1
|
Fang L, Cai S, McMullen P, Hsu YC, Chen MYQ, Jiang S. Passivating the Background of Living Microbes with a Zwitterionic Peptide for Therapies. Bioconjug Chem 2024; 35:575-581. [PMID: 38456602 DOI: 10.1021/acs.bioconjchem.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Living microbial therapies have been proposed as a course of action for a variety of diseases. However, problematic interactions between the host immune system and the microbial organism present significant clinical concerns. Previously, we developed a genetically encoded superhydrophilic zwitterionic peptide, termed EKP, to mimic low-immunogenic zwitterionic materials, which have been used for the chemical modification of biologics such as protein and nucleic acid drugs to increase their in vivo circulation time and reduce their immunogenicity. Herein, we demonstrate the protective effects of the EKP polypeptide genetically cloaking the surface of Saccharomyces cerevisiae as a model microbe in both in vitro and in vivo systems. First, we show that EKP peptide cloaking suppresses the interactions between yeast cells and their specific antibodies, thereby illustrating its cloaking behavior. Then, we examine the in vitro interactions between EKP peptide surface cloaked yeast cells and murine macrophage cells, which exhibit phagocytotic behavior in the presence of foreign microbes. Our results indicate that EKP cloaking suppresses macrophage interactions and thus reduces phagocytosis. Furthermore, EKP cloaked yeast cells demonstrate a prolonged circulation time in mice in vivo.
Collapse
Affiliation(s)
- Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Simian Cai
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Patrick McMullen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yi-Chen Hsu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Yi Qin Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Mallenahalli Neeekantappa V, Kamath A, Bharathi Rajaduraivelpandian P. Safety Profile of Monoclonal Antibodies and Subsequent Drug Developments in the Treatment of Paroxysmal Nocturnal Hemoglobinuria. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:379. [PMID: 38541105 PMCID: PMC10971871 DOI: 10.3390/medicina60030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 10/06/2024]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal stem cell disease characterized by intravascular hemolysis due to the targeting of affected red blood cells by the complement system. Eculizumab and ravulizumab are two monoclonal antibodies that inhibit the complement system's components and have been shown to significantly improve survival and quality of life. This review describes the role of these monoclonal antibodies in the treatment of PNH with an emphasis on their safety profile. The challenges in the use of these drugs and new drugs in various stages of drug development are also described, which may be helpful in addressing some of these challenges.
Collapse
|
3
|
Werner LM, Criss AK. Diverse Functions of C4b-Binding Protein in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1443-1449. [PMID: 37931209 PMCID: PMC10629839 DOI: 10.4049/jimmunol.2300333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 11/08/2023]
Abstract
C4b-binding protein (C4BP) is a fluid-phase complement inhibitor that prevents uncontrolled activation of the classical and lectin complement pathways. As a complement inhibitor, C4BP also promotes apoptotic cell death and is hijacked by microbes and tumors for complement evasion. Although initially characterized for its role in complement inhibition, there is an emerging recognition that C4BP functions in a complement-independent manner to promote cell survival, protect against autoimmune damage, and modulate the virulence of microbial pathogens. In this Brief Review, we summarize the structure and functions of human C4BP, with a special focus on activities that extend beyond the canonical role of C4BP in complement inhibition.
Collapse
Affiliation(s)
- Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Shende R, Wong SSW, Meitei HT, Lal G, Madan T, Aimanianda V, Pal JK, Sahu A. Protective role of host complement system in Aspergillus fumigatus infection. Front Immunol 2022; 13:978152. [PMID: 36211424 PMCID: PMC9539816 DOI: 10.3389/fimmu.2022.978152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.
Collapse
Affiliation(s)
- Rajashri Shende
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
| | - Heikrujam Thoihen Meitei
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Taruna Madan
- Department of Innate Immunity, ICMR – National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| | - Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| |
Collapse
|
5
|
Cohen A, Jeng EE, Voorhies M, Symington J, Ali N, Rodriguez RA, Bassik MC, Sil A. Genome-scale CRISPR screening reveals that C3aR signaling is critical for rapid capture of fungi by macrophages. PLoS Pathog 2022; 18:e1010237. [PMID: 36174103 PMCID: PMC9578593 DOI: 10.1371/journal.ppat.1010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/18/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.
Collapse
Affiliation(s)
- Allison Cohen
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Edwin E. Jeng
- Stanford University, Department of Genetics, Palo Alto, California, United States of America
| | - Mark Voorhies
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Jane Symington
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Nebat Ali
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Rosa A. Rodriguez
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| | - Michael C. Bassik
- Stanford University, Department of Genetics, Palo Alto, California, United States of America
| | - Anita Sil
- University of California San Francisco, Department of Microbiology and Immunology, San Francisco, California, United States of America
| |
Collapse
|
6
|
Nava-Pérez N, Neri-García LG, Romero-González OE, Terrones-Cruz JA, García-Carnero LC, Mora-Montes HM. Biological and Clinical Attributes of Sporothrix globosa, a Causative Agent of Sporotrichosis. Infect Drug Resist 2022; 15:2067-2090. [PMID: 35498634 PMCID: PMC9041366 DOI: 10.2147/idr.s362099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Sporotrichosis is an important subcutaneous mycosis with high prevalence and threat to human and animal health worldwide. Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main etiological agents of this disease; and even though many efforts have been made recently to understand the Sporothrix-host interaction, little is known about S. globosa, an underestimated species. This organism shows the lowest virulence among the members of the Sporothrix pathogenic clade and represents an important pathogenic agent due to its global distribution. Here, we offer a review with all the known information about S. globosa, including its genome and proteomic information, and compare it with S. schenckii and S. brasiliensis, to explain the differences observed among these species, in terms of virulence, the host immune response, and the antifungal sensitivity. Also, we provide the gene prediction of some S. globosa putative virulence factors.
Collapse
Affiliation(s)
- Nallely Nava-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Lisset G Neri-García
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Oscar E Romero-González
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Joshua A Terrones-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
- Correspondence: Laura C García-Carnero; Héctor M Mora-Montes, Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P, Guanajuato, 36050, Gto., México, Tel +52 473-7320006 Ext. 8193, Fax +52 473-7320006 Ext. 8153, Email ;
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, Gto., México
| |
Collapse
|
7
|
Anisuzzaman, Frahm S, Prodjinotho UF, Bhattacharjee S, Verschoor A, Prazeres da Costa C. Host-Specific Serum Factors Control the Development and Survival of Schistosoma mansoni. Front Immunol 2021; 12:635622. [PMID: 33968028 PMCID: PMC8103320 DOI: 10.3389/fimmu.2021.635622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Schistosomiasis is a neglected tropical disease (NTD) caused by blood-dwelling flatworms which develop from skin-penetrating cercariae, the freely swimming water-borne infective stage of Schistosoma mansoni, into adult worms. This natural course of infection can be mimicked in experimental mouse models of schistosomiasis. However, only a maximum of 20-30% of penetrated cercariae mature into fecund adults. The reasons for this are unknown but could potentially involve soluble factors of the innate immune system, such as complement factors and preexisting, natural antibodies. Materials and Methods Using our recently developed novel serum- and cell-free in vitro culture system for newly transformed schistosomula (NTS), which supports long-term larval survival, we investigated the effects of mouse serum and its major soluble complement factors C1q, C3, C4 as well as preexisting, natural IgM in vitro and assessed worm development in vivo by infecting complement and soluble (s)IgM-deficient animals. Results In contrast to sera from humans and a broad variety of mammalian species, serum from mice, surprisingly, killed parasites already at skin stage in vitro. Interestingly, the most efficient killing component(s) were heat-labile but did not include important members of the perhaps best known family of heat-labile serum factors, the complement system, nor consisted of complement-activating natural immunoglobulins. Infection of complement C1q and sIgM-deficient mice with S. mansoni as well as in vitro tests with sera from mice deficient in C3 and C4 revealed no major role for these soluble factors in vivo in regard to parasite maturation, fecundity and associated immunopathology. Rather, the reduction of parasite maturation from cercariae to adult worms was comparable to wild-type mice. Conclusion This study reveals that not yet identified heat-labile serum factors are major selective determinants of the host-specificity of schistosomiasis, by directly controlling schistosomal development and survival.
