1
|
Luo L, Li Q, Xing C, Li C, Pan Y, Sun H, Yu X, Wen K, Shen J, Wang Z. Antibody-based therapy: An alternative for antimicrobial treatment in the post-antibiotic era. Microbiol Res 2025; 290:127974. [PMID: 39577369 DOI: 10.1016/j.micres.2024.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The consecutive growth of antimicrobial resistance and the spread of resistance genes worldwide, especially the emergence of superbugs, have made traditional antibiotic-based treatments inadequate to fight bacterial infections. Therefore, new therapeutic modalities for bacterial infections are urgently needed. Antibodies are considered to be an effective alternative to antibiotics. The emergence and advancement of technologies such as hybridoma, antibody purification, transgenic mice, phage display, and protein engineering have enabled the production of large quantities of humanized antibodies with high purity and affinity. Antibodies has achieved remarkable achievements in the field of medicine in the past decades. Antibody-based therapy is expected to be an effective way to treat drug-resistant bacterial infections in the post-antibiotic era due to its merits of high specificity, which leads to no selective pressure on non-target bacteria and could cooperate with antibiotics to enhance the antimicrobial effect. This review first introduces the mechanism of action of antibodies against bacterial infections, then summarizes the reported antimicrobial antibodies according to different targets, discusses the advantages and limitations of the antibody-based therapy for antimicrobial treatment, and finally, the perspectives of antimicrobial antibodies developing have been prospected, providing a reference for the development of new antimicrobial antibodies.
Collapse
Affiliation(s)
- Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Chen Xing
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yantong Pan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - He Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China.
| |
Collapse
|
2
|
Robinson SR, Dayao DA, Medina JA, Martone CJ, Yauch AK, Hinkley T, Erasmus JH, Shoemaker CB, Tzipori S. An anti-Shiga toxin VHH nanobody multimer protects mice against fatal toxicosis when administered intramuscularly as repRNA. Infect Immun 2024; 92:e0023924. [PMID: 39392311 PMCID: PMC11556087 DOI: 10.1128/iai.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is a systemic sequelae from gastrointestinal infection with Shiga toxin (Stx) producing Escherichia coli (STEC) that can result in acute kidney injury, lasting renal disease, and death. Despite a window for intervention between hemorrhagic diarrhea and onset of HUS, no specific therapies exist to prevent or treat HUS following STEC infection. Furthermore, there is no way to predict which patients with STEC will develop HUS or any rapid way to determine which Stx variant is present. To address this, we have broadened the therpay to neutralize additional toxin variants. It contains a multimer of nanobodies derived from camelid heavy chain antibody fragments (VHHs). An improved VHH-based neutralizing agent (VNA2) is delivered intramuscularly as RNA combined with LION nanoparticles rather than mRNA, that replicates on administration (repRNA), resulting in a rapidly circulating VNA that can bind systemic toxin. The RNA/VNA2-Stx administered intramuscularly prevents toxicity and death in a mouse model of acute Stx toxicity.
Collapse
Affiliation(s)
- Sally R. Robinson
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Denise Ann Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Jhon A. Medina
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Cara J. Martone
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Anne K. Yauch
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | | | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
3
|
Rodriguez Rodriguez ER, Nordvang RT, Petersson M, Rendsvig JKH, Arendrup EW, Fernández Quintero ML, Jenkins TP, Laustsen AH, Thrane SW. Fit-for-purpose heterodivalent single-domain antibody for gastrointestinal targeting of toxin B from Clostridium difficile. Protein Sci 2024; 33:e5035. [PMID: 38923049 PMCID: PMC11201815 DOI: 10.1002/pro.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Single-domain antibodies (sdAbs), such as VHHs, are increasingly being developed for gastrointestinal (GI) applications against pathogens to strengthen gut health. However, what constitutes a suitable developability profile for applying these proteins in a gastrointestinal setting remains poorly explored. Here, we describe an in vitro methodology for the identification of sdAb derivatives, more specifically divalent VHH constructs, that display extraordinary developability properties for oral delivery and functionality in the GI environment. We showcase this by developing a heterodivalent VHH construct that cross-inhibits the toxic activity of the glycosyltransferase domains (GTDs) from three different toxinotypes of cytotoxin B (TcdB) from lineages of Clostridium difficile. We show that the VHH construct possesses high stability and binding activity under gastric conditions, in the presence of bile salts, and at high temperatures. We suggest that the incorporation of early developability assessment could significantly aid in the efficient discovery of VHHs and related constructs fit for oral delivery and GI applications.
