1
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
2
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
3
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
5
|
Bhartiya NM, Husain AA, Daginawala HF, Singh L, Kashyap RS. Development of an Immunodiagnostic Test for Screening Human Brucellosis Cases Using the Whole-Cell Antigens of Brucella abortus. Malays J Med Sci 2021; 27:15-26. [PMID: 33447131 PMCID: PMC7785268 DOI: 10.21315/mjms2020.27.6.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Background Human brucellosis is an important zoonotic disease of public health and often remains neglected owing to lack of sensitive and efficient diagnostic methods. This study evaluates diagnostic utility of in-house designed enzyme-linked immunosorbent assay (ELISA) using whole-cell antigens of Brucella abortus (B. abortus) S19 against the commercially available kits. Methods A prospective cohort study involving different populations within the Vidarbha regions of Maharashtra, India was conducted through camps organised from May 2009 to October 2015. A total of 568 serum samples were collected from high-risk people recruited as study cohorts based on inclusion criteria, additional risk factors and clinical symptoms. Samples were evaluated by indirect ELISA using the whole-cell antigens of B. abortus. The results were compared with the commercially available IgG detection ELISA kit to ascertain the specificity and sensitivity of the developed test. Results Fever, body ache, joint pain, lower back pain, loss of appetite and weight loss were major symptoms associated with the disease. With the cut-off of > 0.8, the positivity of brucellosis infection was at 12.32% (70/568) compared to 9.33% (53/568) as detected by the commercial kit. The in-house developed ELISA method yielded a sensitivity of 87.5% and specificity of 99.18% as compared to the commercial kits (sensitivity −80.30% and specificity −99.6%). Discussion The B. abortus S19-derived whole-cell protein-based ELISA is rapid and cost-effective and can be used for screening brucellosis infection in lieu of the commercially available ELISA kits.
Collapse
Affiliation(s)
- Nidhi M Bhartiya
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Aliabbas A Husain
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Hatim F Daginawala
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Lokendra Singh
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Rajpal S Kashyap
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
6
|
Ouahrani-Bettache S, Jiménez De Bagüés MP, De La Garza J, Freddi L, Bueso JP, Lyonnais S, Al Dahouk S, De Biase D, Köhler S, Occhialini A. Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis. Virulence 2020; 10:868-878. [PMID: 31635539 PMCID: PMC6844557 DOI: 10.1080/21505594.2019.1682762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Brucella microti was isolated a decade ago from wildlife and soil in Europe. Compared to the classical Brucella species, it exhibits atypical virulence properties such as increased growth in human and murine macrophages and lethality in experimentally infected mice. A spontaneous rough (R) mutant strain, derived from the smooth reference strain CCM4915T, showed increased macrophage colonization and was non-lethal in murine infections. Whole-genome sequencing and construction of an isogenic mutant of B. microti and Brucella suis 1330 revealed that the R-phenotype was due to a deletion in a single gene, namely wbkE (BMI_I539), encoding a putative glycosyltransferase involved in lipopolysaccharide (LPS) O-polysaccharide biosynthesis. Complementation of the R-strains with the wbkE gene restored the smooth phenotype and the ability of B. microti to kill infected mice. LPS with an intact O-polysaccharide is therefore essential for lethal B. microti infections in the murine model, demonstrating its importance in pathogenesis.
