1
|
Henning L, Anderson M, Triplett C, Smith T, Boyce K, Hendey L, Ridenour A, Eng J, Schaeufele D, Wilson E, Sabourin CL, Adams LE, Babas T, Parish L, Wolfe D. Efficacy of different AV7909 dose regimens in a nonclinical model of pulmonary anthrax. Hum Vaccin Immunother 2023; 19:2290345. [PMID: 38115181 PMCID: PMC10760354 DOI: 10.1080/21645515.2023.2290345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Pulmonary anthrax caused by exposure to inhaled Bacillus anthracis, the most lethal form of anthrax disease, is a continued military and public health concern for the United States. The vaccine AV7909, consisting of the licensed anthrax drug substance AVA adjuvanted with CpG7909, induces high levels of toxin neutralizing antibodies in healthy adults using fewer doses than AVA. This study compares the ability of one- or two-dose regimens of AV7909 to induce a protective immune response in guinea pigs challenged with a lethal dose of aerosolized B. anthracis spores 6 weeks after the last vaccine dose. The results indicated that AV7909 was less effective when delivered as a single dose compared to the two-dose regimen that resulted in dose-dependent protection against death. The toxin neutralizing assay (TNA) titer and anti-PA IgG responses were proportional to the protective efficacy, with a 50% TNA neutralizing factor (NF50) greater than 0.1 associated with survival in animals receiving two doses of vaccine. The strong protection at relatively low TNA NF50 titers in this guinea pig model supports the exploration of lower doses in clinical trials to determine if these protective levels of neutralizing antibodies can be achieved in humans; however, protection with a single dose may not be feasible.
Collapse
Affiliation(s)
- Lisa Henning
- Battelle Biomedical Research Center, Columbus, OH, USA
| | | | | | - Tammy Smith
- Battelle Biomedical Research Center, Columbus, OH, USA
| | - Kevin Boyce
- Battelle Biomedical Research Center, Columbus, OH, USA
| | | | - Alex Ridenour
- Battelle Biomedical Research Center, Columbus, OH, USA
| | - Jason Eng
- Battelle Biomedical Research Center, Columbus, OH, USA
| | | | - Ehran Wilson
- Battelle Biomedical Research Center, Columbus, OH, USA
| | - Carol L. Sabourin
- Tunnell Government Services, Inc, Supporting BARDA, Washington, DC, USA
| | - Lily E. Adams
- Oak Ridge Institute for Science and Education (ORISE) fellow at BARDA, Washington, DC, USA
| | - Tahar Babas
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - Lindsay Parish
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| | - Daniel Wolfe
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority (BARDA), Washington, DC, USA
| |
Collapse
|
2
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
3
|
Kim GL, Pyo SW, Yi H, Kim SH, Shin H, Yu MA, Hwang YR, Choi SY, Jeon JH, Jo SK, Rhie GE. Immunogenicity and Protective Efficacy of Recombinant Protective Antigen Anthrax Vaccine (GC1109) in A/J Mice Model. Vaccine 2023; 41:3106-3110. [PMID: 37055344 DOI: 10.1016/j.vaccine.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
A recombinant protective antigen anthrax vaccine (GC1109) is being developed as a new-generation vaccine by the Korea Disease Control and Prevention Agency. In accordance with the ongoing step 2 of phase II clinical trials, the immunogenicity and protective efficacy of the booster dose of GC1109 were evaluated in A/J mice after 3 serial vaccinations at 4-week intervals. The results indicated that the booster dose significantly increased the production of anti-protective antigen (PA) IgG and toxin-neutralizing antibody (TNA) compared with those of the group without booster. An enhanced protective effect of the booster dose was not observed because the TNA titers of the group without booster were high enough to confer protection against spore challenge. Additionally, the correlation between TNA titers and probability of survival was determined for calculating the threshold TNA titer levels associated with protection. The threshold 50 % neutralization factor (NF50) of TNA showing 70 % probability of protection was 0.21 in A/J mice with 1,200 LD50 Sterne spores challenge. These results indicate that GC1109 is a promising candidate as a new-generation anthrax vaccine and that a booster dose might provide enhanced protection by producing toxin-neutralizing antibodies.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Seong Wook Pyo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Hwajung Yi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - So-Hyeon Kim
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Hwachul Shin
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Min-Ah Yu
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Yi-Rang Hwang
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Sang-Yoon Choi
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Su Kyoung Jo
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Gi-Eun Rhie
- Division of High-risk Pathogens, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea.
| |
Collapse
|
4
|
Zhai LN, Zhao Y, Song XL, Qin TT, Zhang ZJ, Wang JZ, Sui CY, Zhang LL, Lv M, Hu LF, Zhou DS, Fang TY, Yang WH, Wang YC. Inhalable vaccine of bacterial culture supernatant extract mediates protection against fatal pulmonary anthrax. Emerg Microbes Infect 2023; 12:2191741. [PMID: 36920800 PMCID: PMC10071900 DOI: 10.1080/22221751.2023.2191741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
AbstractPulmonary anthrax is the most fatal clinical form of anthrax and currently available injectable vaccines do not provide adequate protection against it. Hence, next-generation vaccines that effectively induce immunity against pulmonary anthrax are urgently needed. In the present study, we prepared an attenuated and low protease activity Bacillus anthracis strain A16R-5.1 by deleting five of its extracellular protease activity-associated genes and its lef gene through the CRISPR-Cas9 genome editing system. This mutant strain was then used to formulate a lethal toxin (LeTx)-free culture supernatant extract (CSE) anthrax vaccine,of which half was protective antigen (PA). We generated liquid, powder, and powder reconstituted formulations that could be delivered by aerosolized intratracheal inoculation. All of them induced strong humoral, cellular, and mucosal immune responses. The vaccines also produced LeTx neutralizing antibodies and conferred full protection against the lethal aerosol challenges of B. anthracis Pasteur II spores in mice. Compared to the recombinant PA vaccine, the CSE anthrax vaccine with equal PA content provided superior immunoprotection against pulmonary anthrax. The preceding results suggest that the CSE anthrax vaccine developed herein is suitable and scalable for use in inhalational immunization against pulmonary anthrax.
Collapse
Affiliation(s)
- Li-Na Zhai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,Basic medical college, Guizhou Medical University, Guizhou 550004, China
| | - Xiao-Lin Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong-Tong Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jia-Zhen Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Yu Sui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Li-Li Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ling-Fei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dong-Sheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong-Yu Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wen-Hui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan-Chun Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
5
|
Holay M, Krishnan N, Zhou J, Duan Y, Guo Z, Gao W, Fang RH, Zhang L. Single Low-Dose Nanovaccine for Long-Term Protection against Anthrax Toxins. NANO LETTERS 2022; 22:9672-9678. [PMID: 36448694 PMCID: PMC9970955 DOI: 10.1021/acs.nanolett.2c03881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthrax infections caused by Bacillus anthracis are an ongoing bioterrorism and livestock threat worldwide. Current approaches for management, including extended passive antibody transfusion, antibiotics, and prophylactic vaccination, are often cumbersome and associated with low patient compliance. Here, we report on the development of an adjuvanted nanotoxoid vaccine based on macrophage membrane-coated nanoparticles bound with anthrax toxins. This design leverages the natural binding interaction of protective antigen, a key anthrax toxin, with macrophages. In a murine model, a single low-dose vaccination with the nanotoxoids generates long-lasting immunity that protects against subsequent challenge with anthrax toxins. Overall, this work provides a new approach to address the ongoing threat of anthrax outbreaks and bioterrorism by taking advantage of an emerging biomimetic nanotechnology.