Collapse
Affiliation(s)
- Anisuzzaman
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sören Frahm
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Sonakshi Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Centre for Global Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
8
|
Zhao H, Zhou M, Zheng Q, Zhu M, Yang Z, Hu C, Xu L. Clinical features and Outcomes of Cryptococcemia patients with and without HIV infection. Mycoses 2021; 64:656-667. [PMID: 33609302 DOI: 10.1111/myc.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The effects of cryptococcemia on patient outcomes in those with or without HIV remain unclear. METHODS One hundred and seventy-nine cryptococcemia patients were enrolled in this retrospective study. Demographic characteristics, blood test results and outcome were compared between the two groups. RESULTS The diagnosis time of Cryptococcus infection was 2.0(0-6.0) days for HIV-infected patients, 5.0 (1.5-8.0) days for HIV-uninfected patients (p = .008), 2.0 (1.0-6.0) days for cryptococcal meningitis (CM) patients and 6.0 (5.0-8.0) days for non-CM patients (p < .001). HIV infection [adjusted odds ratio (AOR) (95% confidence interval): 6.0(2.3-15.9)], CRP < 15 mg/L [AOR:3.7(1.7-8.1)) and haemoglobin > 110 g/L [AOR:2.5(1.2-5.4)] were risk factors for CM development. Forty-six (25.7%) patients died within 90 days. ICU stay [AOR:2.8(1.1-7.1)], hypoalbuminemia [AOR:2.7(1.4-5.3)], no anti-cryptococcal treatment [AOR:4.7(1.9-11.7)] and altered consciousness [AOR:2.4(1.0-5.5)] were independent risk factors for 90-day mortality in all patients. HIV infection did not increase the 90-day mortality of cryptococcemia patients when anti-Cryptococcus treatment was available. Non-Amphotericin B treatment [AOR:3.4(1.0-11.2)] was associated with 90-day mortality in HIV-infected patients, but age ≥ 50.0 years old [AOR:2.7(1.0-2.9)], predisposing disease [AOR:4.1(1.2-14.2)] and altered consciousness [AOR:3.7(1.1-12.9)] were associated with 90-day mortality in HIV-uninfected patients who accepted anti-Cryptococcus treatment. CONCLUSION HIV infection increased the incidence of CM rather than mortality in cryptococcemia patients. The predictive model was completely divergent in HIV-infected and HIV-uninfected patients, suggesting that novel strategies for diagnosis and treatment algorithms are urgently needed.
Collapse
Affiliation(s)
- Handan Zhao
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Minghan Zhou
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zheng
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingjian Zhu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxing Yang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Caiqin Hu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Xu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Byrne AQ, Richards-Zawacki CL, Voyles J, Bi K, Ibáñez R, Rosenblum EB. Whole exome sequencing identifies the potential for genetic rescue in iconic and critically endangered Panamanian harlequin frogs. GLOBAL CHANGE BIOLOGY 2021; 27:50-70. [PMID: 33150627 DOI: 10.1111/gcb.15405] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Avoiding extinction in a rapidly changing environment often relies on a species' ability to quickly adapt in the face of extreme selective pressures. In Panamá, two closely related harlequin frog species (Atelopus varius and Atelopus zeteki) are threatened with extinction due to the fungal pathogen Batrachochytrium dendrobatidis (Bd). Once thought to be nearly extirpated from Panamá, A. varius have recently been rediscovered in multiple localities across their historical range; however, A. zeteki are possibly extinct in the wild. By leveraging a unique collection of 186 Atelopus tissue samples collected before and after the Bd outbreak in Panama, we describe the genetics of persistence for these species on the brink of extinction. We sequenced the transcriptome and developed an exome-capture assay to sequence the coding regions of the Atelopus genome. Using these genetic data, we evaluate the population genetic structure of historical A. varius and A. zeteki populations, describe changes in genetic diversity over time, assess the relationship between contemporary and historical individuals, and test the hypothesis that some A. varius populations have rapidly evolved to resist or tolerate Bd infection. We found a significant decrease in genetic diversity in contemporary (compared to historical) A. varius populations. We did not find strong evidence of directional allele frequency change or selection for Bd resistance genes, but we uncovered a set of candidate genes that warrant further study. Additionally, we found preliminary evidence of recent migration and gene flow in one of the largest persisting A. varius populations in Panamá, suggesting the potential for genetic rescue in this system. Finally, we propose that previous conservation units should be modified, as clear genetic breaks do not exist beyond the local population level. Our data lay the groundwork for genetically informed conservation and advance our understanding of how imperiled species might be rescued from extinction.
Collapse
Affiliation(s)
- Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jamie Voyles
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Sistema Nacional de Investigación, SENACYT, Clayton, Panamá, República de Panamá
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
10
|
Rodriguez KM, Voyles J. The amphibian complement system and chytridiomycosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:706-719. [PMID: 33052039 PMCID: PMC7821119 DOI: 10.1002/jez.2419] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which is implicated unprecedented amphibian declines around the world. The impacts of Bd have been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses to Bd infection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses to Bd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis.
Collapse
Affiliation(s)
| | - Jamie Voyles
- Department of Biology, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
11
|
Harpf V, Rambach G, Würzner R, Lass-Flörl C, Speth C. Candida and Complement: New Aspects in an Old Battle. Front Immunol 2020; 11:1471. [PMID: 32765510 PMCID: PMC7381207 DOI: 10.3389/fimmu.2020.01471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023] Open
Abstract
Candida is a dominant fungal pathogen in immunocompromised hosts, leading to opportunistic infections. Complement with its multifaceted functions is involved in the immune defense against this yeast, and recently several novel aspects have emerged in this old battle. It is clear that Candida can adopt both roles as a colonizer or as a pathogen. In our article, we focus on the molecular mechanisms of the Candida-complement interplay, which occur in disseminated disease as well as locally on skin or on mucous membranes in mouth and vagina; the mechanisms can be supposed to be the same. Activation of the complement system by Candida is facilitated by directly triggering the three dominant pathways, but also indirectly via the coagulation and fibrinolysis systems. The complement-mediated anti-Candida effects induced thereby clearly extend chemotaxis, opsonization, and phagocytosis, and even the membrane attack complex formed on the fungal surface plays a modulatory role, although lysis of the yeast per se cannot be induced due to the thick fungal cell wall. In order to avoid the hostile action of complement, several evasion mechanisms have evolved during co-evolution, comprising the avoidance of recognition, and destruction. The latter comes in many flavors, in particular the cleavage of complement proteins by yeast enzymes and the exploitation of regulatory proteins by recruiting them on the cell wall, such as factor H. The rationale behind that is that the fluid phase regulators on the fungal cell surface down-regulate complement locally. Interestingly, however, evasion protein knockout strains do not necessarily lead to an attenuated disease, so it is likely more complex in vivo than initially thought. The interactions between complement and non-albicans species also deserve attention, especially Candida auris, a recently identified drug-resistant species of medical importance. This is in particular worth investigating, as deciphering of these interactions may lead to alternative anti-fungal therapies directly targeting the molecular mechanisms.