Collapse
Affiliation(s)
| | - María P Jiménez De Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Luca Freddi
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | - Juan P Bueso
- Laboratorio Agroalimentario, Gobierno de Aragón, Zaragoza, Spain
| | | | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | - Stephan Köhler
- IRIM, CNRS, University Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
7
|
Coloma-Rivero RF, Gómez L, Alvarez F, Saitz W, Del Canto F, Céspedes S, Vidal R, Oñate AA. The Role of the Flagellar Protein FlgJ in the Virulence of Brucella abortus. Front Cell Infect Microbiol 2020; 10:178. [PMID: 32411617 PMCID: PMC7198779 DOI: 10.3389/fcimb.2020.00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen that causes a zoonosis called brucellosis. This disease leads to abortion and infertility in cattle, and diverse complications in humans. B. abortus is a successful intracellular bacterium that has developed the ability to evade the host's immune system and it replicates in professional and non-professional phagocytic cells, persisting in the different tissues, and organs of its hosts. It has been described that Brucella expresses a polar flagellum under certain conditions, but its function is still unknown. In this study we evaluated the role of the FlgJ, a protein, presumably a peptidoglycan hydrolase involved in flagellum formation and in the virulence of B. abortus strain 2308. B. abortus 2308 ΔflgJ mutant and complemented strains were constructed to study the function of the FlgJ protein in the context of the virulence of this pathogen in in vitro and in vivo assays. The results showed that the elimination of the flgJ gene delays the growth rate of B. abortus in culture, reduces its intracellular survival capacity in professional and non-professional phagocytic cells, rendering it unable to escape from the endocytic route and not reaching the endoplasmic reticulum. It also negatively affects their persistence in BALB/c mice. Functionally, the B. abortus 2308 flgJ gene restored motility to an E. coli flgJ mutant gene. Furthermore, it was discovered that the production of FlgJ protein is associated with the bacterial adherence by B. abortus. Therefore, although the specific function of the polar flagellum for Brucella is unknown, the data indicates that the flagellar flgJ gene and its product are required for full virulence of B. abortus 2308, since its deletion significantly reduces the fitness of this pathogen in vitro and in vivo.
Collapse
Affiliation(s)
- Roberto F Coloma-Rivero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Leonardo Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Alvarez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Waleska Saitz
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Felipe Del Canto
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra Céspedes
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.,Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Cloeckaert A, Vergnaud G, Zygmunt MS. Omp2b Porin Alteration in the Course of Evolution of Brucella spp. Front Microbiol 2020; 11:284. [PMID: 32153552 PMCID: PMC7050475 DOI: 10.3389/fmicb.2020.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
The genus Brucella comprises major pathogenic species causing disease in livestock and humans, e.g. B. melitensis. In the past few years, the genus has been significantly expanded by the discovery of phylogenetically more distant lineages comprising strains from diverse wildlife animal species, including amphibians and fish. The strains represent several potential new species, with B. inopinata as solely named representative. Being genetically more distant between each other, relative to the “classical” Brucella species, they present distinct atypical phenotypes and surface antigens. Among surface protein antigens, the Omp2a and Omp2b porins display the highest diversity in the classical Brucella species. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. They share between 85 and 100% sequence identity depending on the Brucella species, biovar, or genotype. Only the omp2b gene copy has been shown to be expressed and genetic variation is extensively generated by gene conversion between the two copies. In this study, we analyzed the omp2 loci of the non-classical Brucella spp. Starting from two distinct ancestral genes, represented by Australian rodent strains and B. inopinata, a stepwise nucleotide reduction was observed in the omp2b gene copy. It consisted of a first reduction affecting the region encoding the surface L5 loop of the porin, previously shown to be critical in sugar permeability, followed by a nucleotide reduction in the surface L8 loop-encoding region. It resulted in a final omp2b gene size shared between two distinct clades of non-classical Brucella spp. (African bullfrog isolates) and the group of classical Brucella species. Further evolution led to complete homogenization of both omp2 gene copies in some Brucella species such as B. vulpis or B. papionis. The stepwise omp2b deletions seemed to be generated through recombination with the respective omp2a gene copy, presenting a conserved size among Brucella spp., and may involve short direct DNA repeats. Successive Omp2b porin alteration correlated with increasing porin permeability in the course of evolution of Brucella spp. They possibly have adapted their porin to survive environmental conditions encountered and to reach their final status as intracellular pathogen.
Collapse
Affiliation(s)
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
9
|
Keyburn AL, Buller N. Brucella: not your ‘typical’ intracellular pathogen. MICROBIOLOGY AUSTRALIA 2020. [DOI: 10.1071/ma20010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Currently the genus Brucella consists of a group of bacteria that are genetically monospecific yet phenotypically diverse, and a recent genetic and phenotypic divergent group known as ‘atypical' Brucellae. The host range is extremely varied and includes mammals, including humans, terrestrial animals and marine mammals, but now extends to reptiles and amphibians. Almost all Brucella species are zoonotic. The disease collectively termed Brucellosis leads to abortion and reproductive disease in animals, whereas human infection presents as a non-specific undulating fever accompanied by general malaise, chills, joint pain, muscle aches, genitourinary disease and adverse pregnancy outcomes. These Gram-negative coccobacilli invade and replicate in the host macrophages where they can limit the effects of the host immune system and antibiotic treatment. Due to the phenotypic and genotypic diversity and close relationship with Ochrobactrum species, the genus Brucella presents challenges for accurate identification and recognition of new species.
