacterial interactions with PMN and require surface sialic acids (on capsule and LPS) to be down-modulated in order to function. Also, in contrast to their role in human epithelial and endothelial adherence, neither pili nor PilC expression had any effect on phagocytic cell interactions with respect to induction of chemiluminescence as well as phagocytic killing. Examination of the relative influence of Opa and Opc indicated that Opa proteins are more effective than Opc in PMN interactions whereas the reverse was the case with monocytes. These results suggest that Opa and Opc mediate interactions with phagocytic cells via distinct mechanisms. Observations presented here and reported previously collectively show that the structural requirements of meningococci for interacting with phagocytes, in the absence of opsonins, are present in the phenotype which is often isolated from the nasopharynx (asialylated, piliated, Opa/Opc+) whereas the phenotype prevalent in the blood (sialyted, piliated, Opa/Opc+) retains the ability to adhere to endothelial cells (via pili) but appears to be refractory to interactions with phagocytic cells.
Collapse
Affiliation(s)
- G McNeil
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, U.K
| | | |
Collapse
|
34
|
Ruffolo CG, Tennent JM, Michalski WP, Adler B. Identification, purification, and characterization of the type 4 fimbriae of Pasteurella multocida. Infect Immun 1997; 65:339-43. [PMID: 8975936 PMCID: PMC174600 DOI: 10.1128/iai.65.1.339-343.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The presence of fimbriae on Pasteurella multocida has been reported, but there have been no prior studies aimed at conclusively characterizing these structures. We now report on the identification and characterization of type 4 fimbriae on serogroup A, B, and D strains of P. multocida. Under microaerophilic conditions P. multocida showed an increased expression of the fimbriae, which were observed to form bundles. Fimbriae purified by high-performance reverse-phase liquid chromatography constituted a single 18-kDa subunit, the first 21 amino acids of which shared very high similarity with the N-terminal amino acid sequence of other type 4 fimbrial subunits. Antiserum against the P. multocida 18-kDa protein immunostained the type 4 fimbrial subunit of Moraxella bovis and Dichelobacter nodosus. Based on these observations we conclude that P. multocida possesses type 4 fimbriae and have designated the P. multocida fimbrial subunit PtfA.
Collapse
Affiliation(s)
- C G Ruffolo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Dempsey JA, Wallace AB, Cannon JG. The physical map of the chromosome of a serogroup A strain of Neisseria meningitidis shows complex rearrangements relative to the chromosomes of the two mapped strains of the closely related species N. gonorrhoeae. J Bacteriol 1995; 177:6390-400. [PMID: 7592413 PMCID: PMC177488 DOI: 10.1128/jb.177.22.6390-6400.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A physical map of the chromosome of N. meningitidis Z2491 (serogroup A, subgroup IV-1) has been constructed. Z2491 DNA was digested with NheI, SpeI, SgfI, PacI, BglII, or PmeI, resulting in a limited number of fragments that were resolved by contour-clamped homogeneous electric field (CHEF) electrophoresis. The estimated genome size for this strain was 2,226 kb. To construct the map, probes corresponding to single-copy genes or sequences were used on Southern blots of chromosomal DNA digested with the different mapping enzymes and subjected to CHEF electrophoresis. By determining which fragments from different digests hybridized to each specific probe, it was possible to walk back and forth between digests to form a circular macrorestriction map. The intervals between mapped restriction sites range from 10 to 143 kb in size. A total of 117 markers have been placed on the map; 75 represent identified genes, with the remaining markers defined by anonymous cloned fragments of neisserial DNA. Comparison of the arrangement of genetic loci in Z2491 with that in gonococcal strain FA1090, for which a physical map was previously constructed, revealed complex genomic rearrangements between the two strains. Although gene order is generally conserved over much of the chromosome, a region of approximately 500 kb shows translocation and/or inversion of multiple blocks of markers between the two strains. Even within the relatively conserved portions of the maps, several genetic markers are in different positions in Z2491 and FA1090.