Collapse
Affiliation(s)
- Verena Harpf
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Singh DK, Tóth R, Gácser A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front Cell Infect Microbiol 2020; 10:94. [PMID: 32232011 PMCID: PMC7082757 DOI: 10.3389/fcimb.2020.00094] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Candida species are common colonizers of the human skin, vagina, and the gut. As human commensals, Candida species do not cause any notable damage in healthy individuals; however, in certain conditions they can initiate a wide range of diseases such as chronic disseminated candidiasis, endocarditis, vaginitis, meningitis, and endophthalmitis. The incidence of Candida caused infections has increased worldwide, with mortality rates exceeding 70% in certain patient populations. C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei are responsible for more than 90% of Candida-related infections. Interestingly, the host immune response against these closely related fungi varies. As part of the innate immune system, complement proteins play a crucial role in host defense, protecting the host by lysing pathogens or by increasing their phagocytosis by phagocytes through opsonization. This review summarizes interactions of host complement proteins with pathogenic Candida species, including C. albicans and non-albicans Candida species such as C. parapsilosis. We will also highlight the various ways of complement activation, describe the antifungal effects of complement cascades and explore the mechanisms adopted by members of pathogenic Candida species for evading complement attack.
Collapse
Affiliation(s)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Marolda A, Hünniger K, Böttcher S, Vivas W, Löffler J, Figge MT, Kurzai O. Candida Species-Dependent Release of IL-12 by Dendritic Cells Induces Different Levels of NK Cell Stimulation. J Infect Dis 2020; 221:2060-2071. [DOI: 10.1093/infdis/jiaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/25/2020] [Indexed: 01/20/2023] Open
Abstract
Abstract
Background
Candida albicans and Candida glabrata are the 2 most prevalent Candida species causing bloodstream infections. Patterns of innate immune activation triggered by the 2 fungi differ considerably.
Methods
To analyze human natural killer (NK) cell activation by both species, we performed ex vivo whole-blood infection assays and confrontation assays with primary human NK cells.
Results
C. albicans was a stronger activator for isolated human NK cells than C. glabrata. In contrast, activation of blood NK cells, characterized by an upregulated surface exposure of early activation antigen CD69 and death receptor ligand TRAIL, as well as interferon-γ (IFN-γ) secretion, was more pronounced during C. glabrata infection. NK cell activation in blood is mediated by humoral mediators released by other immune cells and does not depend on direct activation by fungal cells. Cross-talk between Candida-confronted monocyte-derived dendritic cells (moDC) and NK cells resulted in the same NK activation phenotype as NK cells in human blood. Blocking experiments and cytokine substitution identified interleukin-12 as a critical mediator in regulation of primary NK cells by moDC.
Conclusions
Activation of human NK cells in response to Candida in human blood mainly occurs indirectly by mediators released from monocytic cells.
Collapse
Affiliation(s)
- Alessandra Marolda
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kerstin Hünniger
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sarah Böttcher
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Wolfgang Vivas
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Kurzai
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
15
|
Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis 2018; 29:319-29. [PMID: 27257797 DOI: 10.1097/qco.0000000000000279] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Eculizumab inhibits complement effector functions and has significantly impacted the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. However, the risks of potentially life-threatening infections, notably with Neisseria spp. in addition to its cost, are major challenges in clinical practice. In this review, we characterize and summarize the infectious complications reported with the use of eculizumab in the context of its typical and expanding indications. RECENT FINDINGS Use of eculizumab is rapidly extending to the fields of transplantation and neurology. Eculizumab has been primarily associated with an increased risk of meningococcal infections. Immunization against its commonest serotypes (ABCWY) is now possible with the advent of the meningococcal B vaccine. A combined ABCWY vaccine is underway. Preventive strategies against breakthrough Neisseria infections should also include chemoprophylaxis. Less is known about the association of eculizumab with other infections as recently reported. Surrogate markers of complement blockade, notably CH50, and eculizumab efficacy may help in the risk assessment of infection. SUMMARY Eculizumab has opened new horizons in the treatment of complement-mediated disorders. Prophylactic and immunization strategies against the risk of Nesseria spp. infections are sound and feasible. The use of eculizumab is expanding beyond complement-mediated diseases to transplantation and neurological disorders. Further research is needed to better define and stratify the risk of infection and prevention strategies in patients with the latter indications.
Collapse
|
16
|
Löffler J, Ebel F. Size matters - how the immune system deals with fungal hyphae. Microbes Infect 2017; 20:521-525. [PMID: 29248637 DOI: 10.1016/j.micinf.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Fungal hyphae constitute a special challenge for the immune system, since they are too large to be phagocytosed. This review summarizes our current knowledge on those immune cells that are able to attack and eliminate hyphae and we discuss the different means that are employed by these cells in order to kill hyphae.
Collapse
Affiliation(s)
- Jürgen Löffler
- Medical Hospital II, WÜ4i, University Hospital Wuerzburg, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
17
|
de Andrade LGM, Contti MM, Nga HS, Bravin AM, Takase HM, Viero RM, da Silva TN, Chagas KDN, Palma LMP. Long-term outcomes of the Atypical Hemolytic Uremic Syndrome after kidney transplantation treated with eculizumab as first choice. PLoS One 2017; 12:e0188155. [PMID: 29136640 PMCID: PMC5685617 DOI: 10.1371/journal.pone.0188155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Introduction The treatment of choice for Atypical Hemolytic Uremic Syndrome (aHUS) is the monoclonal antibody eculizumab. The objective of this study was to assess the efficacy and safety of eculizumab in a cohort of kidney transplant patients suffering from aHUS. Methods Description of the prospective cohort of all the patients primarily treated with eculizumab after transplantation and divided into the therapeutic (onset of aHUS after transplantation) and prophylactic use (patients with previous diagnosis of aHUS undergoing kidney transplantation). Results Seven cases were outlined: five of therapeutic use and two, prophylactic. From the five cases of therapeutic use, there was improvement of the thrombotic microangiopathy in the 48 hours following the start of the drug and no patient experienced relapse during an average follow-up of 21 months in the continuous use of eculizumab (minimum of 6 and maximum of 42 months). One patient died at 6 months, due to Aspergillus infection. From the two cases of prophylactic use, one patient experienced relapsed thrombotic microangiopathy after 4 months and another patient remained asymptomatic after 16 months of follow-up, both on chronic treatment. Discussion The therapeutic use of eculizumab showed to be effective, with improvement of the microangiopathy parameters and persisting up to the end of the follow-up, without relapses. The additional risk of immunosuppression, leading to opportunistic infections, was well tolerated. The prophylactic use showed to be effective and safe; however, the doses and intervals should be individualized in order to avoid relapsed microangiopathy, especially in patients with factor H mutation.
