1
|
Eissa MM, Salem AE, El Skhawy N. Parasites revive hope for cancer therapy. Eur J Med Res 2024; 29:489. [PMID: 39367471 PMCID: PMC11453045 DOI: 10.1186/s40001-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Parasites have attained a life-long stigma of being detrimental organisms with deleterious outcomes. Yet, recently, a creditable twist was verified that can dramatically change our perception of those parasites from being a source of misery to millions of people to a useful anti-cancerous tool. Various parasites have shown promise to combat cancer in different experimental models, including colorectal, lung, and breast cancers, among others. Helminths and protozoan parasites, as well as their derivatives such as Echinococcus granulosus protein KI-1, Toxoplasma gondii GRA15II, and Trypanosoma cruzi calreticulin, have demonstrated the ability to inhibit tumor growth, angiogenesis, and metastasis. This article provides an overview of the literature on various cancer types that have shown promising responses to parasite therapy in both in vitro and in vivo animal studies. Parasites have shown anti-neoplastic activity through a variety of mechanisms that collectively contribute to their anti-cancer properties. These include immunomodulation, inhibition of angiogenesis, and molecular mimicry with cancer cells. This review article sheds light on this intriguing emerging field and emphasizes the value of collaborative multidisciplinary research projects with funding agencies and pharmaceutical companies. Thus, these strategies would secure continuous exploration of this new avenue and accelerate the advancement of cancer therapy research. Although experimental studies are heavily conducted by leaps and bounds, further steps are definitely lagging. Upgrading research from the experimental level to the clinical trial would be a wise progression toward efficient exploitation of the anti-neoplastic capabilities of parasites, ultimately saving countless lives.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ahmed Ebada Salem
- Department of Radiology and Nuclear Medicine, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 48123, USA
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Walter NS, Bhattacharyya S. Mining parasites for their potential as novel therapeutic agents against cancer. Med Oncol 2024; 41:211. [PMID: 39073638 DOI: 10.1007/s12032-024-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Despite recent advances in the management and therapeutic of cancer, the treatment of the disease is limited by its high cost and severe side effects. In this scenario, there is an unmet need to identify novel treatment alternatives for this dreaded disease. Recently there is growing evidence that parasites may cause anticancer effects because of a negative correlation between parasitic infections and tumour growth despite some parasites that are known to exhibit pro-carcinogenic effects. It has been observed that parasites exert an anticancer effect either by activating the host's immune response or by secreting certain molecules that exhibit anticancer potential. The activation of the immune response by these parasitic organisms results in the inhibition of some of the hallmarks of cancer such as tumour proliferation, angiogenesis, and metastasis. This review summarizes the current advances as well as the mechanisms underlying the possible implications of this diverse group of organisms as anticancer agents.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
3
|
Zheng Z, Lu X, Zhou D, Deng XF, Liu QX, Liu XB, Zhang J, Li YQ, Zheng H, Dai JG. A novel enemy of cancer: recent investigations into protozoan anti-tumor properties. Front Cell Infect Microbiol 2024; 13:1325144. [PMID: 38274735 PMCID: PMC10808745 DOI: 10.3389/fcimb.2023.1325144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer remains a significant global health issue, despite advances in screening and treatment. While existing tumor treatment protocols such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy have proven effective in enhancing the prognosis for some patients, these treatments do not benefit all patients. Consequently, certain types of cancer continue to exhibit a relatively low 5-year survival rate. Therefore, the pursuit of novel tumor intervention strategies may help improve the current effectiveness of tumor treatment. Over the past few decades, numerous species of protozoa and their components have exhibited anti-tumor potential via immune and non-immune mechanisms. This discovery introduces a new research direction for the development of new and effective cancer treatments. Through in vitro experiments and studies involving tumor-bearing mice, the anti-tumor ability of Toxoplasma gondii, Plasmodium, Trypanosoma cruzi, and other protozoa have unveiled diverse mechanisms by which protozoa combat cancer, demonstrating encouraging prospects for their application. In this review, we summarize the anti-tumor ability and anti-tumor mechanisms of various protozoa and explore the potential for their clinical development and application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third Military) Medical University, Chongqing, China
| | - Ji-gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third Military) Medical University, Chongqing, China