Collapse
|
10
|
Guzmán-Verri C, Suárez-Esquivel M, Ruíz-Villalobos N, Zygmunt MS, Gonnet M, Campos E, Víquez-Ruiz E, Chacón-Díaz C, Aragón-Aranda B, Conde-Álvarez R, Moriyón I, Blasco JM, Muñoz PM, Baker KS, Thomson NR, Cloeckaert A, Moreno E. Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3. Front Vet Sci 2019; 6:175. [PMID: 31231665 PMCID: PMC6568212 DOI: 10.3389/fvets.2019.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
Members of the genus Brucella cluster in two phylogenetic groups: classical and non-classical species. The former group is composed of Brucella species that cause disease in mammals, including humans. A Brucella species, labeled as Brucella sp. BCCN84.3, was isolated from the testes of a Saint Bernard dog suffering orchiepididymitis, in Costa Rica. Following standard microbiological methods, the bacterium was first defined as “Brucella melitensis biovar 2.” Further molecular typing, identified the strain as an atypical “Brucella suis.” Distinctive Brucella sp. BCCN84.3 markers, absent in other Brucella species and strains, were revealed by fatty acid methyl ester analysis, high resolution melting PCR and omp25 and omp2a/omp2b gene diversity. Analysis of multiple loci variable number of tandem repeats and whole genome sequencing demonstrated that this isolate was different from the currently described Brucella species. The smooth Brucella sp. BCCN84.3 clusters together with the classical Brucella clade and displays all the genes required for virulence. Brucella sp. BCCN84.3 is a species nova taxonomical entity displaying pathogenicity; therefore, relevant for differential diagnoses in the context of brucellosis. Considering the debate on the Brucella species concept, there is a need to describe the extant taxonomical entities of these pathogens in order to understand the dispersion and evolution.
Collapse
Affiliation(s)
- Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.,Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Nazareth Ruíz-Villalobos
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Mathieu Gonnet
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Elena Campos
- Centro Nacional de Referencia en Bacteriología, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Cartago, Costa Rica
| | - Eunice Víquez-Ruiz
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Beatriz Aragón-Aranda
- IDISNA and Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- IDISNA and Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- IDISNA and Departamento de Microbiología y Parasitología, Instituto de Salud Tropical, Universidad de Navarra, Pamplona, Spain
| | - José María Blasco
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Kate S Baker
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Institute for Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
11
|
Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrêne YF, De Bolle X. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J 2019; 38:e100323. [PMID: 30635335 PMCID: PMC6396147 DOI: 10.15252/embj.2018100323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.
Collapse
Affiliation(s)
- Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
12
|
Jaý M, Girault G, Perrot L, Taunay B, Vuilmet T, Rossignol F, Pitel PH, Picard E, Ponsart C, Mick V. Phenotypic and Molecular Characterization of Brucella microti-Like Bacteria From a Domestic Marsh Frog ( Pelophylax ridibundus). Front Vet Sci 2018; 5:283. [PMID: 30498697 PMCID: PMC6249338 DOI: 10.3389/fvets.2018.00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 11/13/2022] Open
Abstract
Several Brucella isolates have been described in wild-caught and "exotic" amphibians from various continents and identified as B. inopinata-like strains. On the basis of epidemiological investigations conducted in June 2017 in France in a farm producing domestic frogs (Pelophylax ridibundus) for human consumption of frog's legs, potentially pathogenic bacteria were isolated from adults showing lesions (joint and subcutaneous abscesses). The bacteria were initially misidentified as Ochrobactrum anthropi using a commercial identification system, prior to being identified as Brucella spp. by MALDI-TOF assay. Classical phenotypic identification confirmed the Brucella genus, but did not make it possible to conclude unequivocally on species determination. Conventional and innovative bacteriological and molecular methods concluded that the investigated strain was very close to B. microti species, and not B. inopinata-like strains, as expected. The methods included growth kinetic, antimicrobial susceptibility testing, RT-PCR, Bruce-Ladder, Suis-Ladder, RFLP-PCR, AMOS-ERY, MLVA-16, the ectoine system, 16S rRNA and recA sequence analyses, the LPS pattern, in silico MLST-21, comparative whole-genome analyses (including average nucleotide identity ANI and whole-genome SNP analysis) and HRM-PCR assays. Minor polyphasic discrepancies, especially phage lysis and A-dominant agglutination patterns, as well as, small molecular divergences suggest the investigated strain should be considered a B. microti-like strain, raising concerns about its environmental persistence and unknown animal pathogenic and zoonotic potential as for other B. microti strains described to date.