Collapse
Affiliation(s)
| | - Mariana Moraes Contti
- Department of Internal Medicine, University São Paulo State(UNESP), Botucatu, São Paulo State, Brazil
| | - Hong Si Nga
- Department of Internal Medicine, University São Paulo State(UNESP), Botucatu, São Paulo State, Brazil
| | - Ariane Moyses Bravin
- Department of Internal Medicine, University São Paulo State(UNESP), Botucatu, São Paulo State, Brazil
| | - Henrique Mochida Takase
- Department of Internal Medicine, University São Paulo State(UNESP), Botucatu, São Paulo State, Brazil
| | - Rosa Marlene Viero
- Department of Internal Medicine, University São Paulo State(UNESP), Botucatu, São Paulo State, Brazil
| | - Trycia Nunes da Silva
- Department of Internal Medicine, Hospital Estadual de Bauru, Bauru, São Paulo State, Brazil
| | - Kelem De Nardi Chagas
- Department of Internal Medicine, University of São Paulo (USP), São Paulo, São Paulo State, Brazil
| | | |
Collapse
|
18
|
Cytokines regulate complement receptor immunoglobulin expression and phagocytosis of Candida albicans in human macrophages: A control point in anti-microbial immunity. Sci Rep 2017. [PMID: 28642550 PMCID: PMC5481325 DOI: 10.1038/s41598-017-04325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complement Receptor Immunoglobulin (CRIg), selectively expressed by macrophages, plays an important role in innate immunity by promoting phagocytosis of bacteria. Thus modulation of CRIg on macrophages by cytokines can be an important mechanism by which cytokines regulate anti-microbial immunity. The effects of the cytokines, tumor necrosis factor, transforming growth factor-β1, interferon-γ, interleukin (IL)-4, IL-13, IL-10, IL-1β, IL-6, lymphotoxin-α, macrophage-colony stimulating factor (M-CSF) and GM-CSF on CRIg expression were examined in human macrophages. We demonstrated that cytokines regulated the CRIg expression on macrophages during their development from monocytes in culture at the transcriptional level using qPCR and protein by Western blotting. Both CRIg spliced forms (Long and Short), were similarly regulated by cytokines. Direct addition of cytokines to matured CRIg+ macrophages also changed CRIg mRNA expression, suggesting that cytokines control macrophage function via CRIg, at two checkpoints. Interestingly the classical complement receptors, CR3 and CR4 were differentially regulated by cytokines. The changes in CRIg but not CR3/CR4 mRNA expression correlated with ability to phagocytose Candida albicans by macrophages. These findings suggest that CRIg is likely to be a control point in infection and immunity through which cytokines can mediate their effects, and is differentially regulated from CR3 and CR4 by cytokines.
Collapse
|
19
|
Halder LD, Abdelfatah MA, Jo EAH, Jacobsen ID, Westermann M, Beyersdorf N, Lorkowski S, Zipfel PF, Skerka C. Factor H Binds to Extracellular DNA Traps Released from Human Blood Monocytes in Response to Candida albicans. Front Immunol 2017; 7:671. [PMID: 28133459 PMCID: PMC5233719 DOI: 10.3389/fimmu.2016.00671] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation.
Collapse
Affiliation(s)
- Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology , Jena , Germany
| | - Mahmoud A Abdelfatah
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology , Jena , Germany
| | - Emeraldo A H Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology , Jena , Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Friedrich-Schiller University, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy of the University Hospital Jena , Jena , Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg , Würzburg , Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich-Schiller University , Jena , Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Friedrich-Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology , Jena , Germany
| |
Collapse
|
20
|
Wheeler ML, Limon JJ, Underhill DM. Immunity to Commensal Fungi: Detente and Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:359-385. [PMID: 28068483 DOI: 10.1146/annurev-pathol-052016-100342] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fungi are ubiquitous in our environment, and a healthy immune system is essential to maintain adequate protection from fungal infections. When this protection breaks down, superficial and invasive fungal infections cause diseases that range from irritating to life-threatening. Millions of people worldwide develop invasive infections during their lives, and mortality for these infections often exceeds 50%. Nevertheless, we are normally colonized with many of the same disease-causing fungi (e.g., on the skin or in the gut). Recent research is dramatically expanding our understanding of the mechanisms by which our immune systems interact with these organisms in health and disease. In this review, we discuss what is currently known about where and how the immune system interacts with common fungi.
Collapse
Affiliation(s)
- Matthew L Wheeler
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048; , ,
| | - Jose J Limon
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048; , ,
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048; , , .,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
21
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
22
|
Speth C, Rambach G, Würzner R, Lass-Flörl C, Kozarcanin H, Hamad OA, Nilsson B, Ekdahl KN. Complement and platelets: Mutual interference in the immune network. Mol Immunol 2015; 67:108-18. [DOI: 10.1016/j.molimm.2015.03.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
|
23
|
Margalit A, Kavanagh K. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev 2015; 39:670-87. [PMID: 25934117 DOI: 10.1093/femsre/fuv018] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/22/2023] Open
Abstract
Aspergillus fumigatus is an ubiquitous, saprophytic mould that forms and releases airborne conidia which are inhaled by humans on a daily basis. When the immune system is compromised (e.g. immunosuppressive therapy prior to organ transplantation) or there is pre-existing pulmonary malfunction (e.g. asthma, cystic fibrosis, TB lesions), A. fumigatus exploits weaknesses in the host defenses which can result in the development of saphrophytic, allergic or invasive aspergillosis. If not effectively eliminated by the innate immune response, conidia germinate and form invasive hyphae which can penetrate pulmonary tissues. The innate immune response to A. fumigatus is stage-specific and various components of the host's defenses are recruited to challenge the different cellular forms of the pathogen. In immunocompetent hosts, anatomical barriers (e.g. the mucociliary elevator) and professional phagocytes such as alveolar macrophages (AM) and neutrophils prevent the development of aspergillosis by inhibiting the growth of conidia and hyphae. The recognition of inhaled conidia by AM leads to the intracellular degradation of the spores and the secretion of proinflammatory mediators which recruit neutrophils to assist in fungal clearance. During the later stages of infection, dendritic cells activate a protective A. fumigatus-specific adaptive immune response which is driven by Th1 CD4(+) T cells.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| |
Collapse
|
24
|
Duggan S, Leonhardt I, Hünniger K, Kurzai O. Host response to Candida albicans bloodstream infection and sepsis. Virulence 2015; 6:316-26. [PMID: 25785541 PMCID: PMC4601378 DOI: 10.4161/21505594.2014.988096] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management.
Collapse
Affiliation(s)
- Seána Duggan
- a Septomics Research Center ; Friedrich-Schiller-University and Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute ; Jena , Germany
| | | | | | | |
Collapse
|
25
|
Hünniger K, Bieber K, Martin R, Lehnert T, Figge MT, Löffler J, Guo RF, Riedemann NC, Kurzai O. A second stimulus required for enhanced antifungal activity of human neutrophils in blood is provided by anaphylatoxin C5a. THE JOURNAL OF IMMUNOLOGY 2014; 194:1199-210. [PMID: 25539819 DOI: 10.4049/jimmunol.1401845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Δ/efg1Δ from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Kristin Bieber
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | | | - Niels C Riedemann
- InflaRx GmbH, 07745 Jena, Germany; Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany; and
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany; and German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
26
|
Feng Y, Hu L, Lu S, Chen Q, Zheng Y, Zeng D, Zhang J, Zhang A, Chen L, Hu Y, Zhang Z. Molecular pathology analyses of two fatal human infections of avian influenza A(H7N9) virus. J Clin Pathol 2014; 68:57-63. [PMID: 25378539 DOI: 10.1136/jclinpath-2014-202441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS To investigate the histopathological manifestations of two fatal cases of H7N9 influenza A virus infection. METHODS Pulmonary and hepatic specimens from two fatal cases of H7N9 influenza virus infection were examined using H&E staining. Additionally, in situ hybridisation was performed with probes (ViewRNA) targeting H7N9 RNA and IP-10, interleukin (IL)-6 mRNA. The distribution of surfactant protein A (SP-A), surfactant protein B (SP-B), CD3, CD4, CD8, CD68 and C4d were determined with immunohistochemistry. RESULTS Apart from the typical diffuse alveolar damage and hyaline membrane observed in severe influenza infection, we detected H7N9 RNA and massive intrapulmonary production of IP-10 and IL-6 mRNA using in situ hybridisation. Hyperplasia of type II pneumocytes was observed by H&E staining and immunohistochemistry. Proliferating macrophages and clustered neutrophils in the infected lungs were observed, whereas T lymphocytes, especially CD4T helper cells, were markedly depleted. No obvious complement deposition was found in lung tissues. CONCLUSIONS Our findings suggest that H7N9 influenza virus induced an immunological response towards overt pulmonary inflammation and systemic lymphopenia which led to intense alveolar damage and respiratory failure.