| |
Collapse
|
4
|
Chen J, Liao W, Peng H. Toxoplasma gondii infection possibly reverses host immunosuppression to restrain tumor growth. Front Cell Infect Microbiol 2022; 12:959300. [PMID: 36118042 PMCID: PMC9470863 DOI: 10.3389/fcimb.2022.959300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells can successfully escape the host immune attack by inducing the production of immunosuppressive cells and molecules, leading to an ineffective tumor treatment and poor prognosis. Although immunotherapies have improved the survival rate of cancer patients in recent years, more effective drugs and therapies still need to be developed. As an intracellular parasite, Toxoplasma gondii can trigger a strong Th1 immune response in host cells, including upregulating the expression of interleukin-12 (IL-12) and interferon-γ (IFN-γ). Non-replicating uracil auxotrophic strains of T. gondii were used to safely reverse the immunosuppression manipulated by the tumor microenvironment. In addition to the whole lysate antigens, T. gondii-secreted effectors, including Toxoplasma profilin, rhoptry proteins (ROPs), and dense granule antigens (GRAs), are involved in arousing the host’s antigen presentation system to suppress tumors. When T. gondii infection relieves immunosuppression, tumor-related myeloid cells, including macrophages and dendritic cells (DCs), are transformed into immunostimulatory phenotypes, showing a powerful Th1 immune response mediated by CD8+ T cells. Afterwards, they target and kill the tumor cells, and ultimately reduce the size and weight of tumor tissues. This article reviews the latest applications of T. gondii in tumor therapy, including the activation of cellular immunity and the related signal pathways, which will help us understand why T. gondii infection can restrain tumor growth.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Wenzhong Liao
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| | - HongJuan Peng
- Department of Pathogen Biology, School of Public Health, Guangdong Provincial Key laboratory of Tropical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Huang H, Yang W, Hu J, Jiang Y, Wang J, Shi C, Kang Y, Wang D, Wang C, Yang G. Antitumour metastasis and the antiangiogenic and antitumour effects of a Eimeria stiedae soluble protein. Parasite Immunol 2021; 43:e12825. [PMID: 33507547 DOI: 10.1111/pim.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/04/2023]
Abstract
Some protozoa (Plasmodium falciparum, Toxoplasma gondii, etc) are used to treat cancer because they can improve tumour-induced immunosuppression. This study aims to evaluate the antitumour effect of Eimeria stiedae oocyst soluble protein (ESSP). ESSP was extracted, and mice were injected with 5 × 105 CT26 cells in the right axilla, and then, 50 μg of ESSP was intraperitoneally injected for 5 continuous days. The effect of ESSP on tumour immunity was detected by flow cytometry 25 days after the CT26 inoculation. The results showed that ESSP can inhibit the growth of CT26 subcutaneous tumours; significantly increase the expression of MHC I, MHC II, CD80 and CD86 on the surface of splenic dendritic cells; and enhance the level of IL-12 secretion. ESSP induced an increase in the number of NK cells in the mouse spleen, and the levels of IFN-γ and CD107 were upregulated in the NK cells and CD8+ T cells. The number of metastatic nodules in the lung tumours in the mice was significantly reduced, and the number of tubes, area of the loops and total length of the tubes were significantly reduced. ESSP enhances the antitumour immune response and inhibits tumour growth, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuanhuan Kang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Belderbos RA, Aerts JGJV, Vroman H. Enhancing Dendritic Cell Therapy in Solid Tumors with Immunomodulating Conventional Treatment. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:67-81. [PMID: 31020037 PMCID: PMC6475716 DOI: 10.1016/j.omto.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells and are the key initiator of tumor-specific immune responses. These characteristics are exploited by DC therapy, where DCs are ex vivo loaded with tumor-associated antigens (TAAs) and used to induce tumor-specific immune responses. Unfortunately, clinical responses remain limited to a proportion of the patients. Tumor characteristics and the immunosuppressive tumor microenvironment (TME) of the tumor are likely hampering efficacy of DC therapy. Therefore, reducing the immunosuppressive TME by combining DC therapy with other treatments could be a promising strategy. Initially, conventional cancer therapies, such as chemotherapy and radiotherapy, were thought to specifically target cancerous cells. Recent insights indicate that these therapies additionally augment tumor immunity by targeting immunosuppressive cell subsets in the TME, inducing immunogenic cell death (ICD), or blocking inhibitory molecules. Therefore, combining DC therapy with registered therapies such as chemotherapy, radiotherapy, or checkpoint inhibitors could be a promising treatment strategy to improve the efficacy of DC therapy. In this review, we evaluate various clinical applicable combination strategies to improve the efficacy of DC therapy.