Collapse
Affiliation(s)
- J A Dempsey
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | |
Collapse
|
36
|
Fyfe JA, Carrick CS, Davies JK. The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol 1995; 177:3781-7. [PMID: 7601844 PMCID: PMC177096 DOI: 10.1128/jb.177.13.3781-3787.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type 4 pili are essential for virulence in Neisseria gonorrhoeae. The gonococcal pilin subunit is encoded by pilE, upstream of which three putative promoter sequences (P1, P2, and P3) have been identified. P1 and P2 are sigma 70-like promoters and are functional when a PpiE::cat transcriptional fusion is expressed in Escherichia coli DH5 alpha. P3 is sigma 54 dependent and overlaps the P1 sequence. Site-directed mutagenesis of the pilE promoters followed by transcriptional analysis in E. coli indicated that in the absence of an appropriate activator protein, binding of RNA polymerase-sigma 54 to P3 inhibits transcription from P1 on the order of 30-fold. Transcription from P3 was undetectable in E. coli. However, PilR-dependent, P3-associated expression was detected in Pseudomonas aeruginosa PAK containing a PpilE::cat fusion, with P3 the only intact promoter. A similar analysis was performed on gonococcal reporter strains containing wild-type and mutated PpilE::cat cassettes recombined into the chromosome. In such piliated gonococcal recombinants cultured in vitro, P1 was responsible for cat expression and almost certainly for transcription of pilE. Transcription from P2 and P3 was not detectable under these conditions. Inhibition of transcription from P1 by sigma 54 binding to P3 was not apparent in N. gonorrhoeae MS11-A, suggesting that sigma 54 was either absent or unable to bind to P3 in these cells.
Collapse
Affiliation(s)
- J A Fyfe
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
37
|
Freitag NE, Seifert HS, Koomey M. Characterization of the pilF-pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol Microbiol 1995; 16:575-86. [PMID: 7565116 DOI: 10.1111/j.1365-2958.1995.tb02420.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of Type IV pili by the bacterial pathogen Neisseria gonorrhoeae appears to be essential for colonization of the human host. Several N. gonorrhoeae gene products have been recently identified which bear homology to proteins involved in pilus assembly and protein export in other bacterial systems. We report here the isolation and characterization of transposon insertion mutants in N. gonorrhoeae whose phenotypes indicate that the N. gonorrhoeae pilF and pilD gene products are required for gonoccocal pilus biogenesis. Mutants lacking the pilD gene product, a pre-pilin peptidase, were unable to process the pre-pilin subunit into pilin and thus were non-piliated. pilF mutants processed pilin but did not assemble the mature subunit. Both classes of mutants released S-pilin, a soluble, truncated form of the pilin subunit previously correlated with defects in pilus assembly. In addition, mutants containing transposon insertions in pilD or in a downstream gene, orfX, exhibited a severely restricted growth phenotype. Deletion analysis of pilD indicated that the poor growth phenotype observed for the pilD transposon mutants was a result of polar effects of the insertions on orfX expression. orfX encodes a predicted polypeptide of 23 kDa which contains a consensus nucleotide-binding domain and has apparent homologues in Pseudomonas aeruginosa, Pseudomonas putida, Thermus thermophilus, and the eukaryote Caenorhabditis elegans. Although expression of orfX and pilD appears to be transcriptionally coupled, mutants containing transposon insertions in orfX expressed pili. Unlike either pilF or pilD mutants, orfX mutants were also competent for DNA transformation.
Collapse
Affiliation(s)
- N E Freitag
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
38
|
Tønjum T, Freitag NE, Namork E, Koomey M. Identification and characterization of pilG, a highly conserved pilus-assembly gene in pathogenic Neisseria. Mol Microbiol 1995; 16:451-64. [PMID: 7565106 DOI: 10.1111/j.1365-2958.1995.tb02410.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of type IV pili appears to be a requisite determinant of infectivity for the strict human pathogens Neisseria gonorrhoeae and Neisseria meningitidis. The assembly of these colonization factors is a complex process. This report describes a new pilus-assembly gene, pilG, that immediately precedes the gonococcal (Gc) pilD gene encoding the pre-pilin leader peptidase. The nucleotide sequence of this region revealed a single complete open reading frame whose derived polypeptide displayed significant identities to the pilus-assembly protein PilC of Pseudomonas aeruginosa and other polytopic integral cytoplasmic membrane constituents involved in protein export and competence. A unique polypeptide of M(r) 38 kDa corresponding to the gene product was identified. A highly related gene and flanking sequences were cloned from a group B polysaccharide-producing strain of N. meningitidis (Mc). The results indicate that the pilG genes and genetic organization at these loci in Gc and Mc are extremely conserved. Hybridization studies strongly suggest that pilG-related genes exist in commensal Neisseria species and other species known to express type IV pili. Defined genetic lesions were created by using insertional and transposon mutagenesis and moved into the Gc and Mc chromosomes by allelic replacement. Chromosomal pilG insertion mutants were devoid of pili and displayed dramatically reduced competence for transformation. These findings could not be ascribed to pilin-gene alterations or to polarity exerted on pilD expression. The results indicated that PilG exerts its own independent role in neisserial pilus biogenesis.