Collapse
Affiliation(s)
- Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lvyin Hu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuihua Lu
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qingguo Chen
- Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ye Zheng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dong Zeng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Anli Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Viral Hepatitis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yunwen Hu
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhiyong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Manipulation of the Humoral Immune System and the Host Immune Response to Infection. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Vellanki VS, Bargman JM. Aspergillus Nigerperitonitis in a peritoneal dialysis patient treated with eculizumab. Ren Fail 2014; 36:631-3. [DOI: 10.3109/0886022x.2014.882712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Luo S, Skerka C, Kurzai O, Zipfel PF. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans. Mol Immunol 2013; 56:161-9. [DOI: 10.1016/j.molimm.2013.05.218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/10/2013] [Indexed: 01/09/2023]
|
30
|
Lymphocyte transformation assay for C neoformans antigen is not reliable for detecting cellular impairment in patients with neurocryptococcosis. BMC Infect Dis 2012; 12:278. [PMID: 23110700 PMCID: PMC3556098 DOI: 10.1186/1471-2334-12-278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 10/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Cryptococcus neoformans causes meningitis and disseminated infection in healthy individuals, but more commonly in hosts with defective immune responses. Cell-mediated immunity is an important component of the immune response to a great variety of infections, including yeast infections. We aimed to evaluate a specific lymphocyte transformation assay to Cryptococcus neoformans in order to identify immunodeficiency associated to neurocryptococcosis (NCC) as primary cause of the mycosis. Methods Healthy volunteers, poultry growers, and HIV-seronegative patients with neurocryptococcosis were tested for cellular immune response. Cryptococcal meningitis was diagnosed by India ink staining of cerebrospinal fluid and cryptococcal antigen test (Immunomycol-Inc, SP, Brazil). Isolated peripheral blood mononuclear cells were stimulated with C. neoformans antigen, C. albicans antigen, and pokeweed mitogen. The amount of 3H-thymidine incorporated was assessed, and the results were expressed as stimulation index (SI) and log SI, sensitivity, specificity, and cut-off value (receiver operating characteristics curve). We applied unpaired Student t tests to compare data and considered significant differences for p<0.05. Results The lymphotoxin alpha showed a low capacity with all the stimuli for classifying patients as responders and non-responders. Lymphotoxin alpha stimulated by heated-killed antigen from patients with neurocryptococcosis was not affected by TCD4+ cell count, and the intensity of response did not correlate with the clinical evolution of neurocryptococcosis. Conclusion Response to lymphocyte transformation assay should be analyzed based on a normal range and using more than one stimulator. The use of a cut-off value to classify patients with neurocryptococcosis is inadequate. Statistical analysis should be based on the log transformation of SI. A more purified antigen for evaluating specific response to C. neoformans is needed.
Collapse
|
31
|
Complement Attack against Aspergillus and Corresponding Evasion Mechanisms. Interdiscip Perspect Infect Dis 2012; 2012:463794. [PMID: 22927844 PMCID: PMC3423931 DOI: 10.1155/2012/463794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 11/26/2022] Open
Abstract
Invasive aspergillosis shows a high mortality rate particularly in immunocompromised patients. Perpetually increasing numbers of affected patients highlight the importance of a clearer understanding of interactions between innate immunity and fungi. Innate immunity is considered to be the most significant host defence against invasive fungal infections. Complement represents a crucial part of this first line defence and comprises direct effects against invading pathogens as well as bridging functions to other parts of the immune network. However, despite the potency of complement to attack foreign pathogens, the prevalence of invasive fungal infections is increasing. Two possible reasons may explain that phenomenon: First, complement activation might be insufficient for an effective antifungal defence in risk patients (due to, e.g., low complement levels, poor recognition of fungal surface, or missing interplay with other immune elements in immunocompromised patients). On the other hand, fungi may have developed evasion strategies to avoid recognition and/or eradication by complement.
In this review, we summarize the most important interactions between Aspergillus and the complement system. We describe the various ways of complement activation by Aspergillus and the antifungal effects of the system, and also show proven and probable mechanisms of Aspergillus for complement evasion.
Collapse
|
32
|
Cheng SC, Sprong T, Joosten LA, van der Meer JWM, Kullberg BJ, Hube B, Schejbel L, Garred P, van Deuren M, Netea MG. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur J Immunol 2012; 42:993-1004. [DOI: 10.1002/eji.201142057] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | | | | | | | - Lone Schejbel
- Department of Clinical Immunology; Laboratory of Molecular Medicine; Rigshospitalet; Copenhagen; Denmark
| | - Peter Garred
- Department of Clinical Immunology; Laboratory of Molecular Medicine; Rigshospitalet; Copenhagen; Denmark
| | | | | |
Collapse
|
33
|
Linkage specificity and role of properdin in activation of the alternative complement pathway by fungal glycans. mBio 2011; 2:mBio.00178-11. [PMID: 21878570 PMCID: PMC3163941 DOI: 10.1128/mbio.00178-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fungal cell walls are predominantly composed of glucans, mannans, and chitin. Recognition of these glycans by the innate immune system is a critical component of host defenses against the mycoses. Complement, an important arm of innate immunity, plays a significant role in fungal pathogenesis, especially the alternative pathway (AP). Here we determine that the glycan monosaccharide composition and glycosidic linkages affect AP activation and C3 deposition. Furthermore, properdin, a positive regulator of the AP, contributes to these functions. AP activation by glycan particles that varied in composition and linkage was measured by C3a generation in serum treated with 10 mM EGTA and 10 mM Mg2+ (Mg-EGTA-treated serum) (AP specific; properdin functional) or Mg-EGTA-treated serum that lacked functional properdin. Particles that contained either β1→3 or β1→6 glucans or both generated large and similar amounts of C3a when the AP was intact. Blocking properdin function resulted in 5- to 10-fold-less C3a production by particulate β1→3 glucans. However, particulate β1→6 glucans generated C3a via the AP only in the presence of intact properdin. Interestingly, zymosan and glucan-mannan particles (GMP), which contain both β-glucans and mannans, also required properdin to generate C3a. The β1→4 glycans chitin and chitosan minimally activated C3 even when properdin was functional. Finally, properdin binding to glucan particles (GP) and zymosan in serum required active C3. Properdin colocalized with bound C3, suggesting that in the presence of serum, properdin bound indirectly to glycans through C3 convertases. These findings provide a better understanding of how properdin facilitates AP activation by fungi through interaction with the cell wall components. Invasive fungal infections have increased in incidence with the widespread use of immunosuppressive therapy and invasive procedures. Activation of the complement system contributes to innate immunity against fungi by generating chemoattractants that recruit white blood cells and by coating the pathogen with complement fragments that “mark” them for phagocytosis. The fungal cell wall activates complement in an antibody-independent manner through the alternative pathway (AP). Properdin is a positive regulator of the AP. This study elucidates how the specificity of cell wall glycan linkages affects AP activation and the role properdin plays in this process. Particulate β1→3 glucans activated the AP even in the absence of properdin, while β1→6 glucans required properdin for AP activation. In contrast, the β1→4 glycans chitin and chitosan failed to activate the AP. These findings enhance our mechanistic understanding of how fungi activate complement and have implications for the use of glycans in biomedical applications.