Collapse
|
6
|
Ascough S, Ingram RJ, Chu KKY, Moore SJ, Gallagher T, Dyson H, Doganay M, Metan G, Ozkul Y, Baillie L, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Impact of HLA Polymorphism on the Immune Response to Bacillus Anthracis Protective Antigen in Vaccination versus Natural Infection. Vaccines (Basel) 2022; 10:vaccines10101571. [PMID: 36298436 PMCID: PMC9610610 DOI: 10.3390/vaccines10101571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The causative agent of anthrax, Bacillus anthracis, evades the host immune response and establishes infection through the production of binary exotoxins composed of Protective Antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). The majority of vaccination strategies have focused upon the antibody response to the PA subunit. We have used a panel of humanised HLA class II transgenic mouse strains to define HLA-DR-restricted and HLA-DQ-restricted CD4+ T cell responses to the immunodominant epitopes of PA. This was correlated with the binding affinities of epitopes to HLA class II molecules, as well as the responses of two human cohorts: individuals vaccinated with the Anthrax Vaccine Precipitated (AVP) vaccine (which contains PA and trace amounts of LF), and patients recovering from cutaneous anthrax infections. The infected and vaccinated cohorts expressing different HLA types were found to make CD4+ T cell responses to multiple and diverse epitopes of PA. The effects of HLA polymorphism were explored using transgenic mouse lines, which demonstrated differential susceptibility, indicating that HLA-DR1 and HLA-DQ8 alleles conferred protective immunity relative to HLA-DR15, HLA-DR4 and HLA-DQ6. The HLA transgenics enabled a reductionist approach, allowing us to better define CD4+ T cell epitopes. Appreciating the effects of HLA polymorphism on the variability of responses to natural infection and vaccination is vital in planning protective strategies against anthrax.
Collapse
Affiliation(s)
- Stephanie Ascough
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence: (S.A.); (D.M.A.)
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK
| | | | | | - Theresa Gallagher
- BioMET, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Mehmet Doganay
- Department of Medical Genetics, Erciyes University Hospital, Kayseri 38095, Turkey
| | - Gökhan Metan
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine Ankara, Ankara 06000, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri 38095, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Bernard Maillere
- CEA-Saclay, Département Médicaments et Technologies pour la Santé, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
| | - Rosemary J. Boyton
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Lung Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel M. Altmann
- Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence: (S.A.); (D.M.A.)
| |
Collapse
|
7
|
Ahmad T, Baig M, Othman SS, Malibary H, Ahmad S, Rasheed SM, Al Bataineh MT, Al-Omari B. Bibliometric Analysis and Visualization Mapping of Anthrax Vaccine Publications from 1991 through 2021. Vaccines (Basel) 2022; 10:vaccines10071007. [PMID: 35891169 PMCID: PMC9316950 DOI: 10.3390/vaccines10071007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose: This study aims to analyze and characterize anthrax vaccine-related research, key developments, global research trends, and mapping of published scientific research articles during the last three decades (1991–2021). Methods: A bibliometric and visualized study was conducted. The Web of Science Core Collection database (WoSCC) was searched using relevant keywords (“Anthrax” OR “Anthrax bacterium” OR “Bacillus anthracis” OR “Bacteridium anthracis” OR “Bacillus cereus var. Anthracis” (Topic)) AND (“Vaccine” OR “Vaccines” OR “Immunization” OR “Immunisation” OR “Immunizations” OR “Immunisations” (Topic)) with specific restrictions. The data was analyzed and plotted by using different bibliometric software and tools (HistCiteTM software, version 12.3.17, Bibliometrix: An R-tool version 3.2.1, and VOSviewer software, version 1.6.17). Results: The initial search yielded 1750 documents. After screening the titles and abstracts of the published studies, a total of 1090 articles published from 1991 to 2021 were included in the final analysis. These articles were published in 334 journals and were authored by 4567 authors from 64 countries with a collaboration index of 4.32. The annual scientific production growth rate was found to be 9.68%. The analyzed articles were cited 31335 times. The most productive year was 2006 (n = 77, 7.06%), while the most cited year was 2007 (2561 citations). The leading authors and journals in anthrax research were Rakesh Bhatnagar from Jawaharlal Nehru University, India (n = 35, 3.21%), and Vaccine (n = 1830, 16.51%), while the most cited author and journal were Arthur M. Friedlander from the United States Department of Defense (n = 2762), and Vaccine (n = 5696), respectively. The most studied recent research trend topics were lethal, double-blind, epidemiology, B surface antigen, disease, and toxin. The United States of America (USA) was the most dominant country in terms of publications, citations, corresponding author country, and global collaboration in anthrax vaccine research. The USA had the strongest collaboration with the United Kingdom (UK), China, Canada, Germany, and France. Conclusion: This is the first bibliometric study that provides a comprehensive historical overview of scientific studies. From 2006 to 2008, more than 20% of the total articles were published; however, a decrease was observed since 2013 in anthrax vaccine research. The developed countries made significant contributions to anthrax vaccine-related research, especially the USA. Among the top 10 leading authors, six authors are from the USA. The majority of the top leading institutions are also from the USA. About 90% of the total studies were funded by the United States Department of Health and Human Services (HHS), National Institutes of Health (NIH), USA, and the National Institute of Allergy and Infectious Diseases (NIAID), USA.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
- Correspondence: or (T.A.); (B.A.-O.)
| | - Mukhtiar Baig
- Department of Clinical Biochemistry, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah 25289, Saudi Arabia;
| | - Sahar Shafik Othman
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 25289, Saudi Arabia;
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah 25289, Saudi Arabia;
| | - Shabir Ahmad
- Department of Agriculture, Bacha Khan University Charsadda, P.O. Box 20, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan; (S.A.); (S.M.R.)
| | - Syed Majid Rasheed
- Department of Agriculture, Bacha Khan University Charsadda, P.O. Box 20, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan; (S.A.); (S.M.R.)
| | - Mohammad T. Al Bataineh
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Basem Al-Omari
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- K.U. Research and Data Intelligence Support Center (RDISC) AW 8474000331, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: or (T.A.); (B.A.-O.)
| |
Collapse
|
8
|
Scaria PV, Anderson C, Muratova O, Alani N, Trinh HV, Nadakal ST, Zaidi I, Lambert L, Beck Z, Barnafo EK, Rausch KM, Rowe C, Chen B, Matyas GR, Rao M, Alving CR, Narum DL, Duffy PE. Malaria transmission-blocking conjugate vaccine in ALFQ adjuvant induces durable functional immune responses in rhesus macaques. NPJ Vaccines 2021; 6:148. [PMID: 34887448 PMCID: PMC8660773 DOI: 10.1038/s41541-021-00407-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Malaria transmission-blocking vaccines candidates based on Pfs25 and Pfs230 have advanced to clinical studies. Exoprotein A (EPA) conjugate of Pfs25 in Alhydrogel® developed functional immunity in humans, with limited durability. Pfs230 conjugated to EPA (Pfs230D1-EPA) with liposomal adjuvant AS01 is currently in clinical trials in Mali. Studies with these conjugates revealed that non-human primates are better than mice to recapitulate the human immunogenicity and functional activity. Here, we evaluated the effect of ALFQ, a liposomal adjuvant consisting of TLR4 agonist and QS21, on the immunogenicity of Pfs25-EPA and Pfs230D1-EPA in Rhesus macaques. Both conjugates generated strong antibody responses and functional activity after two vaccinations though activity declined rapidly. A third vaccination of Pfs230D1-EPA induced functional activity lasting at least 9 months. Antibody avidity increased with each vaccination and correlated strongly with functional activity. IgG subclass analysis showed induction of Th1 and Th2 subclass antibody levels that correlated with activity.
