1
|
Wu SJ, Ewing D, Sundaram AK, Chen HW, Liang Z, Cheng Y, Jani V, Sun P, Gromowski GD, De La Barrera RA, Schilling MA, Petrovsky N, Porter KR, Williams M. Enhanced Immunogenicity of Inactivated Dengue Vaccines by Novel Polysaccharide-Based Adjuvants in Mice. Microorganisms 2022; 10:microorganisms10051034. [PMID: 35630476 PMCID: PMC9146336 DOI: 10.3390/microorganisms10051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Dengue fever, caused by any of four dengue viruses (DENV1-4), is a major global burden. Currently, there is no effective vaccine that prevents infection in dengue naïve populations. We tested the ability of two novel adjuvants (Advax-PEI and Advax-2), using aluminum hydroxide (alum) as control, to enhance the immunogenicity of formalin- or psoralen-inactivated (PIV or PsIV) DENV2 vaccines in mice. Mice were vaccinated on days 0 and 30, and serum samples were collected on days 30, 60, 90, and 101. Neutralizing antibodies were determined by microneutralization (MN) assays, and the geometric mean 50% MN (MN50) titers were calculated. For the PIV groups, after one dose MN50 titers were higher in the novel adjuvant groups compared to the alum control, while MN50 titers were comparable between the adjuvant groups after the second dose. For the PsIV groups, both novel adjuvants induced higher MN50 titers than the alum control after the second dose. Spleen cells were collected on days 45 and 101 for enzyme-linked immunospot (ELISPOT) for IFNγ and IL4. Both PIV and PsIV groups elicited different degrees of IFNγ and IL4 responses. Overall, Advax-2 gave the best responses just ahead of Advax-PEI. Given Advax-2’s extensive human experience in other vaccine applications, it will be pursued for further development.
Collapse
Affiliation(s)
- Shuenn-Jue Wu
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Correspondence:
| | - Dan Ewing
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Appavu K. Sundaram
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua-Wei Chen
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Zhaodong Liang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ying Cheng
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Vihasi Jani
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Peifang Sun
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Rafael A. De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Megan A. Schilling
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kevin R. Porter
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (K.R.P.); (M.W.)
| | - Maya Williams
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (K.R.P.); (M.W.)
| |
Collapse
|
2
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Feng F, Ataca ST, Ran M, Wang Y, Breen M, Kepler TB. Gain-Scanning for Protein Microarray Assays. J Proteome Res 2020; 19:2664-2675. [PMID: 31928020 DOI: 10.1021/acs.jproteome.9b00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein microarrays consist of known proteins spotted onto solid substrates and are used to perform highly multivariate assessments of protein-binding interactions. Human protein arrays are routinely applied to pathogen detection, immune response biomarker profiling, and antibody specificity profiling. Here, we describe and demonstrate a new data processing procedure, gain-scan, in which data were acquired under multiple photomultiplier tube (PMT) settings, followed by data fitting with a power function model to estimate the incident light signals of the array spots. Data acquisition under multiple PMT settings solves the difficulty of determining the single optimal PMT gain setting and allows us to maximize the detection of low-intensity signals while avoiding the saturation of high-intensity ones at the same time. The gain-scan data acquisition and fitting also significantly lower the variances over the detectable range of signals and improve the linear data normalization. The performance of the proposed procedure was verified by analyzing the profiling data of both the human polyclonal serum samples and the monoclonal antibody samples with both technical replicates and biological replicates. We showed that the multigain power function was an appropriate model for describing data acquired under multiple PMT settings. The gain-scan fitting alone or in combination with the linear normalization could effectively reduce the technical variability of the array data and lead to better sample separability and more sensitive differential analysis.