Collapse
Affiliation(s)
- Robert A Belderbos
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Erasmus MC Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Erasmus MC Rotterdam, the Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, the Netherlands.,Erasmus MC Cancer Institute, Erasmus MC Rotterdam, the Netherlands
| |
Collapse
|
7
|
Callejas BE, Martínez-Saucedo D, Terrazas LI. Parasites as negative regulators of cancer. Biosci Rep 2018; 38:BSR20180935. [PMID: 30266743 PMCID: PMC6200699 DOI: 10.1042/bsr20180935] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022] Open
Abstract
Several environmental factors (chemical, physical, and biological) can cause the initiation, promotion, and progression of cancer. Regarding the biological factors, several studies have found that infections caused by some bacteria, viruses and protozoan, and helminth parasites are related to carcinogenesis. However, in recent years a different approach has been implemented on the antitumor impact of parasitic diseases caused by some protozoan and helminths, mainly because such infections may affect several hallmarks of cancer, but the involved mechanisms still remain unknown. The beneficial effects reported for some parasitic diseases on tumorigenesis range from the induction of apoptosis, activation of the immune response, avoiding metastasis and angiogenesis, inhibition of proliferative signals, to the regulation of inflammatory responses that promote cancer. In this work, we reviewed the available information regarding how parasitic infections may modulate cancer progression. Despite the fact that specific mechanisms of action on tumors are not yet totally clear, we consider that detailed studies of the antitumor action of these organisms and their products could lead to the discovery and use of new molecules from these biological agents that may work as adjuvant therapy in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Blanca E Callejas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Diana Martínez-Saucedo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| | - Luis I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, México
| |
Collapse
|
8
|
Gao C, Zhang X, Chen J, Zhao J, Liu Y, Zhang J, Wang J. Utilizing the nanosecond pulse technique to improve antigen intracellular delivery and presentation to treat tongue squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2018; 23:e344-e350. [PMID: 29680844 PMCID: PMC5945238 DOI: 10.4317/medoral.22227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
Background Tongue squamous cell carcinoma is the most common squamous cell carcinoma of the head and neck. Immunotherapy has great potential in the treatment of tongue squamous cell carcinoma because of its unique advantages. However, the efficacy of immunotherapy is limited by the efficiency of antigen phagocytosis by immune cells. Material and Methods We extracted dendritic cells (DCs) from human peripheral blood. Utilizing a nanosecond pulsed electric field (nsPEF), we deliver the tumour lysate protein into DCs and then incubate the DCs with PBMCs to obtain specific T cells to kill tumour cells. The biosafety of nsPEF was evaluated by the ANNEXIN V-FITC/PI kit. The efficacy of lysate protein delivery was evaluated by flow cytometry. The antitumour efficacy was tested by CCK-8 assay. Results The nsPEF of the appropriate field strength can significantly improve the phagocytic ability of DCs to tumour lysing proteins and have good biosafety. The tumour cell killing rate of the nsPEF group was higher than the other group (p< 0.05). Conclusions Utilizing nsPEF to improve the phagocytic and presenting ability of DCs could greatly activate the adaptive immune cells to enhance the immunotherapeutic effect on tongue squamous cell carcinoma. Key words:Dendritic cell, nsPEF, immunotherapy, squamous cell carcinoma.