Collapse
Affiliation(s)
- Puthupparampil V. Scaria
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Charles Anderson
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Olga Muratova
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Nada Alani
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Hung V. Trinh
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Steven T. Nadakal
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Irfan Zaidi
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Lynn Lambert
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Zoltan Beck
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA ,grid.410513.20000 0000 8800 7493Present Address: Pfizer, Vaccine Research and Development, Pearl River, NY USA
| | - Emma K. Barnafo
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Kelly M. Rausch
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Chris Rowe
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Beth Chen
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Gary R. Matyas
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Mangala Rao
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Carl R. Alving
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - David L. Narum
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Patrick E. Duffy
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| |
Collapse
|
9
|
Smith K, Garman L, Norris K, Muther J, Duke A, Engler RJM, Nelson MR, Collins LC, Spooner C, Guthridge C, James JA. Insufficient Anthrax Lethal Toxin Neutralization Is Associated with Antibody Subclass and Domain Specificity in the Plasma of Anthrax-Vaccinated Individuals. Microorganisms 2021; 9:microorganisms9061204. [PMID: 34199431 PMCID: PMC8229884 DOI: 10.3390/microorganisms9061204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Anthrax vaccine adsorbed (AVA) is a significant line of defense against bioterrorist attack from Bacillus anthracis spores. However, in a subset of individuals, this vaccine may produce a suboptimal quantity of anti-protective antigen (PA), antibodies that are poorly neutralizing, and/or antibody titers that wane over time, necessitating annual boosters. To study individuals with such poor responses, we examine the properties of anti-PA in a subset of vaccinated individuals that make significant quantities of antibody but are still unable to neutralize toxin. In this cohort, characterized by poorly neutralizing antibody, we find that increased IgG4 to IgG1 subclass ratios, low antibody avidity, and insufficient antibody targeting domain 4 associate with improper neutralization. Thus, future vaccines and vaccination schedules should be formulated to improve these deficiencies.
Collapse
Affiliation(s)
- Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
- Correspondence: (K.S.); (J.A.J.); Tel.: +1-405-271-3275 (K.S.); +1-405-271-4987 (J.A.J.)
| | - Lori Garman
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA;
| | - Kathleen Norris
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Jennifer Muther
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Angie Duke
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Renata J. M. Engler
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Michael R. Nelson
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Limone C. Collins
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Christina Spooner
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA; (R.J.M.E.); (M.R.N.); (L.C.C.); (C.S.)
| | - Carla Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
| | - Judith A. James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA; (K.N.); (J.M.); (A.D.); (C.G.)
- Department of Microbiology and Immunology, Oklahoma University Health Science Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Departments of Medicine and Pathology, Oklahoma University Health Science Center, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Correspondence: (K.S.); (J.A.J.); Tel.: +1-405-271-3275 (K.S.); +1-405-271-4987 (J.A.J.)
| |
Collapse
|
10
|
Progress towards the Development of a NEAT Vaccine for Anthrax II: Immunogen Specificity and Alum Effectiveness in an Inhalational Model. Infect Immun 2020; 88:IAI.00082-20. [PMID: 32393506 DOI: 10.1128/iai.00082-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.
Collapse
|
11
|
Savransky V, Ionin B, Reece J. Current Status and Trends in Prophylaxis and Management of Anthrax Disease. Pathogens 2020; 9:E370. [PMID: 32408493 PMCID: PMC7281134 DOI: 10.3390/pathogens9050370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Bacillus anthracis has been identified as a potential military and bioterror agent as it is relatively simple to produce, with spores that are highly resilient to degradation in the environment and easily dispersed. These characteristics are important in describing how anthrax could be used as a weapon, but they are also important in understanding and determining appropriate prevention and treatment of anthrax disease. Today, anthrax disease is primarily enzootic and found mostly in the developing world, where it is still associated with considerable mortality and morbidity in humans and livestock. This review article describes the spectrum of disease caused by anthrax and the various prevention and treatment options. Specifically we discuss the following; (1) clinical manifestations of anthrax disease (cutaneous, gastrointestinal, inhalational and intravenous-associated); (2) immunology of the disease; (3) an overview of animal models used in research; (4) the current World Health Organization and U.S. Government guidelines for investigation, management, and prophylaxis; (5) unique regulatory approaches to licensure and approval of anthrax medical countermeasures; (6) the history of vaccination and pre-exposure prophylaxis; (7) post-exposure prophylaxis and disease management; (8) treatment of symptomatic disease through the use of antibiotics and hyperimmune or monoclonal antibody-based antitoxin therapies; and (9) the current landscape of next-generation product candidates under development.
Collapse
Affiliation(s)
- Vladimir Savransky
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA; (B.I.); (J.R.)
| | | | | |
Collapse
|
12
|
Clark A, Wolfe DN. Current State of Anthrax Vaccines and Key R&D Gaps Moving Forward. Microorganisms 2020; 8:microorganisms8050651. [PMID: 32365729 PMCID: PMC7285291 DOI: 10.3390/microorganisms8050651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
A licensed anthrax vaccine has been available for pre-exposure prophylaxis in the United States since 1970, and it was approved for use as a post-exposure prophylaxis, in combination with antibiotic treatment, in 2015. A variety of other vaccines are available in other nations, approved under various regulatory frameworks. However, investments in anthrax vaccines continue due to the severity of the threat posed by this bacterium, as both a naturally occurring pathogen and the potential for use as a bioweapon. In this review, we will capture the current landscape of anthrax vaccine development, focusing on those lead candidates in clinical development. Although approved products are available, a robust pipeline of candidate vaccines are still in development to try to address some of the key research gaps in the anthrax vaccine field. We will then highlight some of the most pressing needs in terms of anthrax vaccine research.
Collapse
|
13
|
Perry MR, Ionin B, Barnewall RE, Vassar ML, Reece JJ, Park S, Lemiale L, Skiadopoulos MH, Shearer JD, Savransky V. Development of a guinea pig inhalational anthrax model for evaluation of post-exposure prophylaxis efficacy of anthrax vaccines. Vaccine 2020; 38:2307-2314. [PMID: 32029323 DOI: 10.1016/j.vaccine.2020.01.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
A next-generation anthrax vaccine candidate, AV7909, is being developed for post-exposure prophylaxis (PEP) of inhalational anthrax in combination with the recommended course of antimicrobial therapy. Clinical efficacy studies of anthrax countermeasures in humans are not ethical or feasible, therefore, licensure of AV7909 for PEP is being pursued under the US Food and Drug Administration (FDA) Animal Rule, which requires that evidence of effectiveness be demonstrated in an animal model of anthrax, where results of studies in such a model can establish reasonable likelihood of AV7909 to produce clinical benefit in humans. Initial development of a PEP model for inhalational anthrax included evaluation of post-exposure ciprofloxacin pharmacokinetics (PK), tolerability and survival in guinea pigs treated with various ciprofloxacin dosing regimens. Three times per day (TID) intraperitoneal (IP) dosing with 7.5 mg/kg of ciprofloxacin initiated 1 day following inhalational anthrax challenge and continued for 14 days was identified as a well tolerated partially curative ciprofloxacin treatment regimen. The added benefit of AV7909 vaccination was evaluated in guinea pigs given the partially curative ciprofloxacin treatment regimen. Groups of ciprofloxacin-treated guinea pigs were vaccinated. 1 and 8 days post-challenge with serial dilutions of AV7909, a 1:16 dilution of AVA, or normal saline. A group of untreated guinea pigs was included as a positive control to confirm lethal B. anthracis exposure. Post-exposure vaccination with the AV7909 anthrax vaccine candidate administered in combination with the partially curative ciprofloxacin treatment significantly increased survival of guinea pigs compared to ciprofloxacin treatment alone. These results suggest that the developed model can be useful in demonstrating added value of the vaccine for PEP.