Collapse
Affiliation(s)
- Feng Feng
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Sila Toksoz Ataca
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Mingxuan Ran
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Yumei Wang
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Michael Breen
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States.,Department of Mathematics & Statistics, Boston University, Boston, Massachusetts 02118, United States
| |
Collapse
|
4
|
Keasey SL, Smith JL, Fernandez S, Durbin AP, Zhao BM, Ulrich RG. Impact of Dengue Virus Serotype 2 Strain Diversity on Serological Immune Responses to Dengue. ACS Infect Dis 2018; 4:1705-1717. [PMID: 30347144 DOI: 10.1021/acsinfecdis.8b00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue is a mosquito-borne disease caused by four dengue virus serotypes (DENV1-4) that are loosely categorized by sequence commonalities and antibody recognition profiles. The highly variable envelope protein (E) that is prominently displayed on the surface of DENV is an essential component of vaccines currently under development, yet the impact of using single strains to represent each serotype in tetravalent vaccines has not been adequately studied. We synthesized chimeric E by replacing highly variable residues from a dengue virus serotype 2 vaccine strain (PUO-218) with those from 16 DENV2 lineages spanning 60 years of antigen evolution. Examining sera from human and rhesus macaques challenged with single strains of DENV2, antibody-E interactions were markedly inhibited or enhanced by residues mainly focused within a 480 Å2 footprint displayed on the E backbone. The striking impact of E diversity on polyclonal immune responses suggests that frequent antigen updates may be necessary for vaccines to counter shifts in circulating strains.
Collapse
Affiliation(s)
- Sarah L. Keasey
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jessica L. Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway, Room 251, Baltimore, Maryland 21205, United States
| | - Bryan M. Zhao
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| |
Collapse
|
5
|
Smith JL, Pugh CL, Cisney ED, Keasey SL, Guevara C, Ampuero JS, Comach G, Gomez D, Ochoa-Diaz M, Hontz RD, Ulrich RG. Human Antibody Responses to Emerging Mayaro Virus and Cocirculating Alphavirus Infections Examined by Using Structural Proteins from Nine New and Old World Lineages. mSphere 2018; 3:e00003-18. [PMID: 29577083 PMCID: PMC5863033 DOI: 10.1128/msphere.00003-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Mayaro virus (MAYV), Venezuelan equine encephalitis virus (VEEV), and chikungunya virus (CHIKV) are vector-borne alphaviruses that cocirculate in South America. Human infections by these viruses are frequently underdiagnosed or misdiagnosed, especially in areas with high dengue virus endemicity. Disease may progress to debilitating arthralgia (MAYV, CHIKV), encephalitis (VEEV), and death. Few standardized serological assays exist for specific human alphavirus infection detection, and antigen cross-reactivity can be problematic. Therefore, serological platforms that aid in the specific detection of multiple alphavirus infections will greatly expand disease surveillance for these emerging infections. In this study, serum samples from South American patients with PCR- and/or isolation-confirmed infections caused by MAYV, VEEV, and CHIKV were examined by using a protein microarray assembled with recombinant capsid, envelope protein 1 (E1), and E2 from nine New and Old World alphaviruses. Notably, specific antibody recognition of E1 was observed only with MAYV infections, whereas E2 was specifically targeted by antibodies from all of the alphavirus infections investigated, with evidence of cross-reactivity to E2 of o'nyong-nyong virus only in CHIKV-infected patient serum samples. Our findings suggest that alphavirus structural protein microarrays can distinguish infections caused by MAYV, VEEV, and CHIKV and that this multiplexed serological platform could be useful for high-throughput disease surveillance. IMPORTANCE Mayaro, chikungunya, and Venezuelan equine encephalitis viruses are closely related alphaviruses that are spread by mosquitos, causing diseases that produce similar influenza-like symptoms or more severe illnesses. Moreover, alphavirus infection symptoms can be similar to those of dengue or Zika disease, leading to underreporting of cases and potential misdiagnoses. New methods that can be used to detect antibody responses to multiple alphaviruses within the same assay would greatly aid disease surveillance efforts. However, possible antibody cross-reactivity between viruses can reduce the quality of laboratory results. Our results demonstrate that antibody responses to multiple alphaviruses can be specifically quantified within the same assay by using selected recombinant protein antigens and further show that Mayaro virus infections result in unique responses to viral envelope proteins.