Collapse
Affiliation(s)
- T Tønjum
- Kaptein W. Wilhelmsen og Frues Bakteriologiske Institutt, Rikshospitalet (National Hospital), University of Oslo, Norway
| | | | | | | |
Collapse
|
39
|
McAllister CF, Stephens DS. Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family. Mol Microbiol 1993; 10:13-23. [PMID: 7968509 DOI: 10.1111/j.1365-2958.1993.tb00899.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The immunophilin family of FK506-binding proteins (FKBPs), involved in eukaryotic protein-folding and cell regulation, have recently been found to have prokaryotic homologues. Genes with sequences homologous to those encoding human FKBPs were examined in Neisseria species. An FKBP DNA sequence was present, as shown by the polymerase chain reaction and Southern blotting experiments, in the chromosome of Neisseria meningitidis (14 strains) and in all 11 different commensal Neisseria spp. studied, but was not found in Neisseria gonorrhoeae (11 strains tested) or in Moraxella catarrhalis. The nucleotide and predicted protein sequences of the FKBP-encoding domain from five of the meningococcal strains were highly conserved (e.g. > or = 97% homologous). The meningococcal nucleotide sequence was > or = 93% homologous and the consensus meningococcal protein sequence was > or = 97% homologous to FKBP sequences found in seven different commensal Neisseria spp. The meningococcal nucleotide and predicted protein sequences were > or = 59% homologous to the conserved C-terminus of the human FKBP gene family. The FKBP nucleotide sequence was present as a single copy in the chromosome of commensal Neisseria spp. and in most strains of N. meningitidis. The FKBP gene was linked to the silent pilin locus, pilS, in class II-piliated meningococcal strains. In meningococcal strains expressing class I pili, the FKBP gene was linked to one of several pilS loci but not the pilE locus present in these strains. FKBP genes found in commensal Neisseria spp. were not linked to known pilin loci.
Collapse
Affiliation(s)
- C F McAllister
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
40
|
Robinson A, Melling J. Envelope structure and the development of new vaccines. THE JOURNAL OF APPLIED BACTERIOLOGY 1993; 74 Suppl:43S-51S. [PMID: 8349534 DOI: 10.1111/j.1365-2672.1993.tb04341.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Robinson
- Division of Biologics, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire, UK
| | | |
Collapse
|
41
|
Nassif X, Lowy J, Stenberg P, O'Gaora P, Ganji A, So M. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 1993; 8:719-25. [PMID: 8332064 DOI: 10.1111/j.1365-2958.1993.tb01615.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low- and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence.
Collapse
Affiliation(s)
- X Nassif
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201
| | | | | | | | | | | |
Collapse
|
42
|
Lauer P, Albertson NH, Koomey M. Conservation of genes encoding components of a type IV pilus assembly/two-step protein export pathway in Neisseria gonorrhoeae. Mol Microbiol 1993; 8:357-68. [PMID: 8100347 DOI: 10.1111/j.1365-2958.1993.tb01579.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three gonococcal genes have been identified which encode proteins with substantial similarities to known components of the type IV pilus biogenesis pathway in Pseudomonas aeruginosa. Two of the genes were identified based on their hybridization with a DNA probe derived from the pilB gene of P. aeruginosa under conditions of reduced stringency. The product of the gonococcal pilF gene is most closely related to the pilus assembly protein PilB of P. aeruginosa while the product of the gonococcal pilT gene is most similar to the PilT protein of P. aeruginosa which is involved in pilus-associated twitching motility and colony morphology. The products of both of these genes display canonical nucleoside triphosphate binding sites and are predicted to be to cytoplasmically localized based on their overall hydrophilicity. The gonococcal pilD gene, identified by virtue of its linkage to the pilF gene, is homologous to a family of prepilin leader peptidase genes. When expressed in Escherichia coli, the gonococcal PilD protein functions to process gonococcal prepilin in a manner consistent with its being gonococcal prepilin peptidase. These results suggest that Neisseria gonorrhoeae is capable of expressing many of the essential elements of a highly conserved protein translocation system and that these gene products are probably involved in pilus biogenesis.