Collapse
Affiliation(s)
- Mark R Perry
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Road, JM7, West Jefferson, OH 46162, USA
| | - Boris Ionin
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Roy E Barnewall
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Road, JM7, West Jefferson, OH 46162, USA
| | - Michelle L Vassar
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Road, JM7, West Jefferson, OH 46162, USA
| | - Joshua J Reece
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Sukjoon Park
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Laurence Lemiale
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | | | - Jeffry D Shearer
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Vladimir Savransky
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA.
| |
Collapse
|
14
|
Weir GM, MacDonald LD, Rajagopalan R, Sivko GS, Valderas MW, Rayner J, Berger BJ, Sammatur L, Stanford MM. Single dose of DPX-rPA, an enhanced-delivery anthrax vaccine formulation, protects against a lethal Bacillus anthracis spore inhalation challenge. NPJ Vaccines 2019; 4:6. [PMID: 30774997 PMCID: PMC6368554 DOI: 10.1038/s41541-019-0102-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Anthrax is a serious biological threat caused by pulmonary exposure to aerosolized spores of Bacillus anthracis. Biothrax® (anthrax vaccine adsorbed (AVA)) is the only Food and Drug Administration-licensed vaccine and requires five administrations over 12 months with annual boosting to maintain pre-exposure prophylaxis. Here we report the evaluation of a single intramuscular injection of recombinant B. anthracis-protective antigen (rPA) formulated in the DPX delivery platform. Immune responses were compared to an alum-based formulation in mice and rabbits. Serological analysis of anti-rPA immunoglobulin G and toxin neutralization activity demonstrated higher responses induced by DPX-rPA when compared to rPA in alum. DPX-rPA was compared to AVA in rabbits and non-human primates (NHPs). In both species, DPX-rPA generated responses after a single immunization, whereas AVA required two immunizations. In rabbits, single injection of DPX-rPA or two injections of AVA conferred 100% protection from anthrax challenge. In NHPs, single-dose DPX-rPA was 100% protective against challenge, whereas one animal in the two-dose AVA group and all saline administered animals succumbed to infection. DPX-rPA was minimally reactogenic in all species tested. These data indicate that DPX-rPA may offer improvement over AVA by reducing the doses needed for protective immune responses and is a promising candidate as a new-generation anthrax vaccine. A lipid-based anthrax vaccine formulation offers immunity from the first injection. Bacillus anthracis is a lethal pathogen at high risk for use in biological warfare. The only FDA-licensed vaccine for anthrax, AVA, requires multiple doses over six months followed by regular boosters, indicating a need for rapidly immunizing vaccines. Genevieve Weir and Lisa MacDonald, from IMV Inc., with Canadian and US collaborators, here describe a prophylactic consisting of B. anthracis antigens suspended in a lipid-in-oil formulation. Their candidate, DPX-rPA, generated antigen-specific antibodies in rabbits and monkeys after one dose, compared to two for AVA. DPX-rPA also protected both species from B. anthracis spores after one dose. The results indicate that single-dose DPX-rPA is equally protective as two doses of AVA and could serve as pre-exposure and post-exposure prophylaxis. Future studies may confirm its potential as a vaccine for humans.
Collapse
Affiliation(s)
- Genevieve M Weir
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada
| | - Lisa D MacDonald
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada
| | | | - Gloria S Sivko
- 2Battelle, 1425 Plain City Georgesville Road, West Jefferson, OH 43162 USA
| | | | - Jonathan Rayner
- 3Southern Research, 2000 9th Avenue S, Birmingham, AL 35205 USA
| | - Bradley J Berger
- 4Suffield Research Centre, Defence Research and Development Canada, Medicine Hat, AB T1A 8K6 Canada
| | - Leeladhar Sammatur
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada
| | - Marianne M Stanford
- IMV Inc., 130 Eileen Stubbs Avenue, Suite 19, Dartmouth, NS B3B 2C4 Canada.,5Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Room 7-C, PO BOX 15000, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
15
|
Aggarwal S, Somani VK, Gupta S, Garg R, Bhatnagar R. Development of a novel multiepitope chimeric vaccine against anthrax. Med Microbiol Immunol 2019; 208:185-195. [PMID: 30671633 DOI: 10.1007/s00430-019-00577-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/03/2019] [Indexed: 02/03/2023]
Abstract
Bacillus anthracis (BA), the etiological agent of anthrax, secretes protective antigen (PA), lethal factor (LF), and edema factor (EF) as major virulence mediators. Amongst these, PA-based vaccines are most effective for providing immunity against BA, but their low shelf life limits their usage. Previous studies showed that B-cell epitopes, ID II and ID III present in PA domain IV possess higher toxin neutralization activity and elicit higher antibody titer than ID I. Moreover, N-terminal region of both LF and EF harbors PA-binding sites which share 100% identity with each other. Here, in this study, we have developed an epitope-based chimeric vaccine (ID-LFn) comprising ID II-ID III region of PA and N-terminal region of LF. We have also evaluated its protective efficacy as well as stability and found it to be more stable than PA-based vaccine. Binding reactivities of ID-LFn with anti-PA/LF/EF antibodies were determined by ELISA. The stability of chimeric vaccine was assessed using circular dichroism spectroscopy. ID-LFn response was characterized by toxin neutralization, lymphocyte proliferation isotyping and cytokine profiling. The protective efficacy was analyzed by challenging ID-LFn-immunized mice with B. anthracis (pXO1+ and pXO2+). ID-LFn was found to be significantly stable as compared to PA. Anti-ID-LFn antibodies recognized PA, LF as well as EF. The T-cell response and the protective efficacy of ID-LFn were found to be almost similar to PA. ID-LFn exhibits equal protective efficacy in mice and possesses more stability as compared to PA along with the capability of recognizing PA, LF and EF at the same time. Thus, it can be considered as an improved vaccine against anthrax with better shelf life. ID-LFn, a novel multiepitope chimeric anthrax vaccine: ID-LFn comprises of immunodominant epitopes of domain 4 of PA and N-terminal homologous stretch of LF and EF. The administration of this protein as a vaccine provides protection against anthrax.
Collapse
Affiliation(s)
- Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Vikas Kumar Somani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sonal Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajni Garg
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
- Banaras Hindu University, Banaras, Uttar Pradesh, 221005, India.
| |
Collapse
|
16
|
Shah HB, Smith K, Wren JD, Webb CF, Ballard JD, Bourn RL, James JA, Lang ML. Insights From Analysis of Human Antigen-Specific Memory B Cell Repertoires. Front Immunol 2019; 9:3064. [PMID: 30697210 PMCID: PMC6340933 DOI: 10.3389/fimmu.2018.03064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Memory B cells that are generated during an infection or following vaccination act as sentinels to guard against future infections. Upon repeat antigen exposure memory B cells differentiate into new antibody-secreting plasma cells to provide rapid and sustained protection. Some pathogens evade or suppress the humoral immune system, or induce memory B cells with a diminished ability to differentiate into new plasma cells. This leaves the host vulnerable to chronic or recurrent infections. Single cell approaches coupled with next generation antibody gene sequencing facilitate a detailed analysis of the pathogen-specific memory B cell repertoire. Monoclonal antibodies that are generated from antibody gene sequences allow a functional analysis of the repertoire. This review discusses what has been learned thus far from analysis of diverse pathogen-specific memory B cell compartments and describes major differences in their repertoires. Such information may illuminate ways to advance the goal of improving vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Hemangi B Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Biochemistry and Molecular Biology and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carol F Webb
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Rheumatology, Immunology and Allergy, Department of Cell Biology and Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Correlation between anthrax lethal toxin neutralizing antibody levels and survival in guinea pigs and nonhuman primates vaccinated with the AV7909 anthrax vaccine candidate. Vaccine 2017; 35:4952-4959. [PMID: 28774566 DOI: 10.1016/j.vaccine.2017.07.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 07/23/2017] [Indexed: 01/29/2023]
Abstract
The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel+CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific.
Collapse
|
18
|
Dumas EK, Garman L, Cuthbertson H, Charlton S, Hallis B, Engler RJM, Choudhari S, Picking WD, James JA, Farris AD. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 2017; 35:3416-3422. [PMID: 28504191 DOI: 10.1016/j.vaccine.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines.
Collapse
Affiliation(s)
- Eric K Dumas
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Hannah Cuthbertson
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Sue Charlton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Bassam Hallis
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Renata J M Engler
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD 20814, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, 320B Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA; Departments of Medicine and Pathology, OUHSC, 1000 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13th St., Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
19
|
Lv J, Zhang YY, Lu X, Zhang H, Wei L, Gao J, Hu B, Hu WW, Hu DZ, Jia N, Feng X. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice. Biologicals 2017; 46:130-138. [PMID: 28215694 DOI: 10.1016/j.biologicals.2017.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow.