Collapse
Affiliation(s)
- Maryne Jaý
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Guillaume Girault
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Ludivine Perrot
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Benoit Taunay
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Thomas Vuilmet
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | | | | | | | - Claire Ponsart
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| | - Virginie Mick
- ANSES/Paris-Est University, EU/OIE/FAO and National Reference Laboratory for Brucellosis, Animal Health Laboratory, Maisons-Alfort, France
| |
Collapse
|
13
|
Salvador-Bescós M, Gil-Ramírez Y, Zúñiga-Ripa A, Martínez-Gómez E, de Miguel MJ, Muñoz PM, Cloeckaert A, Zygmunt MS, Moriyón I, Iriarte M, Conde-Álvarez R. WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Front Microbiol 2018; 9:2293. [PMID: 30319590 PMCID: PMC6171495 DOI: 10.3389/fmicb.2018.02293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023] Open
Abstract
Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella.
Collapse
Affiliation(s)
- Miriam Salvador-Bescós
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Yolanda Gil-Ramírez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Estrella Martínez-Gómez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| | - Axel Cloeckaert
- Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Michel S Zygmunt
- Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
14
|
Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M, Moriyón I. The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Front Microbiol 2018; 9:641. [PMID: 29675004 PMCID: PMC5896264 DOI: 10.3389/fmicb.2018.00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W), a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA). However, B. suis 513 used pyruvate phosphate dikinase (PpdK) and phosphoenolpyruvate carboxykinase (PckA) for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae) mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of attenuation of a double Mae-PckA mutant. Altogether, these results decouple fast growth rates from enhanced mouse lethality in the brucellae and suggest that an Fbp-GlpX-independent gluconeogenic mechanism is ancestral in this group and show differences in central C metabolic steps that may reflect a progressive adaptation to intracellular growth.
Collapse
Affiliation(s)
- Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Thibault Barbier
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Leticia Lázaro-Antón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Jean J Letesson
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Al Dahouk S, Köhler S, Occhialini A, Jiménez de Bagüés MP, Hammerl JA, Eisenberg T, Vergnaud G, Cloeckaert A, Zygmunt MS, Whatmore AM, Melzer F, Drees KP, Foster JT, Wattam AR, Scholz HC. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts. Sci Rep 2017; 7:44420. [PMID: 28300153 PMCID: PMC5353553 DOI: 10.1038/srep44420] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.
Collapse
Affiliation(s)
- Sascha Al Dahouk
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany.,RWTH Aachen University, Department of Internal Medicine III, Aachen, Germany
| | - Stephan Köhler
- Université Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France.,CNRS, FRE3689, CPBS, Montpellier, France
| | - Alessandra Occhialini
- Université Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), Montpellier, France.,CNRS, FRE3689, CPBS, Montpellier, France
| | - María Pilar Jiménez de Bagüés
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Jens Andre Hammerl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
| | | | - Gilles Vergnaud
- I2BC, CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Axel Cloeckaert
- ISP, INRA, Université François Rabelais de Tours, UMR1282, Nouzilly, France
| | - Michel S Zygmunt
- ISP, INRA, Université François Rabelais de Tours, UMR1282, Nouzilly, France
| | | | - Falk Melzer
- Friedrich-Loeffler-Institut, German National Reference Laboratory for Animal Brucellosis, Jena, Germany
| | - Kevin P Drees
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH, USA
| | - Jeffrey T Foster
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH, USA
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Holger C Scholz
- Bundeswehr Institute of Microbiology and German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
16
|
Arias MA, Santiago L, Costas-Ramon S, Jaime-Sánchez P, Freudenberg M, Jiménez De Bagüés MP, Pardo J. Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti. Front Cell Infect Microbiol 2017; 6:205. [PMID: 28119856 PMCID: PMC5220065 DOI: 10.3389/fcimb.2016.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti, was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8+ T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2-/-, TLR4-/-, TLR9-/-, TLR2×4-/- and TLR2×4×9-/-. WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4-/- and TLR2×4×9-/- mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti-infected dendritic cells from TLR2×4-/- and TLR2×4×9-/- mice. Finally, it was found that Tc cells from TLR2×4-/- and TLR2×4×9-/- mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8+ Tc cells.