Collapse
|
34
|
Srikanta D, Yang M, Williams M, Doering TL. A sensitive high-throughput assay for evaluating host-pathogen interactions in Cryptococcus neoformans infection. PLoS One 2011; 6:e22773. [PMID: 21829509 PMCID: PMC3145667 DOI: 10.1371/journal.pone.0022773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/29/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptococcus neoformans causes serious disease in immunocompromised individuals, leading to over 600,000 deaths per year worldwide. Part of this impact is due to the organism's ability to thwart what should be the mammalian hosts' first line of defense against cryptococcal infection: internalization by macrophages. Even when C. neoformans is engulfed by host phagocytes, it can survive and replicate within them rather than being destroyed; this ability is central in cryptococcal virulence. It is therefore critical to elucidate the interactions of this facultative intracellular pathogen with phagocytic cells of its mammalian host. METHODOLOGY/PRINCIPAL FINDINGS To accurately assess initial interactions between human phagocytic cells and fungi, we have developed a method using high-throughput microscopy to efficiently distinguish adherent and engulfed cryptococci and quantitate each population. This method offers significant advantages over currently available means of assaying host-fungal cell interactions, and remains statistically robust when implemented in an automated fashion appropriate for screening. It was used to demonstrate the sensitivity of human phagocytes to subtle changes in the cryptococcal capsule, a major virulence factor of this pathogen. CONCLUSIONS/SIGNIFICANCE Our high-throughput method for characterizing interactions between C. neoformans and mammalian phagocytic cells offers a powerful tool for elucidating the relationship between these cell types during pathogenesis. This approach will be useful for screens of this organism and has potentially broad applications for investigating host-pathogen interactions.
Collapse
Affiliation(s)
- Deepa Srikanta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Meng Yang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Williams
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
35
|
What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010; 27:155-82. [PMID: 20974273 DOI: 10.1016/j.riam.2010.10.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic pathogen that causes 90% of invasive aspergillosis (IA) due to Aspergillus genus, with a 50-95% mortality rate. It has been postulated that certain virulence factors are characteristic of A. fumigatus, but the "non-classical" virulence factors seem to be highly variable. Overall, published studies have demonstrated that the virulence of this fungus is multifactorial, associated with its structure, its capacity for growth and adaptation to stress conditions, its mechanisms for evading the immune system and its ability to cause damage to the host. In this review we intend to give a general overview of the genes and molecules involved in the development of IA. The thermotolerance section focuses on five genes related with the capacity of the fungus to grow at temperatures above 30°C (thtA, cgrA, afpmt1, kre2/afmnt1, and hsp1/asp f 12). The following sections discuss molecules and genes related to interaction with the host and with the immune responses. These sections include β-glucan, α-glucan, chitin, galactomannan, galactomannoproteins (afmp1/asp f 17 and afmp2), hydrophobins (rodA/hyp1 and rodB), DHN-melanin, their respective synthases (fks1, rho1-4, ags1-3, chsA-G, och1-4, mnn9, van1, anp1, glfA, pksP/alb1, arp1, arp2, abr1, abr2, and ayg1), and modifying enzymes (gel1-7, bgt1, eng1, ecm33, afpigA, afpmt1-2, afpmt4, kre2/afmnt1, afmnt2-3, afcwh41 and pmi); several enzymes related to oxidative stress protection such as catalases (catA, cat1/catB, cat2/katG, catC, and catE), superoxide dismutases (sod1, sod2, sod3/asp f 6, and sod4), fatty acid oxygenases (ppoA-C), glutathione tranferases (gstA-E), and others (afyap1, skn7, and pes1); and efflux transporters (mdr1-4, atrF, abcA-E, and msfA-E). In addition, this review considers toxins and related genes, such as a diffusible toxic substance from conidia, gliotoxin (gliP and gliZ), mitogillin (res/mitF/asp f 1), hemolysin (aspHS), festuclavine and fumigaclavine A-C, fumitremorgin A-C, verruculogen, fumagillin, helvolic acid, aflatoxin B1 and G1, and laeA. Two sections cover genes and molecules related with nutrient uptake, signaling and metabolic regulations involved in virulence, including enzymes, such as serine proteases (alp/asp f 13, alp2, and asp f 18), metalloproteases (mep/asp f 5, mepB, and mep20), aspartic proteases (pep/asp f 10, pep2, and ctsD), dipeptidylpeptidases (dppIV and dppV), and phospholipases (plb1-3 and phospholipase C); siderophores and iron acquisition (sidA-G, sreA, ftrA, fetC, mirB-C, and amcA); zinc acquisition (zrfA-H, zafA, and pacC); amino acid biosynthesis, nitrogen uptake, and cross-pathways control (areA, rhbA, mcsA, lysF, cpcA/gcn4p, and cpcC/gcn2p); general biosynthetic pathway (pyrG, hcsA, and pabaA), trehalose biosynthesis (tpsA and tpsB), and other regulation pathways such as those of the MAP kinases (sakA/hogA, mpkA-C, ste7, pbs2, mkk2, steC/ste11, bck1, ssk2, and sho1), G-proteins (gpaA, sfaD, and cpgA), cAMP-PKA signaling (acyA, gpaB, pkaC1, and pkaR), His kinases (fos1 and tcsB), Ca(2+) signaling (calA/cnaA, crzA, gprC and gprD), and Ras family (rasA, rasB, and rhbA), and others (ace2, medA, and srbA). Finally, we also comment on the effect of A. fumigatus allergens (Asp f 1-Asp f 34) on IA. The data gathered generate a complex puzzle, the pieces representing virulence factors or the different activities of the fungus, and these need to be arranged to obtain a comprehensive vision of the virulence of A. fumigatus. The most recent gene expression studies using DNA-microarrays may be help us to understand this complex virulence, and to detect targets to develop rapid diagnostic methods and new antifungal agents.
Collapse
|
36
|
|
37
|
Complement C3 plays an essential role in the control of opportunistic fungal infections. Infect Immun 2009; 77:3679-85. [PMID: 19581397 PMCID: PMC2738051 DOI: 10.1128/iai.00233-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate recognition of fungal pathogens is a crucial first step in the induction of protective antifungal immunity. Complement is thought to be one key component in this process, facilitating fungal recognition and inducing early inflammation. However, the roles of the individual complement components have not been examined extensively. Here we have used mice lacking C3 to examine its role in immunity to opportunistic fungal pathogens and show that this complement component is essential for resistance to infections with Candida albicans and Candida glabrata. We demonstrate that the absence of C3 impairs fungal clearance but does not affect inflammatory responses. We also show that the presence of C3 contributes to mortality in mice challenged with very high doses of Saccharomyces cerevisiae, although these effects were found to be mouse strain dependent.
Collapse
|
38
|
Bianchini AAC, Petroni TF, Fedatto PF, Bianchini RR, Venancio EJ, Itano EN, Ono MA. Activation of the alternative complement pathway in canine normal serum by Paracoccidioides brasiliensis. Braz J Microbiol 2009; 40:234-7. [PMID: 24031350 PMCID: PMC3769725 DOI: 10.1590/s1517-83822009000200005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/27/2008] [Accepted: 03/13/2009] [Indexed: 12/03/2022] Open
Abstract
The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, a human granulomatous disease. Recently the first case of natural disease in dogs was reported. The complement system is an important effector component of humoral immunity against infectious agents. Therefore, the aim of this study was to evaluate the activation of the dog alternative complement pathway by P. brasiliensis. Initially, the ability of erythrocytes of guinea pig, rabbit, sheep, chicken and swine to activate the dog alternative pathway was evaluated. The guinea pig erythrocytes showed the greatest capacity to activate dog alternative pathway. The alternative (AH50) hemolytic activity was evaluated in 27 serum samples from healthy dogs and the mean values were 87.2 AH50/ml. No significant differences were observed in relation to sex and age. The alternative pathway activation by P. brasiliensis was higher in serum samples from adult dogs when compared to puppies and aged dogs (p ≤ 0.05). This is the first report of dog alternative complement pathway activation by P. brasiliensis and suggests that it may play a protective role in canine paracoccidioidomycosis.