Collapse
Affiliation(s)
- Jin Lv
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Ying-Ying Zhang
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Xun Lu
- The Second Military Medical University, Shanghai, China
| | - Hao Zhang
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Lin Wei
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Jun Gao
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Bin Hu
- The First Affiliated Hospital of the PLA General Hospital, Beijing, China
| | - Wen-Wei Hu
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Dun-Zhong Hu
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Xin Feng
- The General Hospital of the PLA Rocket Force, Beijing, China.
| |
Collapse
|
20
|
Rhodes SJ, Zelmer A, Knight GM, Prabowo SA, Stockdale L, Evans TG, Lindenstrøm T, White RG, Fletcher H. The TB vaccine H56+IC31 dose-response curve is peaked not saturating: Data generation for new mathematical modelling methods to inform vaccine dose decisions. Vaccine 2016; 34:6285-6291. [PMID: 27816373 DOI: 10.1016/j.vaccine.2016.10.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In vaccine development, dose-response curves are commonly assumed to be saturating. Evidence from tuberculosis (TB) vaccine, H56+IC31 shows this may be incorrect. Mathematical modelling techniques may be useful in efficiently identifying the most immunogenic dose, but model calibration requires longitudinal data across multiple doses and time points. AIMS We aimed to (i) generate longitudinal response data in mice for a wide range of H56+IC31 doses for use in future mathematical modelling and (ii) test whether a 'saturating' or 'peaked' dose-response curve, better fit the empirical data. METHODS We measured IFN-γ secretion using an ELISPOT assay in the splenocytes of mice who had received doses of 0, 0.1, 0.5, 1, 5 or 15μg H56+IC31. Mice were vaccinated twice (at day 0 and 15) and responses measured for each dose at 8 time points over a 56-day period following first vaccination. Summary measures Area Under the Curve (AUC), peak and day 56 responses were compared between dose groups. Corrected Akaike Information Criteria was used to test which dose-response curve best fitted empirical data, at different time ranges. RESULTS (i) All summary measures for dose groups 0.1 and 0.5μg were higher than the control group (p<0.05). The AUC was higher for 0.1 than 15μg dose. (ii) There was strong evidence that the dose-response curve was peaked for all time ranges, and the best dose is likely to be lower than previous empirical experiments have evaluated. CONCLUSION These results suggest that the highest, safe dose may not always optimal in terms of immunogenicity, as the dose-response curve may not saturate. Detailed longitudinal dose range data for TB vaccine H56+IC31 reveals response dynamics in mice that should now be used to identify optimal doses for humans using clinical data, using new data collection and mathematical modelling.
Collapse
Affiliation(s)
- Sophie J Rhodes
- TB Modelling Group, CMMID, TB Centre, London School of Hygiene and Tropical Medicine, UK.
| | - Andrea Zelmer
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, UK
| | - Gwenan M Knight
- TB Modelling Group, CMMID, TB Centre, London School of Hygiene and Tropical Medicine, UK; National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, UK
| | - Satria Arief Prabowo
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, UK
| | - Lisa Stockdale
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, UK
| | | | | | - Richard G White
- TB Modelling Group, CMMID, TB Centre, London School of Hygiene and Tropical Medicine, UK
| | - Helen Fletcher
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
21
|
Longstreth J, Skiadopoulos MH, Hopkins RJ. Licensure strategy for pre- and post-exposure prophylaxis of biothrax vaccine: the first vaccine licensed using the FDA animal rule. Expert Rev Vaccines 2016; 15:1467-1479. [DOI: 10.1080/14760584.2016.1254556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Janice Longstreth
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| | | | - Robert J. Hopkins
- Biodefense Division, Emergent BioSolutions Inc., Gaithersburg, MD, US
| |
Collapse
|
22
|
Obiltoxaximab Prevents Disseminated Bacillus anthracis Infection and Improves Survival during Pre- and Postexposure Prophylaxis in Animal Models of Inhalational Anthrax. Antimicrob Agents Chemother 2016; 60:5796-805. [PMID: 27431219 PMCID: PMC5038297 DOI: 10.1128/aac.01102-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022] Open
Abstract
The Centers for Disease Control and Prevention recommend adjunctive antitoxins when systemic anthrax is suspected. Obiltoxaximab, a monoclonal antibody against protective antigen (PA), is approved for treatment of inhalational anthrax in combination with antibiotics and for prophylaxis when alternative therapies are not available. The impact of toxin neutralization with obiltoxaximab during pre- and postexposure prophylaxis was explored, and efficacy results that supported the prophylaxis indication are presented here. New Zealand White rabbits and cynomolgus macaques received obiltoxaximab as a single intramuscular or intravenous dose of 2 to 16 mg/kg of body weight at various times relative to Bacillus anthracis aerosol spore challenge. The primary endpoint was survival, and effect of treatment timing was explored. In rabbits, obiltoxaximab administration 9 h postchallenge singly or combined with a 5-day levofloxacin regimen protected 89% to 100% of animals compared to 33% with levofloxacin monotherapy. In cynomolgus macaques, a single intramuscular dose of 16 mg/kg obiltoxaximab led to 100% survival when given 1 to 3 days preexposure and 83% to 100% survival when given 18 to 24 h postexposure and prior to systemic bacteremia onset. Obiltoxaximab administration after bacteremia onset resulted in lower (25% to 50%) survival rates reflective of treatment setting. Prophylactic administration of obiltoxaximab before spore challenge or to spore-challenged animals before systemic bacterial dissemination is efficacious in promoting survival, ameliorating toxemia, and inhibiting bacterial spread to the periphery.
Collapse
|
23
|
Schiffer JM, McNeil MM, Quinn CP. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less. Expert Rev Vaccines 2016; 15:1151-62. [PMID: 26942655 PMCID: PMC9041331 DOI: 10.1586/14760584.2016.1162104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application.
Collapse
Affiliation(s)
- Jarad M Schiffer
- a MPIR Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| | - Michael M McNeil
- b Immunization Safety Office, Division of Healthcare Quality Promotion , National Center for Emerging and Zoonotic Infectious Diseases , Atlanta , GA , USA
| | - Conrad P Quinn
- c Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| |
Collapse
|
24
|
Cross-species prediction of human survival probabilities for accelerated anthrax vaccine absorbed (AVA) regimens and the potential for vaccine and antibiotic dose sparing. Vaccine 2016; 34:6512-6517. [PMID: 27558619 DOI: 10.1016/j.vaccine.2016.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022]
Abstract
Anthrax vaccine adsorbed (AVA, BioThrax) was recently approved by the Food and Drug Administration (FDA) for a post-exposure prophylaxis (PEP) indication in adults 18-65years of age. The schedule is three doses administered subcutaneous (SC) at 2-week intervals (0, 2, and 4weeks), in conjunction with a 60-day course of antimicrobials. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) developed an animal model to support assessment of a shortened antimicrobial PEP duration following Bacillus anthracis exposure. A nonhuman primate (NHP) study was completed to evaluate the efficacy of a two dose anthrax vaccine absorbed (AVA) schedule (0, 2weeks) aerosol challenged with high levels of B. anthracis spores at week4- the time point at which humans would receive the third vaccination of the approved PEP schedule. Here we use logistic regression models to combine the survival data from the NHP study along with serum anthrax lethal toxin neutralizing activity (TNA) and anti-PA IgG measured by enzyme linked immunosorbent assay (ELISA) data to perform a cross-species analysis to estimate survival probabilities in vaccinated human populations at this time interval (week4 of the PEP schedule). The bridging analysis demonstrated that high levels of NHP protection also yield high predicted probability of human survival just 2weeks after the second dose of vaccine with the full or half antigen dose regimen. The absolute difference in probability of human survival between the full and half antigen dose was estimated to be at most approximately 20%, indicating that more investigation of the half-antigen dose for vaccine dose sparing strategies may be warranted.