Collapse
Affiliation(s)
- Maykel A Arias
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Llipsy Santiago
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Santiago Costas-Ramon
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Paula Jaime-Sánchez
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Marina Freudenberg
- Max-Planck Institute for Immunobiology and Epigenetics Freiburg, Germany
| | - Maria P Jiménez De Bagüés
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2, CITA-Universidad de Zaragoza Zaragoza, Spain
| | - Julián Pardo
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of ZaragozaZaragoza, Spain; Nanoscience Institute of Aragon, University of ZaragozaZaragoza, Spain; Aragon I+D FoundationZaragoza, Spain
| |
Collapse
|
17
|
Mühldorfer K, Wibbelt G, Szentiks CA, Fischer D, Scholz HC, Zschöck M, Eisenberg T. The role of 'atypical' Brucella in amphibians: are we facing novel emerging pathogens? J Appl Microbiol 2016; 122:40-53. [PMID: 27740712 DOI: 10.1111/jam.13326] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 02/01/2023]
Abstract
AIMS To discuss together the novel cases of Brucella infections in frogs with the results of published reports to extend our current knowledge on 'atypical' brucellae isolated from amphibians and to discuss the challenges we face on this extraordinary emerging group of pathogens. METHODS AND RESULTS Since our first description, an additional 14 isolates from four different frog species were collected. Novel isolates and a subset of Brucella isolates previously cultured from African bullfrogs were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Fourier transform-infrared (FT-IR) spectroscopy and broth microdilution susceptibility testing. MALDI-TOF MS worked very efficiently for an accurate bacterial identification to the genus level. Within the cluster analysis, 'atypical' brucellae grouped distant from Brucella melitensis and were even more separated by FT-IR spectroscopy with respect to their geographical origin. Minimum inhibitory concentrations of 14 antimicrobial substances are provided as baseline data on antimicrobial susceptibility. CONCLUSIONS The case history of Brucella infections in amphibians reveals a variety of pathologies ranging from localized manifestations to systemic infections. Some isolates seem to be capable of causing high mortality in zoological exhibitions putting higher demands on the management of endangered frog species. There is considerable risk in overlooking and misidentifying 'atypical' Brucella in routine diagnostics. SIGNIFICANCE AND IMPACT OF THE STUDY Brucella have only recently been described in cold-blooded vertebrates. Their presence in frog species native to Africa, America and Australia indicates a more common occurrence in amphibians than previously thought. This study provides an extensive overview of amphibian brucellae by highlighting the main features of their clinical significance, diagnosis and zoonotic potential.
Collapse
Affiliation(s)
- K Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - G Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - C A Szentiks
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - D Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - H C Scholz
- Bundeswehr Institute of Microbiology, German Center for Infection Research (DZIF), Munich, Germany
| | - M Zschöck
- Hessian State Laboratory (LHL), Giessen, Germany
| | - T Eisenberg
- Hessian State Laboratory (LHL), Giessen, Germany
| |
Collapse
|
18
|
Soler-Lloréns PF, Quance CR, Lawhon SD, Stuber TP, Edwards JF, Ficht TA, Robbe-Austerman S, O'Callaghan D, Keriel A. A Brucella spp. Isolate from a Pac-Man Frog ( Ceratophrys ornata) Reveals Characteristics Departing from Classical Brucellae. Front Cell Infect Microbiol 2016; 6:116. [PMID: 27734009 PMCID: PMC5040101 DOI: 10.3389/fcimb.2016.00116] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
Abstract
Brucella are highly infectious bacterial pathogens responsible for brucellosis, a frequent worldwide zoonosis. The Brucella genus has recently expanded from 6 to 11 species, all of which were associated with mammals; The natural host range recently expanded to amphibians after some reports of atypical strains from frogs. Here we describe the first in depth phenotypic and genetic characterization of a Brucella strains isolated from a frog. Strain B13-0095 was isolated from a Pac-Man frog (Ceratophyrus ornate) at a veterinary hospital in Texas and was initially misidentified as Ochrobactrum anthropi. We found that B13-0095 belongs to a group of early-diverging brucellae that includes Brucella inopinata strain BO1 and the B. inopinata-like strain BO2, with traits that depart significantly from those of the "classical" Brucella spp. Analysis of B13-0095 genome sequence revealed several specific features that suggest that this isolate represents an intermediate between a soil associated ancestor and the host adapted "classical" species. Like strain BO2, B13-0095 does not possess the genes required to produce the perosamine based LPS found in classical Brucella, but has a set of genes that could encode a rhamnose based O-antigen. Despite this, B13-0095 has a very fast intracellular replication rate in both epithelial cells and macrophages. Finally, another major finding in this study is the bacterial motility observed for strains B13-0095, BO1, and BO2, which is remarkable for this bacterial genus. This study thus highlights several novel characteristics in strains belonging to an emerging group within the Brucella genus. Accurate identification tools for such atypical Brucella isolates and careful evaluation of their zoonotic potential, are urgently required.