Collapse
Affiliation(s)
- Jessica L. Smith
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christine L. Pugh
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Emily D. Cisney
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Sarah L. Keasey
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
- Department of Biology, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | | | | | - Guillermo Comach
- Laboratorio Regional de Diagnostico e Investigación del Dengue y Otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomédicas de la Universidad de Carabobo (BIOMED.UC), Maracay, Aragua, Venezuela
| | - Doris Gomez
- Universidad de Cartagena, Doctorado en Medicina Tropical, Grupo UNIMOL, Cartagena, Colombia
| | - Margarita Ochoa-Diaz
- Universidad de Cartagena, Doctorado en Medicina Tropical, Grupo UNIMOL, Cartagena, Colombia
| | - Robert D. Hontz
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
6
|
Diaz C, Lin L, Martinez LJ, Eckels KH, Campos M, Jarman RG, De La Barrera R, Lepine E, Toussaint JF, Febo I, Innis BL, Thomas SJ, Schmidt AC. Phase I Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults from Puerto Rico. Am J Trop Med Hyg 2018; 98:1435-1443. [PMID: 29512481 PMCID: PMC5953365 DOI: 10.4269/ajtmh.17-0627] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The safety and immunogenicity of four adjuvanted formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV) were evaluated in a predominantly dengue-primed population in Puerto Rico. In this placebo-controlled, randomized, observer-blind, phase I trial, 100 healthy adults were randomized 1:1:1:1:1 to receive DPIV at Day (D)0 and D28 (1 μg per dengue virus [DENV] type 1–4 adjuvanted with either alum, AS01E or AS03B, or 4 μg per DENV type adjuvanted with alum) or saline placebo. Functional antibody responses were assessed using a microneutralization assay at D56, Month (M)7, and M13. All DPIV formulations were well tolerated and no safety signals were identified through M13. The M13 according-to-protocol (ATP) immunogenicity cohort included 83 participants. The ATP analysis of immunogenicity was performed only on the 78 subjects seropositive for ≥ 1 DENV type at baseline: 69 tetravalent, three trivalent, two bivalent, and four monovalent. In all DPIV groups, geometric mean antibody titers (GMTs) increased from D0 to D56 and waned modestly through M13, while remaining well above prevaccination levels. The 4 μg + alum and the AS01E- and AS03B-adjuvanted formulations were highly immunogenic, with M13-neutralizing antibody GMTs against all four DENV types above 1,000. M13/D0 GMT ratios were highest in the 1 μg + AS03B group (ranging 3.2–3.7 depending on the DENV type). These results encourage continued clinical development of DPIV (ClinicalTrials.gov: NCT01702857).
Collapse
Affiliation(s)
- Clemente Diaz
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Leyi Lin
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Luis J Martinez
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Maribel Campos
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | | | | | - Irma Febo
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | | |
Collapse
|
7
|
Schmidt AC, Lin L, Martinez LJ, Ruck RC, Eckels KH, Collard A, De La Barrera R, Paolino KM, Toussaint JF, Lepine E, Innis BL, Jarman RG, Thomas SJ. Phase 1 Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults in the United States. Am J Trop Med Hyg 2017; 96:1325-1337. [PMID: 28719287 PMCID: PMC5462566 DOI: 10.4269/ajtmh.16-0634] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The safety and immunogenicity of four formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV), formulated at 1 or 4 μg with aluminum hydroxide (alum) or at 1 μg with an adjuvant system (AS01E or AS03B), were evaluated in a first-time-in-human, placebo-controlled, randomized, observer-blind, phase 1 trial in the continental United States. Two doses of vaccine or placebo were administered intramuscularly 4 weeks apart to 100 healthy adults 18–39 years of age, randomized 1:1:1:1:1 to receive one of four DPIV formulations or saline placebo. The response to a third dose was evaluated in a subset of nine participants remote from primary vaccination. Humoral immunogenicity was assessed using a 50% microneutralization assay. All DPIV formulations were well tolerated. No vaccine-related serious adverse events were observed through 12 months after the second vaccine dose. In all DPIV groups, geometric mean antibody titers peaked at Day 56, waned through 6 months after the second vaccine dose, and then stabilized. In the nine subjects where boosting was evaluated, a strong anamnestic response was observed. These results support continuation of the clinical development of this dengue vaccine candidate (clinicaltrials.gov: NCT01666652).
Collapse
Affiliation(s)
| | - Leyi Lin
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Luis J Martinez
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Richard C Ruck
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Keasey SL, Pugh CL, Jensen SMR, Smith JL, Hontz RD, Durbin AP, Dudley DM, O'Connor DH, Ulrich RG. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00036-17. [PMID: 28228395 PMCID: PMC5382833 DOI: 10.1128/cvi.00036-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/18/2017] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics.