Collapse
|
25
|
Evaluation of early immune response-survival relationship in cynomolgus macaques after Anthrax Vaccine Adsorbed vaccination and Bacillus anthracis spore challenge. Vaccine 2016; 34:6518-6528. [PMID: 27155494 DOI: 10.1016/j.vaccine.2016.04.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/02/2023]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved by the US Food and Drug Administration for post-exposure prophylaxis (PEP) of anthrax in adults. The PEP schedule is 3 subcutaneous (SC) doses (0, 14 and 28 days), in conjunction with a 60 day course of antimicrobials. The objectives of this study were to understand the onset of protection from AVA PEP vaccination and to assess the potential for shortening the duration of antimicrobial treatment (http://www.phe.gov/Preparedness/mcm/phemce/Documents/2014-phemce-sip.pdf). We determined the efficacy against inhalation anthrax in nonhuman primates (NHP) of the first two doses of the PEP schedule by infectious challenge at the time scheduled for receipt of the third PEP dose (Day 28). Forty-eight cynomolgus macaques were randomized to five groups and vaccinated with serial dilutions of AVA on Days 0 and 14. NHP were exposed to Bacillus anthracis Ames spores on Day 28 (target dose 200 LD50 equivalents). Anti-protective antigen (PA) IgG and toxin neutralizing antibody (TNA) responses to vaccination and in post-challenge survivors were determined. Post-challenge blood and selected tissue samples were assessed for B. anthracis at necropsy or end of study (Day 56). Pre-challenge humoral immune responses correlated with survival, which ranged from 24 to 100% survival depending on vaccination group. Surviving, vaccinated animals had elevated anti-PA IgG and TNA levels for the duration of the study, were abacteremic, exhibited no apparent signs of infection, and had no gross or microscopic lesions. However, survivors had residual spores in lung tissues. We conclude that the first two doses of the PEP schedule provide high levels of protection by the scheduled timing of the third dose. These data may also support consideration of a shorter duration PEP antimicrobial regimen.
Collapse
|
26
|
Ghosh N, Gunti D, Lukka H, Reddy BR, Padmaja J, Goel AK. Development & validation of a quantitative anti-protective antigen IgG enzyme linked immunosorbent assay for serodiagnosis of cutaneous anthrax. Indian J Med Res 2016; 142:196-204. [PMID: 26354217 PMCID: PMC4613441 DOI: 10.4103/0971-5916.164258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background & objectives: Anthrax caused by Bacillus anthracis is primarily a disease of herbivorous animals, although several mammals are vulnerable to it. ELISA is the most widely accepted serodiagnostic assay for large scale surveillance of cutaneous anthrax. The aims of this study were to develop and evaluate a quantitative ELISA for determination of IgG antibodies against B. anthracis protective antigen (PA) in human cutaneous anthrax cases. Methods: Quantitative ELISA was developed using the recombinant PA for coating and standard reference serum AVR801 for quantification. A total of 116 human test and control serum samples were used in the study. The assay was evaluated for its precision, accuracy and linearity. Results: The minimum detection limit and lower limit of quantification of the assay for anti-PA IgG were 3.2 and 4 µg/ml, respectively. The serum samples collected from the anthrax infected patients were found to have anti-PA IgG concentrations of 5.2 to 166.3 µg/ml. The intra-assay precision per cent CV within an assay and within an operator ranged from 0.99 to 7.4 per cent and 1.7 to 3.9 per cent, respectively. The accuracy of the assay was high with a per cent error of 6.5 - 24.1 per cent. The described assay was found to be linear between the range of 4 to 80 ng/ml (R2=0.9982; slope=0.9186; intercept = 0.1108). Interpretation & conclusions: The results suggested that the developed assay could be a useful tool for quantification of anti-PA IgG response in human after anthrax infection or vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | - A K Goel
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
27
|
Abstract
Traditional vaccination with whole pathogens or pathogen-derived subunits has completely eliminated diseases like smallpox, and has greatly limited the incidence, morbidity and mortality associated with many other infectious diseases. Unfortunately, a large burden of infectious disease remains that may be preventable through vaccination. For many of these, more focused and innovative approaches may be essential for the development of effective vaccines.
Collapse
Affiliation(s)
- Jon Oscherwitz
- a Division of Hematology-Oncology, Department of Internal Medicine , University of Michigan Medical School , Ann Arbor , MI , USA.,b Veterans Administration Ann Arbor Healthcare System , Ann Arbor , MI , USA
| |
Collapse
|
28
|
Humoral and Cell-Mediated Immune Responses to Alternate Booster Schedules of Anthrax Vaccine Adsorbed in Humans. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:326-38. [PMID: 26865594 DOI: 10.1128/cvi.00696-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022]
Abstract
Protective antigen (PA)-specific antibody and cell-mediated immune (CMI) responses to annual and alternate booster schedules of anthrax vaccine adsorbed (AVA; BioThrax) were characterized in humans over 43 months. Study participants received 1 of 6 vaccination schedules: a 3-dose intramuscular (IM) priming series (0, 1, and 6 months) with a single booster at 42 months (4-IM); 3-dose IM priming with boosters at 18 and 42 months (5-IM); 3-dose IM priming with boosters at 12, 18, 30, and 42 months (7-IM); the 1970 licensed priming series of 6 doses (0, 0.5, 1, 6, 12, and 18 months) and two annual boosters (30 and 42 months) administered either subcutaneously (SQ) (8-SQ) or IM (8-IM); or saline placebo control at all eight time points. Antibody response profiles included serum anti-PA IgG levels, subclass distributions, avidity, and lethal toxin neutralization activity (TNA). CMI profiles included frequencies of gamma interferon (IFN-γ)- and interleukin 4 (IL-4)-secreting cells and memory B cells (MBCs), lymphocyte stimulation indices (SI), and induction of IFN-γ, IL-2, IL-4, IL-6, IL-1β, and tumor necrosis factor alpha (TNF-α) mRNA. All active schedules elicited high-avidity PA-specific IgG, TNA, MBCs, and T cell responses with a mixed Th1-Th2 profile and Th2 dominance. Anti-PA IgG and TNA were highly correlated (e.g., month 7,r(2)= 0.86,P< 0.0001, log10 transformed) and declined in the absence of boosters. Boosters administered IM generated the highest antibody responses. Increasing time intervals between boosters generated antibody responses that were faster than and superior to those obtained with the final month 42 vaccination. CMI responses to the 3-dose IM priming remained elevated up to 43 months. (This study has been registered at ClinicalTrials.gov under registration no. NCT00119067.).
Collapse
|
29
|
Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R. Toxins (Basel) 2016; 8:toxins8030056. [PMID: 26927174 PMCID: PMC4810201 DOI: 10.3390/toxins8030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.
Collapse
|
30
|
Kachura MA, Hickle C, Kell SA, Sathe A, Calacsan C, Kiwan R, Hall B, Milley R, Ott G, Coffman RL, Kanzler H, Campbell JD. A CpG-Ficoll Nanoparticle Adjuvant for Anthrax Protective Antigen Enhances Immunogenicity and Provides Single-Immunization Protection against Inhaled Anthrax in Monkeys. THE JOURNAL OF IMMUNOLOGY 2015; 196:284-97. [PMID: 26608924 DOI: 10.4049/jimmunol.1501903] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023]
Abstract
Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important.