Collapse
Affiliation(s)
- Pedro F. Soler-Lloréns
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR de MédecineNîmes, France
- Université de Montpellier, U1047Nîmes, France
| | - Chris R. Quance
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of AgricultureAmes, IA, USA
| | - Sara D. Lawhon
- Clinical Microbiology, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, USA
| | - Tod P. Stuber
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of AgricultureAmes, IA, USA
| | - John F. Edwards
- Clinical Microbiology, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, USA
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M UniversityCollege Station, TX, USA
| | - Suelee Robbe-Austerman
- Mycobacteria and Brucella Section, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of AgricultureAmes, IA, USA
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR de MédecineNîmes, France
- Université de Montpellier, U1047Nîmes, France
| | - Anne Keriel
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR de MédecineNîmes, France
- Université de Montpellier, U1047Nîmes, France
| |
Collapse
|
19
|
Ducrotoy MJ, Conde-Álvarez R, Blasco JM, Moriyón I. A review of the basis of the immunological diagnosis of ruminant brucellosis. Vet Immunol Immunopathol 2016; 171:81-102. [DOI: 10.1016/j.vetimm.2016.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
|
20
|
Mancilla M. Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence. Front Cell Infect Microbiol 2016; 5:98. [PMID: 26779449 PMCID: PMC4700419 DOI: 10.3389/fcimb.2015.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Dissociation encompasses changes in a series of phenotypes: colony and cell morphology, inmunological and biochemical reactions and virulence. The concept is generally associated to the in vitro transition between smooth (S) and rough (R) colonies, a phenotypic observation in Gram-negative bacteria commonly made since the beginning of microbiology as a science. It is also well known that the loss of the O-polysaccharide, the most external lipopolysaccharide (LPS) moiety, triggers the change in the colony phenotype. Although dissociation is related to one of the most basic features used to distinguish between species, i.e., colony morphology, and, in the case of pathogens, predict their virulence behavior, it has been considered a laboratory artifact and thus did not gain further attention. However, recent insights into genetics and pathogenesis of members of Brucella, causative agents of brucellosis, have brought a new outlook on this experimental fact, suggesting that it plays a role beyond the laboratory observations. In this perspective article, the current knowledge on Brucella LPS genetics and its connection with dissociation in the frame of evolution is discussed. Latest reports support the notion that, by means of a better understanding of genetic pathways linked to R phenotype and the biological impact of this intriguing "old" phenomenon, unexpected applications can be achieved.