Collapse
Affiliation(s)
- C Gao
- Department of Periodontology, School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China,
| | | | | | | | | | | | | |
Collapse
|
9
|
Vittecoq M, Thomas F. [Toxoplasmosis and cancer: Current knowledge and research perspectives]. ACTA ACUST UNITED AC 2016; 110:76-79. [PMID: 27586960 DOI: 10.1007/s13149-016-0518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/25/2016] [Indexed: 12/01/2022]
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, is one of the most prevalent parasitic diseases; it is estimated to affect a third of the world's human population. Many studies showed that latent toxoplasmosis may cause in some patients significant adverse effects including schizophrenia and bipolar disorders. In addition, two recent studies highlighted a positive correlation between the prevalence of brain tumors and that of T. gondii at national and international scale. These studies are correlative, thus they do not demonstrate a causal link between T. gondii and brain tumors. Yet, they call for further research that could shed light on the possible mechanisms underlying this association.
Collapse
Affiliation(s)
- M Vittecoq
- Tour du Valat, Institut de recherche pour la conservation des zones humides méditerranéennes, Arles, France. .,UMR (CNRS/IRD/UM) 5290 MIVEGEC, Maladies infectieuses et vecteurs, génétique, évolution et contrôle, Montpellier, France. .,CREEC, Centre de recherches écologiques et évolutives sur le cancer, Montpellier, France.
| | - F Thomas
- UMR (CNRS/IRD/UM) 5290 MIVEGEC, Maladies infectieuses et vecteurs, génétique, évolution et contrôle, Montpellier, France.,CREEC, Centre de recherches écologiques et évolutives sur le cancer, Montpellier, France
| |
Collapse
|
10
|
Mirzaei R, Saei A, Torkashvand F, Azarian B, Jalili A, Noorbakhsh F, Vaziri B, Hadjati J. Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation. Tumour Biol 2016; 37:10893-907. [PMID: 26886282 DOI: 10.1007/s13277-016-4933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/28/2016] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that can promote antitumor immunity when pulsed with tumor antigens and then matured by stimulatory agents. Despite apparent progress in DC-based cancer immunotherapy, some discrepancies were reported in generating potent DCs. Listeria monocytogenes as an intracellular microorganism is able to effectively activate DCs through engaging pattern-recognition receptors (PRRs). This study aimed to find the most potent components derived from L. monocytogenes inducing DC maturation. The preliminary results demonstrated that the ability of protein components is higher than DNA components to promote DC maturation and activation. Protein lysate fractionation demonstrated that fraction 2 HIC (obtained by hydrophobic interaction chromatography) was able to efficiently mature DCs. F2HIC-matured DCs are able to induce allogeneic CD8(+) T cells proliferation better than LPS-matured DCs and induce IFN-γ producing CD8(+) T cells. Mass spectrometry results showed that F2HIC contains 109 proteins. Based on the bioinformatics analysis for these 109 proteins, elongation factor Tu (EF-Tu) could be considered as a PRR ligand for stimulating DC maturation.