Collapse
Affiliation(s)
- P Lauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | |
Collapse
|
43
|
Abstract
The pilE gene from Neisseria gonorrhoeae, unlike other type-4 pilin-encoding genes, is well expressed in Escherichia coli. Two putative promoters have been implicated in the transcription of this gene. Besides the -24/-12 promoter used to transcribe type-4 pilin-encoding genes in most species, the consensus sequence for a conventional promoter is also present. The two promoters overlap and would have almost identical transcription start points (tsp). Transcription from a -24/-12 promoter should be abolished in an E. coli rpoN mutant. A recombinant plasmid carrying pilE could not be transformed into such a mutant, apparently because the synthesis of the N-terminal hydrophobic domain of pilin is lethal to the rpoN mutant. This suggests that pilE is expressed at a higher level in an rpoN mutant than it is in a wild-type (wt) strain of E. coli. This suggestion was confirmed by constructing fusions between the pilE promoter region and a promoter-less cat gene. We suggest that the conventional promoter is primarily responsible for the transcription of pilE, but that the binding of the RpoN sigma factor partially represses transcription of this gene in wt strains. In an rpoN mutant, the repression is removed and transcription occurs at a level that is lethal to the mutant host.
Collapse
Affiliation(s)
- J A Fyfe
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
44
|
Virji M, Alexandrescu C, Ferguson DJ, Saunders JR, Moxon ER. Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 1992; 6:1271-9. [PMID: 1353602 DOI: 10.1111/j.1365-2958.1992.tb00848.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of variations in Neisseria meningitidis pili on bacterial interactions with three epithelial cell lines as well as human umbilical vein endothelial cells was studied using a panel of seven strains expressing Class I or Class II pili. Comparison of adherence of piliated and pilus-deficient variants of each strain to epithelial cells suggested that Class I pili may mediate bacterial adherence with all three epithelial cell lines. In contrast, Class II pili of the strains used did not increase bacterial adherence to Hep-2 larynx carcinoma cells, although an increase in adherence to Chang conjunctival and A549 lung carcinoma epithelial cells was observed in the Class II pili-expressing strains. In addition to these interclass functional variations, differences in adherence to epithelial cells were also observed among Class I and Class II strains. Functionally different pilin variants of one Class I strain, MC58, were obtained by single colony isolation. One piliated variant was identified which had concurrently lost the ability to adhere to both Chang and Hep-2 cells ('non-adherent' phenotype; adherence of less than 2 bacteria per cell). In addition, several adherent pilin variants were isolated from non-adherent Pil- and Pil+ bacteria by selection on Chang cells (adherence of 10-25 bacteria per cell). In contrast to epithelial cells, all variant pili, whether of Class I or Class II, adhered to endothelial cells in substantially larger numbers (greater than 50 bacteria per cell) and therefore implied the existence of distinct mechanisms in pilus-facilitated interactions of N. meningitidis with endothelial and epithelial cells.
Collapse
Affiliation(s)
- M Virji
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | |
Collapse
|
45
|
Dekker NP, Lammel CJ, Brooks GF. Scanning electron microscopy of piliated Neisseria gonorrhoeae processed with hexamethyldisilazane. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1991; 19:461-7. [PMID: 1686781 DOI: 10.1002/jemt.1060190408] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Piliated Neisseria gonorrhoeae are virulent and attach readily to some human mucosal cells. The study of interactions between piliated Neisseria gonorrhoeae and surface structures of eukaryotic cells in tissue culture requires consistent high resolution imaging in scanning electron microscopy (SEM). The combination of the fixatives glutaraldehyde, osmium, tannic acid, and uranyl acetate improves preservation of pili and other delicate structures. Following the critical point drying (CPD) process, pili bundles remained intact, but charging produced image distortion in most of the specimens. The use of hexamethyldisilazane (HMDS) with air drying substantially reduced charging and image distortion. Less contrast and greater resolution of pili bundles and surface structures of bacteria or tissue culture cells were obtained at magnifications of 10,000 or higher. As an alternative to CPD, HMDS processing of cell culture monolayers was simple and was more efficient when a large number of samples was processed.
Collapse
Affiliation(s)
- N P Dekker
- Department of Laboratory Medicine, University of California, San Francisco 94143
| | | | | |
Collapse
|
46
|
Pinner RW, Spellman PA, Stephens DS. Evidence for functionally distinct pili expressed by Neisseria meningitidis. Infect Immun 1991; 59:3169-75. [PMID: 1679043 PMCID: PMC258149 DOI: 10.1128/iai.59.9.3169-3175.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In order to investigate possible functional consequences of phase and antigenic variation of meningococci, the attachment of 15 strains of Neisseria meningitidis to human erythrocytes was studied by a nitrocellulose hemadsorption assay. This assay allows the study of individual meningococcal colonies with respect to erythrocyte attachment. Of the 15 strains studied, 7 demonstrated binding of human erythrocytes (HA+). Among these seven strains, the percentage of colonies that were HA+ ranged from 0.2 to 97%. Meningococcal colonies that did not produce pilin (the major structural subunit of pili) did not demonstrate erythrocyte binding (HA-). The HA+ colony phenotype was correlated with assembly of pilin into pili and expression of pili on the meningococcal surface. However, only some piliated colonies bound human erythrocytes. This could not be explained by differences between piliated HA+ and HA- colonies in the amount of pilin produced or by differences in number of pili expressed per diplococcus. Pili of five of the meningococcal strains with HA+ colonies were antigenically related to gonococcal pili (class I meningococcal pili), but HA+ colonies were also seen in two meningococcal strains expressing class II meningococcal pili. Changes from HA+ to HA- and from HA- to HA+, in the presence of continuing pilin production and pilus assembly, occurred at frequencies of up to 10(-2)/CFU per generation. Such frequencies resemble those of phase and antigenic variation described previously for Neisseria species pilin. These studies indicate that phase variation influences the ability of meningococci to attach to human cells and suggest that meningococci may express functionally different pili.