Collapse
Affiliation(s)
- A A C Bianchini
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina , Londrina, PR , Brasil
| | | | | | | | | | | | | |
Collapse
|
39
|
Stano P, Williams V, Villani M, Cymbalyuk ES, Qureshi A, Huang Y, Morace G, Luberto C, Tomlinson S, Del Poeta M. App1: an antiphagocytic protein that binds to complement receptors 3 and 2. THE JOURNAL OF IMMUNOLOGY 2009; 182:84-91. [PMID: 19109138 DOI: 10.4049/jimmunol.182.1.84] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In previous studies, we showed that the pathogenic fungus Cryptococcus neoformans (Cn) produces a specific and unique protein called antiphagocytic protein 1 (App1), which inhibits phagocytosis of Cn by alveolar macrophages (AMs). Phagocytosis of Cn by AMs occurs mainly through a complement- or Ab-mediated mechanism. Among AM receptors, complement receptor 3 (CR3) and FcRgamma are the most common receptors involved in the phagocytic process. Because App1 inhibits phagocytosis of complement- but not Ab-coated erythrocytes, we investigated the role of CR3 in App1-macrophage interactions. We found that App1 binds to CR3 and if CR3 is absent from the surface of AMs, its antiphagocytic action is lost. When we investigated whether App1 would also bind to other complement receptor(s), we found that App1 does bind to complement receptor 2 (CR2) in a dose-dependent manner. In certain lymphoma cell lines, cellular proliferation is stimulated by complement through CR2, providing a potential use of App1 as a proliferation inhibitor of these cells. Initially discovered as an antiphagocytic protein regulating CR3-mediated innate immunity, App1 may also play a key role in the regulation of acquired immunity, because CR2 is mainly localized on B cells.
Collapse
Affiliation(s)
- Paola Stano
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Virginia Williams
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Maristella Villani
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Eugene S Cymbalyuk
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Asfia Qureshi
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Yuxiang Huang
- Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Giulia Morace
- Dipartimento di Sanita' Pubblica, Microbiologia-Virologia, Universita' degli Studi di Milano, Milan, Italy
| | - Chiara Luberto
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Stephen Tomlinson
- Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Maurizio Del Poeta
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425.,Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425.,Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
40
|
Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS, Seo SJ, Lee IH. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. THE JOURNAL OF IMMUNOLOGY 2009; 181:6328-36. [PMID: 18941224 DOI: 10.4049/jimmunol.181.9.6328] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Enterococcus faecalis (Ef) accounts for most cases of enterococcal bacteremia, which is one of the principal causes of nosocomial bloodstream infections (BSI). Among several virulence factors associated with the pathogenesis of Ef, an extracellular gelatinase (GelE) has been known to be the most common factor, although its virulence mechanisms, especially in association with human BSI, have yet to be demonstrated. In this study, we describe the complement resistance mechanism of Ef mediated by GelE. Using purified GelE, we determined that it cleaved the C3 occurring in human serum into a C3b-like molecule, which was inactivated rapidly via reaction with water. This C3 convertase-like activity of GelE was shown to result in a consumption of C3 and thus inhibited the activation of the complement system. Also, GelE was confirmed to degrade an iC3b that was deposited on the Ag surfaces without affecting the bound C3b. This proteolytic effect of GelE against the major complement opsonin resulted in a substantial reduction in Ef phagocytosis by human polymorphonuclear leukocytes. In addition, we verified that the action of GelE against C3, which is a central component of the complement cascade, was human specific. Taken together, it was suggested that GelE may represent a promising molecule for targeting human BSI associated with Ef.
Collapse
Affiliation(s)
- Shin Yong Park
- Department of Biotechnology, Hoseo University, Asan City, Chungnam, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chai LYA, Netea MG, Vonk AG, Kullberg BJ. Fungal strategies for overcoming host innate immune response. Med Mycol 2009; 47:227-36. [DOI: 10.1080/13693780802209082] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
42
|
Abstract
Previous studies have shown that the alternative pathway of complement activation plays an important role in protection against infection with Cryptococcus neoformans. Cryptococcus gattii does not activate the alternative pathway as well as C. neoformans in vitro. The role of complement in C. gattii infection in vivo has not been reported. In this study, we used mice deficient in complement components to investigate the role of complement in protection against a C. gattii isolate from an ongoing outbreak in northwestern North America. While factor B-deficient mice showed an enhanced rate of death, complement component C3-deficient mice died even more rapidly, indicating that the alternative pathway was not the only complement pathway contributing to protection against disease. Both C3- and factor B-deficient mice had increased fungal burdens in comparison to wild-type mice. Histopathology revealed an overwhelming fungal burden in the lungs of these complement-deficient mice, which undoubtedly prevented efficient gas exchange, causing death. Following the fate of radiolabeled organisms showed that both factor B- and C3-deficient mice were less effective than wild-type mice in clearing organisms. However, opsonization of C. gattii with complement components was not sufficient to prolong life in mice deficient in complement. Killing of C. gattii by macrophages in vitro was decreased in the presence of serum from factor B- and C3-deficient versus wild-type mice. In conclusion, we have demonstrated that complement activation is crucial for survival in C. gattii infection. Additionally, we have shown that the alternative pathway of complement activation is not the only complement pathway contributing to protection.
Collapse
|
43
|
Abstract
Fungal infections are a serious complication in immunocompromised patients such as human immunodeficiency virus-infected individuals, patients with organ transplantations or with haematological neoplasia. The lethality of opportunistic fungal infection is high despite a growing arsenal of antimycotic drugs, implying the urgent need for supportive immunological therapies to strengthen the current inefficient antimicrobial defences of the immunocompromised host. Therefore, increasing effort has been directed to investigating the interplay between fungi and the host immunity and thus to find starting points for additional therapeutic approaches. In this article, we review the actual state of the art concerning the role of complement in the pathogenesis of fungal infections. Important aspects include the activation of the complement system by the fungal pathogen, the efficiency of the complement-associated antimicrobial functions and the arsenal of immune evasion strategies applied by the fungi. The twin functions of complement as an interactive player of the innate immunity and at the same time as a modulator of the adaptive immunity make this defence weapon a particularly interesting therapeutic candidate to mobilise a more effective immune response and to strengthen in one fell swoop a broad spectrum of different immune reactions. However, we also mention the 'Yin-Yang' nature of the complement system in fungal infections, as growing evidence assigns to complement a contributory part in the pathogenesis of fungus-induced allergic manifestations.
Collapse
Affiliation(s)
- Cornelia Speth
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | |
Collapse
|
44
|
Held K, Thiel S, Loos M, Petry F. Increased susceptibility of complement factor B/C2 double knockout mice and mannan-binding lectin knockout mice to systemic infection with Candida albicans. Mol Immunol 2008; 45:3934-41. [PMID: 18672286 DOI: 10.1016/j.molimm.2008.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/16/2008] [Accepted: 06/19/2008] [Indexed: 10/21/2022]
Abstract
Candida albicans is the major cause of systemic fungal infections in immunocompromised patients. We investigated the susceptibility of mice deficient in complement factor B and C2 (Bf/C2-/-), C1q (C1qa-/-), and mannan-binding lectin (MBL)-A (MBL-A) and MBL-C (MBL-A/C-/-) to systemic infection with C. albicans. Animals were infected i.p. with 10(8)C. albicans blastoconidia and monitored for mortality. Bf/C2-/- mice showed high mortality (over 90%) within the study period of 3 weeks. In contrast, mortality in C1qa-/- mice was below 15% whereas that of MBL-A/C-/- mice was 40% (P<0.001). Intravenous infection of mice with 8x10(5) blastoconidia resulted in the same trend with Bf/C2-/- mice being highly susceptible compared to the other strains. Histology of kidney sections of infected Bf/C2-/- mice showed widespread mycelia confirming the high CFU counts from cultured tissue homogenates. In C1qa-/-, MBL-A/C-/- and wild type C57BL/6 mice hyphal growth was limited. However, massive inflammatory infiltration was apparent, which was not seen in Bf/C2-/- mice. The ability of the mouse sera to opsonize C. albicans was determined by quantification of phagocytosis of C. albicans by peritoneal phagocytes. Whilst phagocytosis mediated by Bf/C2-/- mouse serum was low (10.6%), more phagocytosis could be seen in MBL-A/C-/- (19.9%), C1qa-/- mice (23.9%) and wild type mice (29%). Deficiency of classical pathway activation has only a low impact whereas the lectin pathway contributes to the host defence against candidosis. The more pronounced lack of complement activation in Bf/C2-/- mice leads to uncontrolled infection due to an opsonophagocytic defect.