Collapse
Affiliation(s)
- Reza Mirzaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Azad Saei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Fatemeh Torkashvand
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Azarian
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Jalili
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Farshid Noorbakhsh
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran.
| |
Collapse
|
11
|
Boghozian R, Saei A, Mirzaei R, Jamali A, Vaziri B, Razavi A, Hadjati J. Identification of Toxoplasma gondii protein fractions induce immune response against melanoma in mice. APMIS 2015; 123:800-9. [PMID: 26152792 DOI: 10.1111/apm.12420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the initiation of adaptive immune responses against tumor cells. We recently found that protein components of Toxoplasma gondii (T. gondii) could mature DCs efficiently. Therefore, in this study, we aimed to find the most effective protein components of T. gondii which are able to mature DCs and consequently instruct immune responses in tumor-bearing mice. Soluble tachyzoite antigens (STAgs) were fractionated by ammonium sulfate precipitation and subsequently by anion-exchange HPLC. Immature DCs (iDCs) were treated by these protein fractions and were monitored for IL-12p70 and IL-10 production. Moreover, the capacity of mature DCs (mDCs) to induce lymphocyte proliferation was investigated. Ultimately, we analyzed the ability of mDCs in instructing immune responses in tumor-bearing mice. We found that ammonium sulfate fraction one (A1) matured-DCs produced higher IL-12 level and IL-12/IL-10 ratio; therefore, this fraction was selected for further fractionation by anion-exchange HPLC. The results showed that anion-exchange HPLC fraction 14 (C14) matured-DCs secrete higher levels of IL-12p70 and IL-12p70/IL-10 ratio. Survival of the mice matured by A1 fraction increased significantly compared to other groups. Moreover, SDS-PAGE electrophoresis showed that different obtained fractions have distinct proteins based on their size. These results demonstrate that two protein fractions of T. gondii are able to mature DCs more efficient.
Collapse
Affiliation(s)
- Roobina Boghozian
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azad Saei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Jamali
- Department of Laboratory Sciences, School of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Baird JR, Fox BA, Sanders KL, Lizotte PH, Cubillos-Ruiz JR, Scarlett UK, Rutkowski MR, Conejo-Garcia JR, Fiering S, Bzik DJ. Avirulent Toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res 2013; 73:3842-51. [PMID: 23704211 DOI: 10.1158/0008-5472.can-12-1974] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversing tumor-associated immunosuppression seems necessary to stimulate effective therapeutic immunity against lethal epithelial tumors. Here, we show this goal can be addressed using cps, an avirulent, nonreplicating uracil auxotroph strain of the parasite Toxoplasma gondii (T. gondii), which preferentially invades immunosuppressive CD11c(+) antigen-presenting cells in the ovarian carcinoma microenvironment. Tumor-associated CD11c(+) cells invaded by cps were converted to immunostimulatory phenotypes, which expressed increased levels of the T-cell receptor costimulatory molecules CD80 and CD86. In response to cps treatment of the immunosuppressive ovarian tumor environment, CD11c(+) cells regained the ability to efficiently cross-present antigen and prime CD8(+) T-cell responses. Correspondingly, cps treatment markedly increased tumor antigen-specific responses by CD8(+) T cells. Adoptive transfer experiments showed that these antitumor T-cell responses were effective in suppressing solid tumor development. Indeed, intraperitoneal cps treatment triggered rejection of established ID8-VegfA tumors, an aggressive xenograft model of ovarian carcinoma, also conferring a survival benefit in a related aggressive model (ID8-Defb29/Vegf-A). The therapeutic benefit of cps treatment relied on expression of IL-12, but it was unexpectedly independent of MyD88 signaling as well as immune experience with T. gondii. Taken together, our results establish that cps preferentially invades tumor-associated antigen-presenting cells and restores their ability to trigger potent antitumor CD8(+) T-cell responses. Immunochemotherapeutic applications of cps might be broadly useful to reawaken natural immunity in the highly immunosuppressive microenvironment of most solid tumors.