Collapse
Affiliation(s)
- Sarah L Keasey
- Department of Biology, University of Maryland-Baltimore County, Baltimore, Maryland, USA
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christine L Pugh
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Stig M R Jensen
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jessica L Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Robert D Hontz
- Naval Medical Research Center, Silver Spring, Maryland, USA, and U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert G Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
9
|
Qi H, Zhou H, Czajkowsky DM, Guo S, Li Y, Wang N, Shi Y, Lin L, Wang J, Wu D, Tao SC. Rapid Production of Virus Protein Microarray Using Protein Microarray Fabrication through Gene Synthesis (PAGES). Mol Cell Proteomics 2016; 16:288-299. [PMID: 27965274 PMCID: PMC5294215 DOI: 10.1074/mcp.m116.064873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Indexed: 01/19/2023] Open
Abstract
The high genetic variability of RNA viruses is a significant factor limiting the discovery of effective biomarkers, the development of vaccines, and characterizations of the immune response during infection. Protein microarrays have been shown to be a powerful method in biomarker discovery and the identification of novel protein–protein interaction networks, suggesting that this technique could also be very useful in studies of infectious RNA viruses. However, to date, the amount of genetic material required to produce protein arrays, as well as the time- and labor-intensive procedures typically needed, have limited their more widespread application. Here, we introduce a method, protein microarray fabrication through gene synthesis (PAGES), for the rapid and efficient construction of protein microarrays particularly for RNA viruses. Using dengue virus as an example, we first identify consensus sequences from 3,604 different strains and then fabricate complete proteomic microarrays that are unique for each consensus sequence. To demonstrate their applicability, we show that these microarrays can differentiate sera from patients infected by dengue virus, related pathogens, or from uninfected patients. We anticipate that the microarray and expression library constructed in this study will find immediate use in further studies of dengue virus and that, more generally, PAGES will become a widely applied method in the clinical characterization of RNA viruses.
Collapse
Affiliation(s)
- Huan Qi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Huiqiong Zhou
- §Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, No. 160, Quanxian Road, Dashi Street, Panyu District, Guangzhou, 511430, China
| | | | - Shujuan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Yang Li
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Nan Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education.,‖National Research Institute for Health and Family Planning, No.12 Dahuisi Road, Haidian District, Beijing, 100081, China
| | - Yi Shi
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - Lifeng Lin
- §Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, No. 160, Quanxian Road, Dashi Street, Panyu District, Guangzhou, 511430, China
| | - Jingfang Wang
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education
| | - De Wu
- §Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guangdong, No. 160, Quanxian Road, Dashi Street, Panyu District, Guangzhou, 511430, China.,**State Key Laboratory of Oncogenes and Related Genes,Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education, .,¶School of Biomedical Engineering.,**State Key Laboratory of Oncogenes and Related Genes,Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
10
|
Sun P, Morrison BJ, Beckett CG, Liang Z, Nagabhushana N, Li A, Porter KR, Williams M. NK cell degranulation as a marker for measuring antibody-dependent cytotoxicity in neutralizing and non-neutralizing human sera from dengue patients. J Immunol Methods 2016; 441:24-30. [PMID: 27856192 DOI: 10.1016/j.jim.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/26/2016] [Accepted: 11/12/2016] [Indexed: 11/30/2022]
Abstract
The study assessed antibody-dependent NK cell degranulation, a biomarker relevant to antibody-dependent cell cytotoxicity (ADCC), to analyze dengue immune sera. We first determined binding intensity of patient sera to the surface of DENV-infected cells and examined the types of antigens expressed on infected cells. Antigens from pre-membrane (PreM) and envelope (E), but not from NS proteins were detected on the surface of infected cells. After adding NK cells to infected target cells previously treated with patient sera, rapid NK cell degranulation was observed. Non-neutralizing patient sera generated comparable NK cell degranulation as that of neutralizing sera, suggesting ADCC may be a protective mechanism apart from Ab neutralization. The level of NK cell degranulation varied dramatically among human individuals and was associated with the level of CD16 expression on NK cells, informing on the complexity of ADCC among human population.
Collapse
Affiliation(s)
| | | | | | | | | | - An Li
- University of Maryland College Park, United States
| | | | | |
Collapse
|
11
|
Novara C, Lamberti A, Chiadò A, Virga A, Rivolo P, Geobaldo F, Giorgis F. Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Adv 2016. [DOI: 10.1039/c5ra26746c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An elastomeric microfluidic chip integrating SERS active silver-coated porous silicon membranes is developed, which performs label free and calibrated SERS analysis in a multi-analyte configuration.