Collapse
Affiliation(s)
- R W Pinner
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | | |
Collapse
|
47
|
Virji M, Kayhty H, Ferguson DJ, Alexandrescu C, Heckels JE, Moxon ER. The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 1991; 5:1831-41. [PMID: 1722554 DOI: 10.1111/j.1365-2958.1991.tb00807.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The influence of the two surface structures of Neisseria meningitidis, capsule and pili, in bacterial interactions with human endothelial cells was investigated. Increased association correlated with the presence of pili on bacteria while capsule type had no apparent effect. Strains expressing both Class I and Class II pili associated with endothelial cells in significantly larger numbers compared with the non-piliated variants of the same strains (greater than 10x). Variants of Neisseria gonorrhoeae strain P9 expressing antigenically distinct pili also associated with endothelial cells in larger numbers (greater than 30x) compared with the non-piliated variant. Electron microscopic studies confirmed these data and showed that gonococci were internalized more frequently compared with meningococci. One consequence of increased association was an increase in the cytopathic effect of bacteria on the target cells.
Collapse
Affiliation(s)
- M Virji
- Oxford University Department of Paediatrics, John Radcliffe Hospital, UK
| | | | | | | | | | | |
Collapse
|
48
|
Hiramune T, Onishi K, Kikuchi N, Yanagawa R. Phase variation of pili of Corynebacterium pilosum. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1991; 38:303-5. [PMID: 1679590 DOI: 10.1111/j.1439-0450.1991.tb00875.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whether or not (?) phase variation occurs in the pili of Corynebacterium pilosum was biologically examined using the colony enzyme-linked immunosorbent assay (ELISA) blot test with anti-pili immune serum. From the densely piliated clone (35P+) of C. pilosum 35, non-piliated variants were isolated at a frequency of 2.45 x 10(-3). From one of the non-piliated variants (designated as P(-11)/35P+), a piliated variant was isolated at a frequency of 4.68 x 10(-4), one log less frequently than the non-piliated variant. From this piliated variant as designated (P+4/P(-11)/35P+), a non-piliated variant was isolated at a frequency of 3.86 x 10(-3). C. pilosum was thus alternated between piliated and non-piliated at a fairly high frequency, suggesting that the pili may undergo phase variation. This is the first finding of phase variation of the pili of Gram-positive bacteria.
Collapse
Affiliation(s)
- T Hiramune
- School of Veterinary Medicine, Department of Epizootiology, Rakuno Gakuen University, Ebetsu, Japan
| | | | | | | |
Collapse
|
49
|
Judd RC, Strange JC, Pettit RK, Shafer WM. Identification and characterization of a conserved outer-membrane protein of Neisseria gonorrhoeae. Mol Microbiol 1991; 5:1091-6. [PMID: 1956286 DOI: 10.1111/j.1365-2958.1991.tb01881.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A previous study in our laboratory identified a surface-exposed peptidoglycan-associated protein of Neisseria gonorrhoeae which had an apparent molecular mass of 44,000 daltons (44kDa) (Hill and Judd, 1989). This paper reports results which confirm that the 44kDa protein is surface-exposed, and that the protein is expressed in, and is structurally invariant among, 14 strains of N. gonorrhoeae. The fact that the 44kDa outer-membrane protein is found in a conserved form in all gonococci examined strongly suggests that it is crucial to the bacterium's survival. Moreover, it appears that this protein is a penicillin-binding protein (PBP3) (Shafer and Judd, 1991). This invariant, surface-exposed, peptidoglycan-associated outer-membrane protein deserves further investigation to elucidate its role in the immunobiology of N. gonorrhoeae, and its possible use as an immunoprophylactic reagent.
Collapse
Affiliation(s)
- R C Judd
- Division of Biological Sciences, University of Montana, Missoula 59812
| | | | | | | |
Collapse
|
50
|
|