Collapse
Affiliation(s)
| | | | | | - Atul Sathe
- Dynavax Technologies, Berkeley, CA 94710; and
| | | | | | - Brian Hall
- Amnis Corp., EMD Millipore, Seattle, WA 98119
| | | | - Gary Ott
- Dynavax Technologies, Berkeley, CA 94710; and
| | | | | | | |
Collapse
|
31
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
32
|
Bridging non-human primate correlates of protection to reassess the Anthrax Vaccine Adsorbed booster schedule in humans. Vaccine 2015; 33:3709-16. [PMID: 26072016 PMCID: PMC6360524 DOI: 10.1016/j.vaccine.2015.05.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 11/20/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax) is approved for use in humans as a priming series of 3 intramuscular (i.m.) injections (0, 1, 6 months; 3-IM) with boosters at 12 and 18 months, and annually thereafter for those at continued risk of infection. A reduction in AVA booster frequency would lessen the burden of vaccination, reduce the cumulative frequency of vaccine associated adverse events and potentially expand vaccine coverage by requiring fewer doses per schedule. Because human inhalation anthrax studies are neither feasible nor ethical, AVA efficacy estimates are determined using cross-species bridging of immune correlates of protection (COP) identified in animal models. We have previously reported that the AVA 3-IM priming series provided high levels of protection in non-human primates (NHP) against inhalation anthrax for up to 4 years after the first vaccination. Penalized logistic regressions of those NHP immunological data identified that anti-protective antigen (anti-PA) IgG concentration measured just prior to infectious challenge was the most accurate single COP. In the present analysis, cross-species logistic regression models of this COP were used to predict probability of survival during a 43 month study in humans receiving the current 3-dose priming and 4 boosters (12, 18, 30 and 42 months; 7-IM) and reduced schedules with boosters at months 18 and 42 only (5-IM), or at month 42 only (4-IM). All models predicted high survival probabilities for the reduced schedules from 7 to 43 months. The predicted survival probabilities for the reduced schedules were 86.8% (4-IM) and 95.8% (5-IM) at month 42 when antibody levels were lowest. The data indicated that 4-IM and 5-IM are both viable alternatives to the current AVA pre-exposure prophylaxis schedule.
Collapse
|
33
|
Altmann DM. Host immunity to Bacillus anthracis lethal factor and other immunogens: implications for vaccine design. Expert Rev Vaccines 2014; 14:429-34. [PMID: 25400140 DOI: 10.1586/14760584.2015.981533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Infections of humans with Bacillus anthracis are an issue with respect to the biothreat both to civilians and military personnel, infections of individuals by infected livestock in endemic regions and, recently, infections of intravenous drug users injecting anthrax-contaminated heroin. Existing vaccination regimens are reliant on protective antigen neutralization induced by repeated boosts with the AVA or AVP vaccines. However, there is ongoing interest in updated approaches in light of the intensive booster regime and extent of reactogenicity inherent in the current protocols. Several other immunogens from the B. anthracis proteome have been characterized in recent years, including lethal factor. Lethal factor induces strong CD4 T-cell immunity and encompasses immunodominant epitopes of relevance across diverse HLA polymorphisms. Taken together, recent studies emphasize the potential benefits of vaccines able to confer synergistic immunity to protective antigen and to other immunogens, targeting both B-cell and T-cell repertoires.
Collapse
Affiliation(s)
- Daniel M Altmann
- Department of Medicine, Hammersmith Hospital, Imperial College, Du Cane Road, London, UK
| |
Collapse
|
34
|
Garman L, Vineyard AJ, Crowe SR, Harley JB, Spooner CE, Collins LC, Nelson MR, Engler RJM, James JA. Humoral responses to independent vaccinations are correlated in healthy boosted adults. Vaccine 2014; 32:5624-31. [PMID: 25140930 PMCID: PMC4323156 DOI: 10.1016/j.vaccine.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. METHODS Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. RESULTS Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). CONCLUSIONS Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.
Collapse
Affiliation(s)
- Lori Garman
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA
| | - Amanda J Vineyard
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - Sherry R Crowe
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | | | - Limone C Collins
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Michael R Nelson
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Renata J M Engler
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Judith A James
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Departments of Medicine and Pathology, Oklahoma City, OK 73104, USA.
| |
Collapse
|
35
|
Comprehensive analysis and selection of anthrax vaccine adsorbed immune correlates of protection in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1512-20. [PMID: 25185577 DOI: 10.1128/cvi.00469-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humoral and cell-mediated immune correlates of protection (COP) for inhalation anthrax in a rhesus macaque (Macaca mulatta) model were determined. The immunological and survival data were from 114 vaccinated and 23 control animals exposed to Bacillus anthracis spores at 12, 30, or 52 months after the first vaccination. The vaccinated animals received a 3-dose intramuscular priming series (3-i.m.) of anthrax vaccine adsorbed (AVA) (BioThrax) at 0, 1, and 6 months. The immune responses were modulated by administering a range of vaccine dilutions. Together with the vaccine dilution dose and interval between the first vaccination and challenge, each of 80 immune response variables to anthrax toxin protective antigen (PA) at every available study time point was analyzed as a potential COP by logistic regression penalized by least absolute shrinkage and selection operator (LASSO) or elastic net. The anti-PA IgG level at the last available time point before challenge (last) and lymphocyte stimulation index (SI) at months 2 and 6 were identified consistently as a COP. Anti-PA IgG levels and lethal toxin neutralization activity (TNA) at months 6 and 7 (peak) and the frequency of gamma interferon (IFN-γ)-secreting cells at month 6 also had statistically significant positive correlations with survival. The ratio of interleukin 4 (IL-4) mRNA to IFN-γ mRNA at month 6 also had a statistically significant negative correlation with survival. TNA had lower accuracy as a COP than did anti-PA IgG response. Following the 3-i.m. priming with AVA, the anti-PA IgG responses at the time of exposure or at month 7 were practicable and accurate metrics for correlating vaccine-induced immunity with protection against inhalation anthrax.
Collapse
|
36
|
Protective antigen-specific memory B cells persist years after anthrax vaccination and correlate with humoral immunity. Toxins (Basel) 2014; 6:2424-31. [PMID: 25123559 PMCID: PMC4147590 DOI: 10.3390/toxins6082424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 01/20/2023] Open
Abstract
Anthrax Vaccine Adsorbed (AVA) generates short-lived protective antigen (PA) specific IgG that correlates with in vitro toxin neutralization and protection from Bacillus anthracis challenge. Animal studies suggest that when PA-specific IgG has waned, survival after spore challenge correlates with an activation of PA-specific memory B cells. Here, we characterize the quantity and the longevity of AVA-induced memory B cell responses in humans. Peripheral blood mononuclear cells (PBMCs) from individuals vaccinated ≥3 times with AVA (n = 50) were collected early (3-6 months, n = 27) or late after their last vaccination (2-5 years, n = 23), pan-stimulated, and assayed by ELISPOT for total and PA-specific memory B cells differentiated into antibody secreting cells (ASCs). PA-specific ASC percentages ranged from 0.02% to 6.25% (median: 1.57%) and did not differ between early and late post-vaccination individuals. PA-specific ASC percentages correlated with plasma PA-specific IgG (r = 0.42, p = 0.03) and toxin neutralization (r = 0.52, p = 0.003) early post vaccination. PA-specific ASC percentages correlated with supernatant anti-PA both early (r = 0.60, p = 0.001) and late post vaccination (r = 0.71, p < 0.0001). These data suggest PA-specific memory B cell responses are long-lived and can be estimated after recent vaccination by the magnitude and neutralization capacity of the humoral response.