Collapse
Affiliation(s)
- Marcos Mancilla
- Research and Development Department, ADL Diagnostic Chile Ltd.Puerto Montt, Chile
| |
Collapse
|
21
|
Transcriptome-Wide Identification of Hfq-Associated RNAs in Brucella suis by Deep Sequencing. J Bacteriol 2015; 198:427-35. [PMID: 26553849 DOI: 10.1128/jb.00711-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent breakthroughs in next-generation sequencing technologies have led to the identification of small noncoding RNAs (sRNAs) as a new important class of regulatory molecules. In prokaryotes, sRNAs are often bound to the chaperone protein Hfq, which allows them to interact with their partner mRNA(s). We screened the genome of the zoonotic and human pathogen Brucella suis 1330 for the presence of this class of RNAs. We designed a coimmunoprecipitation strategy that relies on the use of Hfq as a bait to enrich the sample with sRNAs and eventually their target mRNAs. By deep sequencing analysis of the Hfq-bound transcripts, we identified a number of mRNAs and 33 sRNA candidates associated with Hfq. The expression of 10 sRNAs in the early stationary growth phase was experimentally confirmed by Northern blotting and/or reverse transcriptase PCR. IMPORTANCE Brucella organisms are facultative intracellular pathogens that use stealth strategies to avoid host defenses. Adaptation to the host environment requires tight control of gene expression. Recently, small noncoding RNAs (sRNAs) and the sRNA chaperone Hfq have been shown to play a role in the fine-tuning of gene expression. Here we have used RNA sequencing to identify RNAs associated with the B. suis Hfq protein. We have identified a novel list of 33 sRNAs and 62 Hfq-associated mRNAs for future studies aiming to understand the intracellular lifestyle of this pathogen.
Collapse
|
22
|
Silbereisen A, Tamborrini M, Wittwer M, Schürch N, Pluschke G. Development of a bead-based Luminex assay using lipopolysaccharide specific monoclonal antibodies to detect biological threats from Brucella species. BMC Microbiol 2015; 15:198. [PMID: 26438077 PMCID: PMC4595103 DOI: 10.1186/s12866-015-0534-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brucella, a Gram-negative bacterium, is classified as a potential bioterrorism agent mainly due to the low dose needed to cause infection and the ability to transmit the bacteria via aerosols. Goats/sheep, cattle, pigs, dogs, sheep and rodents are infected by B. melitensis, B. abortus, B. suis, B. canis, B. ovis and B. neotomae, respectively, the six classical Brucella species. Most human cases are caused by B. melitensis and B. abortus. Our aim was to specifically detect Brucellae with 'smooth' lipopolysaccharide (LPS) using a highly sensitive monoclonal antibody (mAb) based immunological assay. METHODS To complement molecular detection systems for potential bioterror agents, as required by international biodefense regulations, sets of mAbs were generated by B cell hybridoma technology and used to develop immunological assays. The combination of mAbs most suitable for an antigen capture assay format was identified and an immunoassay using the Luminex xMAP technology was developed. RESULTS MAbs specific for the LPS O-antigen of Brucella spp. were generated by immunising mice with inactivated B. melitensis or B. abortus cells. Most mAbs recognised both B. melitensis and B. abortus and antigen binding was not impeded by inactivation of the bacterial cells by γ irradiation, formalin or heat treatment, a step required to analyse the samples immunologically under biosafety level two conditions. The Luminex assay recognised all tested Brucella species with 'smooth' LPS with detection limits of 2×10(2) to 8×10(4) cells per mL, depending on the species tested. Milk samples spiked with Brucella spp. cells were identified successfully using the Luminex assay. In addition, the bead-based immunoassay was integrated into a multiplex format, allowing for simultaneous, rapid and specific detection of Brucella spp., Bacillus anthracis, Francisella tularensis and Yersinia pestis within a single sample. CONCLUSION Overall, the robust Luminex assay should allow detection of Brucella spp. in both natural outbreak and bio-threat situations.
Collapse
Affiliation(s)
- Angelika Silbereisen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Marco Tamborrini
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Matthias Wittwer
- Federal Office for Civil Protection, Spiez Laboratory, Spiez, Switzerland.
| | - Nadia Schürch
- Federal Office for Civil Protection, Spiez Laboratory, Spiez, Switzerland.
| | - Gerd Pluschke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
23
|
Whatmore AM, Dale E, Stubberfield E, Muchowski J, Koylass M, Dawson C, Gopaul KK, Perrett LL, Jones M, Lawrie A. Isolation of Brucella from a White’s tree frog (Litoria caerulea). JMM Case Rep 2015. [DOI: 10.1099/jmmcr.0.000017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Adrian M. Whatmore
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Emma‐Jane Dale
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Emma Stubberfield
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jakub Muchowski
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Mark Koylass
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Claire Dawson
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Krishna K. Gopaul
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Lorraine L. Perrett
- FAO/WHO Collaborating Centre for Brucellosis, OIE Brucellosis Reference Centre, Animal and Plant Health Agency (APHA), Department of Bacteriology, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Matthew Jones
- IDEXX Laboratories, , Grange House, Sandbeck Way, Wetherby LS22 7DN, UK
| | - Alistair Lawrie
- Lawrie Veterinary Group, 25 Griffiths Street, Falkirk FK1 5QY, UK
| |
Collapse
|
24
|
Thermostable cross-protective subunit vaccine against Brucella species. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1681-8. [PMID: 25320267 DOI: 10.1128/cvi.00447-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation.