Collapse
Affiliation(s)
- Chiara Novara
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| | - Andrea Lamberti
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| | - Alessandro Virga
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| | - Paola Rivolo
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| | - Francesco Geobaldo
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| | - Fabrizio Giorgis
- Department of Applied Science and Technology
- Politecnico di Torino
- Torino
- Italy
| |
Collapse
|
12
|
Fernandez S, Thomas SJ, De La Barrera R, Im-erbsin R, Jarman RG, Baras B, Toussaint JF, Mossman S, Innis BL, Schmidt A, Malice MP, Festraets P, Warter L, Putnak JR, Eckels KH. An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in rhesus macaques. Am J Trop Med Hyg 2015; 92:698-708. [PMID: 25646261 PMCID: PMC4385761 DOI: 10.4269/ajtmh.14-0268] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/04/2014] [Indexed: 11/07/2022] Open
Abstract
The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented viremia after challenge, with the dengue serotype 1 and 2 virus strains administered at 40 and 32 weeks post-dose 2, respectively. This study shows that inactivated dengue vaccines, when formulated with alum or an Adjuvant System, are candidates for further development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kenneth H. Eckels
- *Address correspondence to Kenneth H. Eckels, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20910. E-mail:
| |
Collapse
|
13
|
Determination of specific antibody responses to the six species of ebola and Marburg viruses by multiplexed protein microarrays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1605-12. [PMID: 25230936 DOI: 10.1128/cvi.00484-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses.
Collapse
|
14
|
Céspedes N, Vallejo A, Arévalo-Herrera M, Herrera S. Malaria vaccines: high-throughput tools for antigens discovery with potential for their development. Colomb Med (Cali) 2013; 44:121-8. [PMID: 24892459 PMCID: PMC4002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/20/2012] [Accepted: 01/15/2013] [Indexed: 11/17/2022] Open
Abstract
Malaria is a disease induced by parasites of the Plasmodium genus, which are transmitted by Anopheles mosquitoes and represents a great socio-economic burden Worldwide. Plasmodium vivax is the second species of malaria Worldwide, but it is the most prevalent in Latin America and other regions of the planet. It is currently considered that vaccines represent a cost-effective strategy for controlling transmissible diseases and could complement other malaria control measures; however, the chemical and immunological complexity of the parasite has hindered development of effective vaccines. Recent availability of several genomes of Plasmodium species, as well as bioinformatic tools are allowing the selection of large numbers of proteins and analysis of their immune potential. Herein, we review recently developed strategies for discovery of novel antigens with potential for malaria vaccine development.
Collapse
|
15
|
Surface-activated microtiter-plate microarray for simultaneous CRP quantification and viral antibody detection. Diagn Microbiol Infect Dis 2012; 75:174-9. [PMID: 23219230 DOI: 10.1016/j.diagmicrobio.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 11/23/2022]
Abstract
Microarrays are widely used in high-throughput DNA and RNA hybridization tests and recently adopted to protein and small molecule interaction studies in basic research and diagnostics. Parallel detection of serum antibodies and antigens has several potential applications in epidemiologic research, vaccine development, and in the diagnosis of allergies, autoimmunity, and infectious diseases. This study demonstrates an immobilization method for immunoassay-based microarray in conventional 96-well polystyrene plates for a serologic diagnostic method combined with quantitative C-reactive protein (CRP) assay. A synthetic peptide (HIV-1), a recombinant protein (Puumala hantavirus nucleocapsid), and purified virus preparations (Sindbis and adenoviruses) were used as antigens for virus-specific antibody detection and monoclonal anti-CRP antibody for antigen detection. The microarray was based on conventional enzyme immunoassays and densitometry from photographed results. Peptide and recombinant antigens functioned well, while whole virus antigens gave discrepant results in 1 out of 23 samples from the reference method, tested with human sera with various antibody responses. The CRP results were in concordance in the concentration range 0.5-150 mg/L with 2 commercially available CRP assays: ReaScan rapid test (R(2) = 0.9975) and Cobas 6000 analyzer (R(2) =0.9595). The results indicate that microtiter plates provide a promising platform for further development of microarrays for parallel antibody and antigen detection.
Collapse
|