Collapse
|
37
|
Ascough S, Ingram RJ, Chu KK, Reynolds CJ, Musson JA, Doganay M, Metan G, Ozkul Y, Baillie L, Sriskandan S, Moore SJ, Gallagher TB, Dyson H, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity. PLoS Pathog 2014; 10:e1004085. [PMID: 24788397 PMCID: PMC4006929 DOI: 10.1371/journal.ppat.1004085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified. Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
Collapse
Affiliation(s)
- Stephanie Ascough
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca J. Ingram
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | - Karen K. Chu
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Julie A. Musson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mehmet Doganay
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Gökhan Metan
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Stephen J. Moore
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa B. Gallagher
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - E. Diane Williamson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Maillere
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif Sur Yvette, France
| | | | - Daniel M. Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2014; 12:955-70. [PMID: 23984963 DOI: 10.1586/14760584.2013.814860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
39
|
Wright JG, Plikaytis BD, Rose CE, Parker SD, Babcock J, Keitel W, El Sahly H, Poland GA, Jacobson RM, Keyserling HL, Semenova VA, Li H, Schiffer J, Dababneh H, Martin SK, Martin SW, Marano N, Messonnier NE, Quinn CP. Effect of reduced dose schedules and intramuscular injection of anthrax vaccine adsorbed on immunological response and safety profile: a randomized trial. Vaccine 2013; 32:1019-28. [PMID: 24373307 DOI: 10.1016/j.vaccine.2013.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We evaluated an alternative administration route, reduced schedule priming series, and increased intervals between booster doses for anthrax vaccine adsorbed (AVA). AVA's originally licensed schedule was 6 subcutaneous (SQ) priming injections administered at months (m) 0, 0.5, 1, 6, 12 and 18 with annual boosters; a simpler schedule is desired. METHODS Through a multicenter randomized, double blind, non-inferiority Phase IV human clinical trial, the originally licensed schedule was compared to four alternative and two placebo schedules. 8-SQ group participants received 6 SQ injections with m30 and m42 "annual" boosters; participants in the 8-IM group received intramuscular (IM) injections according to the same schedule. Reduced schedule groups (7-IM, 5-IM, 4-IM) received IM injections at m0, m1, m6; at least one of the m0.5, m12, m18, m30 vaccine doses were replaced with saline. All reduced schedule groups received a m42 booster. Post-injection blood draws were taken two to four weeks following injection. Non-inferiority of the alternative schedules was compared to the 8-SQ group at m2, m7, and m43. Reactogenicity outcomes were proportions of injection site and systemic adverse events (AEs). RESULTS The 8-IM group's m2 response was non-inferior to the 8-SQ group for the three primary endpoints of anti-protective antigen IgG geometric mean concentration (GMC), geometric mean titer, and proportion of responders with a 4-fold rise in titer. At m7 anti-PA IgG GMCs for the three reduced dosage groups were non-inferior to the 8-SQ group GMCs. At m43, 8-IM, 5-IM, and 4-IM group GMCs were superior to the 8-SQ group. Solicited injection site AEs occurred at lower proportions in the IM group compared to SQ. Route of administration did not influence the occurrence of systemic AEs. A 3 dose IM priming schedule with doses administered at m0, m1, and m6 elicited long term immunological responses and robust immunological memory that was efficiently stimulated by a single booster vaccination at 42 months. CONCLUSIONS A priming series of 3 intramuscular doses administered at m0, m1, and m6 with a triennial booster was non-inferior to more complex schedules for achieving antibody response.
Collapse
Affiliation(s)
- Jennifer G Wright
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| | - Brian D Plikaytis
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Charles E Rose
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Scott D Parker
- Alabama Vaccine Research Clinic, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL 35294-2050, United States
| | - Janiine Babcock
- Walter Reed Army Institute for Research, 503 Robert Grant Avenue, Silver Springs, MD 20910-7500, United States
| | - Wendy Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hana El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Gregory A Poland
- Mayo Clinic and Foundation, 611C Guggenheim Building, 200 First Street SW, Rochester, MN 55905, United States
| | - Robert M Jacobson
- Mayo Clinic and Foundation, 611C Guggenheim Building, 200 First Street SW, Rochester, MN 55905, United States
| | - Harry L Keyserling
- Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, United States
| | - Vera A Semenova
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Han Li
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Jarad Schiffer
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Hanan Dababneh
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Sandra K Martin
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Stacey W Martin
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Nina Marano
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Nancy E Messonnier
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| |
Collapse
|
40
|
Lynch HE, Stewart SM, Kepler TB, Sempowski GD, Alam SM. Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen. J Immunol Methods 2013; 404:1-12. [PMID: 24316020 DOI: 10.1016/j.jim.2013.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development.
Collapse
Affiliation(s)
- Heather E Lynch
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Shelley M Stewart
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gregory D Sempowski
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - S Munir Alam
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
41
|
Ovsyannikova IG, Pankratz VS, Vierkant RA, Pajewski NM, Quinn CP, Kaslow RA, Jacobson RM, Poland GA. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed. Infect Immun 2013; 81:2584-91. [PMID: 23649091 PMCID: PMC3697592 DOI: 10.1128/iai.00269-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/28/2013] [Indexed: 01/21/2023] Open
Abstract
Interindividual variations in vaccine-induced immune responses are in part due to host genetic polymorphisms in the human leukocyte antigen (HLA) and other gene families. This study examined associations between HLA genotypes, haplotypes, and homozygosity and protective antigen (PA)-specific cellular immune responses in healthy subjects following immunization with Anthrax Vaccine Adsorbed (AVA). While limited associations were observed between individual HLA alleles or haplotypes and variable lymphocyte proliferative (LP) responses to AVA, analyses of homozygosity supported the hypothesis of a "heterozygote advantage." Individuals who were homozygous for any HLA locus demonstrated significantly lower PA-specific LP than subjects who were heterozygous at all eight loci (median stimulation indices [SI], 1.84 versus 2.95, P = 0.009). Similarly, we found that class I (HLA-A) and class II (HLA-DQA1 and HLA-DQB1) homozygosity was significantly associated with an overall decrease in LP compared with heterozygosity at those three loci. Specifically, individuals who were homozygous at these loci had significantly lower PA-specific LP than subjects heterozygous for HLA-A (median SI, 1.48 versus 2.13, P = 0.005), HLA-DQA1 (median SI, 1.75 versus 2.11, P = 0.007), and HLA-DQB1 (median SI, 1.48 versus 2.13, P = 0.002) loci, respectively. Finally, homozygosity at an increasing number (≥ 4) of HLA loci was significantly correlated with a reduction in LP response (P < 0.001) in a dose-dependent manner. Additional studies are needed to reproduce these findings and determine whether HLA-heterozygous individuals generate stronger cellular immune response to other virulence factors (Bacillus anthracis LF and EF) than HLA-homozygous subjects.
Collapse
Affiliation(s)
- Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, USA
| | - V. Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A. Vierkant
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas M. Pajewski
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Winston Salem, North Carolina, USA
| | - Conrad P. Quinn
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard A. Kaslow
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert M. Jacobson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Evaluation of immunogenicity and efficacy of anthrax vaccine adsorbed for postexposure prophylaxis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1016-26. [PMID: 23658392 DOI: 10.1128/cvi.00099-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antimicrobials administered postexposure can reduce the incidence or progression of anthrax disease, but they do not protect against the disease resulting from the germination of spores that may remain in the body after cessation of the antimicrobial regimen. Such additional protection may be achieved by postexposure vaccination; however, no anthrax vaccine is licensed for postexposure prophylaxis (PEP). In a rabbit PEP study, animals were subjected to lethal challenge with aerosolized Bacillus anthracis spores and then were treated with levofloxacin with or without concomitant intramuscular (i.m.) vaccination with anthrax vaccine adsorbed (AVA) (BioThrax; Emergent BioDefense Operations Lansing LLC, Lansing, MI), administered twice, 1 week apart. A significant increase in survival rates was observed among vaccinated animals compared to those treated with antibiotic alone. In preexposure prophylaxis studies in rabbits and nonhuman primates (NHPs), animals received two i.m. vaccinations 1 month apart and were challenged with aerosolized anthrax spores at day 70. Prechallenge toxin-neutralizing antibody (TNA) titers correlated with animal survival postchallenge and provided the means for deriving an antibody titer associated with a specific probability of survival in animals. In a clinical immunogenicity study, 82% of the subjects met or exceeded the prechallenge TNA value that was associated with a 70% probability of survival in rabbits and 88% probability of survival in NHPs, which was estimated based on the results of animal preexposure prophylaxis studies. The animal data provide initial information on protective antibody levels for anthrax, as well as support previous findings regarding the ability of AVA to provide added protection to B. anthracis-infected animals compared to antimicrobial treatment alone.
Collapse
|
43
|
Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One 2013; 8:e61885. [PMID: 23637922 PMCID: PMC3639271 DOI: 10.1371/journal.pone.0061885] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/14/2013] [Indexed: 12/11/2022] Open
Abstract
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA)--an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.
Collapse
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Samer Singh
- Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|