Collapse
|
25
|
Soler-Lloréns P, Gil-Ramírez Y, Zabalza-Baranguá A, Iriarte M, Conde-Álvarez R, Zúñiga-Ripa A, San Román B, Zygmunt MS, Vizcaíno N, Cloeckaert A, Grilló MJ, Moriyón I, López-Goñi I. Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Vet Res 2014; 45:72. [PMID: 25029920 PMCID: PMC4107470 DOI: 10.1186/s13567-014-0072-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.
Collapse
Affiliation(s)
- Pedro Soler-Lloréns
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Yolanda Gil-Ramírez
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Ana Zabalza-Baranguá
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Beatriz San Román
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Michel S Zygmunt
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, F-37380, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, F-37000, France
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, F-37380, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, F-37000, France
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Ignacio López-Goñi
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| |
Collapse
|
26
|
Jiménez de Bagüés MP, Iturralde M, Arias MA, Pardo J, Cloeckaert A, Zygmunt MS. The new strains Brucella inopinata BO1 and Brucella species 83-210 behave biologically like classic infectious Brucella species and cause death in murine models of infection. J Infect Dis 2014; 210:467-72. [PMID: 24558120 DOI: 10.1093/infdis/jiu102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. METHODS The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. RESULTS Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. CONCLUSIONS The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species.
Collapse
Affiliation(s)
| | - María Iturralde
- Departamento Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza
| | - Maykel A Arias
- Centro de Investigación y Tecnología Agroalimentaria, Unidad de Sanidad Animal Departamento Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza
| | - Julián Pardo
- Departamento Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza Fundación Aragon I+D, Zaragoza, Spain
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Michel S Zygmunt
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
27
|
The epitopic and structural characterization of Brucella suis biovar 2 O-polysaccharide demonstrates the existence of a new M-negative C-negative smooth Brucella serovar. PLoS One 2013; 8:e53941. [PMID: 23335981 PMCID: PMC3545991 DOI: 10.1371/journal.pone.0053941] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
The brucellae are Gram-negative bacteria that cause an important zoonosis. Studies with the main Brucella species have shown that the O-antigens of the Brucella smooth lipopolysaccharide are α-(1 → 2) and α-(1 → 3)-linked N-formyl-perosamine polysaccharides that carry M, A and C (A = M, A>M and A<M) epitopes relevant in serodiagnosis and typing. We report that, in contrast to the B. suis biovar 1 O-antigen used as a reference or to all described Brucella O-antigens, B. suis biovar 2 O-antigen failed to bind monoclonal antibodies of C (A = M), C (M>A) and M specificities. However, the biovar 2 O-antigen bound monoclonal antibodies to the Brucella A epitope, and to the C/Y epitope shared by brucellae and Yersinia enterocolitica O:9, a bacterium that carries an N-formyl-perosamine O-antigen in exclusively α-(1 → 2)-linkages. By (13)C NMR spectroscopy, B. suis biovar 1 but not B. suis biovar 2 or Y. enterocolitica O:9 polysaccharide showed the signal characteristic of α-(1 → 3)-linked N-formyl-perosamine, indicating that biovar 2 may altogether lack this linkage. Taken together, the NMR spectroscopy and monoclonal antibody analyses strongly suggest a role for α-(1 → 3)-linked N-formyl-perosamine in the C (A = M) and C (M>A) epitopes. Moreover, they indicate that B. suis biovar 2 O-antigen lacks some lipopolysaccharide epitopes previously thought to be present in all smooth brucellae, thus representing a new brucella serovar that is M-negative, C-negative. Serologically and structurally this new serovar is more similar to Y. enterocolitica O:9 than to other brucellae.
Collapse
|
28
|
Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway. mBio 2012; 3:e00246-12. [PMID: 22930339 PMCID: PMC3445970 DOI: 10.1128/mbio.00246-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date.
Collapse
|