Collapse
Affiliation(s)
- Kathrin Held
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg-University Mainz, Augustusplatz/Hochhaus, D-55101 Mainz, Germany
| | | | | | | |
Collapse
|
45
|
Blanco JL, Garcia ME. Immune response to fungal infections. Vet Immunol Immunopathol 2008; 125:47-70. [PMID: 18565595 DOI: 10.1016/j.vetimm.2008.04.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 04/21/2008] [Accepted: 04/25/2008] [Indexed: 12/17/2022]
Abstract
The immune mechanisms of defence against fungal infections are numerous, and range from protective mechanisms that were present early in evolution (innate immunity) to sophisticated adaptive mechanisms that are induced specifically during infection and disease (adaptive immunity). The first-line innate mechanism is the presence of physical barriers in the form of skin and mucous membranes, which is complemented by cell membranes, cellular receptors and humoral factors. There has been a debate about the relative contribution of humoral and cellular immunity to host defence against fungal infections. For a long time it was considered that cell-mediated immunity (CMI) was important, but humoral immunity had little or no role. However, it is accepted now that CMI is the main mechanism of defence, but that certain types of antibody response are protective. In general, Th1-type CMI is required for clearance of a fungal infection, while Th2 immunity usually results in susceptibility to infection. Aspergillosis, which is a disease caused by the fungus Aspergillus, has been the subject of many studies, including details of the immune response. Attempts to relate aspergillosis to some form of immunosuppression in animals, as is the case with humans, have not been successful to date. The defence against Aspergillus is based on recognition of the pathogen, a rapidly deployed and highly effective innate effector phase, and a delayed but robust adaptive effector phase. Candida albicans, part of the normal microbial flora associated with mucous surfaces, can be present as congenital candidiasis or as acquired defects of cell-mediated immunity. Resistance to this yeast is associated with Th1 CMI, whereas Th2 immunity is associated with susceptibility to systemic infection. Dermatophytes produce skin alterations in humans and other animals, and the essential role of the CMI response is to destroy the fungi and produce an immunoprotective status against re-infection. The resolution of the disease is associated with a delayed hypersensitive response. There are many effective veterinary vaccines against dermatophytoses. Malassezia pachydermatis is an opportunistic yeast that needs predisposing factors to cause disease, often related to an atopic status in the animal. Two species can be differentiated within the genus Cryptococcus with immunologic consequences: C. neoformans infects predominantly immunocompromised hosts, and C. gattii infects non-immunocompromised hosts. Pneumocystis is a fungus that infects only immunosupressed individuals, inducing a host defence mechanism similar to that induced by other fungal pathogens, such as Aspergillus.
Collapse
Affiliation(s)
- Jose L Blanco
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | | |
Collapse
|
46
|
Netea MG, Brown GD, Kullberg BJ, Gow NAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008; 6:67-78. [DOI: 10.1038/nrmicro1815] [Citation(s) in RCA: 679] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
48
|
Almeida-Paes R, Pimenta MA, Monteiro PCF, Nosanchuk JD, Zancopé-Oliveira RM. Immunoglobulins G, M, and A against Sporothrix schenckii exoantigens in patients with sporotrichosis before and during treatment with itraconazole. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1149-57. [PMID: 17634504 PMCID: PMC2043312 DOI: 10.1128/cvi.00149-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporotrichosis is an important subcutaneous mycosis, with an increasing worldwide incidence. However, few data are available regarding the immunological aspects of Sporothrix schenckii infection, particularly the humoral responses to the fungus. In this study we measured immunoglobulin G (IgG), IgM, and IgA in sera from 41 patients with sporotrichosis before antifungal treatment and from another 35 patients with sporotrichosis during itraconazole treatment by using a recently described S. schenckii exoantigen enzyme-linked immunosorbent assay (ELISA). More than 95% of patients had detectable IgA antibodies, and more than 85% had IgM and IgG antibodies before treatment. The number of patients with IgG antibodies increased to 91% during treatment. Conversely, significantly fewer samples from treated patients were positive for IgM (71%) and IgA (89%). Overall, 78% of patients had detectable levels of all isotypes tested at diagnosis, and this percentage dropped to 62.9% in patients receiving itraconazole. Testing of all three isotypes improved the sensitivity; at least two isotypes were detected in 93% of patients before and 89% after treatment. The reactivity of 94 sera from patients with other diseases and healthy individuals was also tested. Cross-reactivity occurred in 33% of the heterologous sera. Most of them were positive only in one isotype, 8.5% were positive for at least two isotypes, and only one serum (1.1%) was positive for the three isotypes. Antibodies produced during S. schenckii infection are diverse, and we demonstrate that an exoantigen ELISA for the detection of combinations of IgA, IgG, and IgM antibodies is a highly sensitive and specific diagnostic assay for sporotrichosis.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Serviço de Micologia do Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21045-900, Brazil
| | | | | | | | | |
Collapse
|
49
|
Arseculeratne SN, Atapattu DN, Kumarasiri R, Perera D, Ekanayake D, Rajapakse J. THE USE OF MTT [3-(4, 5-DIMETHYL-2-THIAZOLYL) -2, 5-DIPHENYL - 2H- TETRAZOLIUM BROMIDE]-REDUCTION AS AN INDICATOR OF THE EFFECTS OF STRAIN-SPECIFIC, POLYCLONAL RABBIT ANTISERA ON CANDIDA ALBICANS AND C. KRUSEI. Indian J Med Microbiol 2007. [DOI: 10.1016/s0255-0857(21)02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Sonesson A, Ringstad L, Nordahl EA, Malmsten M, Mörgelin M, Schmidtchen A. Antifungal activity of C3a and C3a-derived peptides against Candida. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:346-53. [PMID: 17169328 DOI: 10.1016/j.bbamem.2006.10.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 10/24/2022]
Abstract
Antimicrobial peptides are generated during activation of the complement system [Nordahl et al. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:16879-16884]. Here we show that the anaphylatoxin C3a exerts antimicrobial effects against the yeast Candida. Fluorescence microscopy and electron microscopy analysis demonstrated that C3a-derived peptides bound to the cell surface of Candida, and induced membrane perturbations and release of extracellular material. Various Candida isolates were found to induce complement degradation, leading to generation of C3a. Arginine residues were found to be critical for the antifungal and membrane breaking activity of a C3a-derived antimicrobial peptide, CNY21 (C3a; Cys57-Arg77). A CNY21 variant with increased positive net charge displayed enhanced antifungal activity. Thus, C3a-derived peptides can be utilized as templates in the development of peptide-based antifungal therapies.
Collapse
Affiliation(s)
- Andreas Sonesson
- Department of Clinical Sciences, Section of Dermatology and Venereology, Lund University, Biomedical Center, Tornavägen 10, SE-22184 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|