Collapse
Affiliation(s)
- Jason R Baird
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, Sheen MR, Fox BA, Bzik DJ, Bosenberg M, Mullins DW, Turk MJ, Fiering S. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. THE JOURNAL OF IMMUNOLOGY 2012; 190:469-78. [PMID: 23225891 DOI: 10.4049/jimmunol.1201209] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune recognition of tumors can limit cancer development, but antitumor immune responses are often blocked by tumor-mediated immunosuppression. Because microbes or microbial constituents are powerful adjuvants to stimulate immune responses, we evaluated whether intratumoral administration of a highly immunogenic but attenuated parasite could induce rejection of an established poorly immunogenic tumor. We treated intradermal B16F10 murine melanoma by intratumoral injection of an attenuated strain of Toxoplasma gondii (cps) that cannot replicate in vivo and therefore is not infective. The cps treatment stimulated a strong CD8(+) T cell-mediated antitumor immune response in vivo that regressed established primary melanoma. The cps monotherapy rapidly modified the tumor microenvironment, halting tumor growth, and subsequently, as tumor-reactive T cells expanded, the tumors disappeared and rarely returned. The treatment required live cps that could invade cells and also required CD8(+) T cells and NK cells, but did not require CD4(+) T cells. Furthermore, we demonstrate that IL-12, IFN-γ, and the CXCR3-stimulating cytokines are required for full treatment efficacy. The treatment developed systemic antitumor immune activity as well as antitumor immune memory and therefore might have an impact against human metastatic disease. The approach is not specific for either B16F10 or melanoma. Direct intratumoral injection of cps has efficacy against an inducible genetic melanoma model and transplantable lung and ovarian tumors, demonstrating potential for broad clinical use. The combination of efficacy, systemic antitumor immune response, and complete attenuation with no observed host toxicity demonstrates the potential value of this novel cancer therapy.
Collapse
Affiliation(s)
- Jason R Baird
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reduced efficacy of multiple doses of CpG-matured dendritic cell tumor vaccine in an experimental model. Cell Immunol 2011; 271:360-4. [PMID: 21889129 DOI: 10.1016/j.cellimm.2011.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022]
Abstract
CpG motifs have been advanced as agents that stimulate the maturation of DCs for immunotherapy. The present study tested the hypothesis that multiple doses of CpG-matured DC vaccine would be efficacious for complete eradication of experimentally-induced tumor. Accordingly, WEHI164 cells were implanted subcutaneously in the flank of BALB/c mice. During DC culture, tumor lysate was added to immature DCs followed by addition of CpG or non-CpG control 4-6h later. A total of three doses of CpG or non-CpG control-matured DCs were injected around tumors. The results showed that multiple doses of CpG-matured DCs led to considerable decrease in cytotoxicity of lymphocytes and significantly increased tumor growth rate compared to a single dose. Further, mice which received three doses of the vaccine also displayed significant FoxP3 in tumor tissue. In conclusion, multiple doses of CpG-matured DCs exhibited decreased anti-tumor immunity in association with increased expression of FoxP3.
Collapse
|
15
|
Cancer vaccines. Any future? Arch Immunol Ther Exp (Warsz) 2011; 59:249-59. [PMID: 21644030 DOI: 10.1007/s00005-011-0129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
The idea that vaccination can be used to fight cancer is not new. Approximately 100 years ago, researchers attempted to stimulate a tumor-specific, therapeutic immune response to tumors by injecting patients with cells and extracts from their own tumors, or tumors of the same type from different individuals. During the last decade, great efforts have been made to develop immunotherapeutic approaches for the treatment of malignant diseases as alternatives to traditional chemo- and radiotherapy. A quintessential goal of immunotherapy in cancer is treatment with vaccines that elicit potent anti-tumor immune responses without side effects. In this article, we have attempted to review some of the most problematic issues facing the development of cancer vaccines. With the prospect of immunosuppression, an ill-designed cancer vaccine can be more harmful than a no-benefit therapy. We have noted that "immunoediting" and "immunodominance" are the premier setbacks in peptide-based vaccines and therefore it appears necessary not only to manipulate the activity of a vast number of principal components but also to finely tune their concentrations in time and space. In the face of all these quandaries, it is at least doubtful that any reliable anti-cancer vaccine strategy will emerge in the near future.
Collapse
|
16
|
|