Collapse
Affiliation(s)
| | | | - Marcus Petersson
- Bactolife A/SCopenhagen EastDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | | | | | - Timothy P. Jenkins
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Andreas H. Laustsen
- Bactolife A/SCopenhagen EastDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | |
Collapse
|
4
|
Brosse A, Coullon H, Janoir C, Péchiné S. The state of play of rodent models for the study of Clostridioides difficile infection. J Med Microbiol 2024; 73:001857. [PMID: 39028257 PMCID: PMC11316558 DOI: 10.1099/jmm.0.001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Séverine Péchiné
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
5
|
Liu ML, Liang XM, Jin MY, Huang HW, Luo L, Wang H, Shen X, Xu ZL. Food-Borne Biotoxin Neutralization in Vivo by Nanobodies: Current Status and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10753-10771. [PMID: 38706131 DOI: 10.1021/acs.jafc.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ming-Yu Jin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
- School of Life and Health Technology, Dongguan, University of Technology, Dongguan 523808, China
| | - Hui-Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
7
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Harmsen MM, Cornelissen JC, van der Wal FJ, Bergervoet JHW, Koene M. Single-Domain Antibody Multimers for Detection of Botulinum Neurotoxin Serotypes C, D, and Their Mosaics in Endopep-MS. Toxins (Basel) 2023; 15:573. [PMID: 37755999 PMCID: PMC10535107 DOI: 10.3390/toxins15090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly toxic proteins that require high-affinity immunocapture reagents for use in endopeptidase-based assays. Here, 30 novel and 2 earlier published llama single-domain antibodies (VHHs) against the veterinary-relevant BoNT serotypes C and D were yeast-produced. These VHHs recognized 10 independent antigenic sites, and many cross-reacted with the BoNT/DC and CD mosaic variants. As VHHs are highly suitable for genetically linking to increase antigen-binding affinity, 52 VHH multimers were produced and their affinity for BoNT/C, D, DC, and CD was determined. A selection of 15 multimers with high affinity (KD < 0.1 nM) was further shown to be resilient to a high salt wash that is used for samples from complex matrices and bound native BoNTs from culture supernatants as shown by Endopep-MS. High-affinity multimers suitable for further development of a highly sensitive Endopep-MS assay include four multimers that bind both BoNT/D and CD with KD of 14-99 pM, one multimer for BoNT/DC (65 pM) that also binds BoNT/C (75 pM), and seven multimers for BoNT/C (<1-19 pM), six of which also bind BoNT/DC with lower affinity (93-508 pM). In addition to application in diagnostic tests, these VHHs could be used for the development of novel therapeutics for animals or humans.
Collapse
Affiliation(s)
- Michiel M. Harmsen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan C. Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Fimme J. van der Wal
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| | - Jan H. W. Bergervoet
- Wageningen Plant Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Miriam Koene
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands (F.J.v.d.W.)
| |
Collapse
|
9
|
Thran M, Pönisch M, Danz H, Horscroft N, Ichtchenko K, Tzipori S, Shoemaker CB. Co-administration of an effector antibody enhances the half-life and therapeutic potential of RNA-encoded nanobodies. Sci Rep 2023; 13:14632. [PMID: 37670025 PMCID: PMC10480410 DOI: 10.1038/s41598-023-41092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
The incidence of Clostridioides difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. Here we report on the development of mRNA-LNPs encoding camelid-derived VHH-based neutralizing agents (VNAs) targeting toxins A and/or B of C. difficile. In preclinical models, intravenous administration of the mRNA-LNPs provided serum VNA levels sufficient to confer protection of mice against severe disease progression following toxin challenge. Furthermore, we employed an mRNA-LNP encoded effector antibody, a molecular tool designed to specifically bind an epitopic tag linked to the VNAs, to prolong VNA serum half-life. Co-administration of VNA-encoding mRNA-LNPs and an effector antibody, either provided as recombinant protein or encoded by mRNA-LNP, increased serum VNA half-life in mice and in gnotobiotic piglets. Prolonged serum half-life was associated with higher concentrations of serum VNA and enhanced prophylactic protection of mice in challenge models.
Collapse
Affiliation(s)
| | | | - Hillary Danz
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA
| | | | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA.
| |
Collapse
|
10
|
Petersson M, Thrane SW, Gram L, Muyldermans S, Laustsen AH. Orally delivered single-domain antibodies against gastrointestinal pathogens. Trends Biotechnol 2023; 41:875-886. [PMID: 36774206 DOI: 10.1016/j.tibtech.2023.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Single-domain antibodies (sdAbs) are exceptionally stable fragments derived from the antigen-binding domains of immunoglobulins. They can withstand extreme pH, high temperature, and proteolysis, making them suitable for controlling gastrointestinal (GI) infections in humans and animals. sdAbs may function in their native soluble form, although different derived protein formats and the use of delivery vehicles can be useful for improved oral delivery. We discuss selected examples of the use of orally delivered sdAbs for protecting humans and animals against GI infections caused by pathogenic bacteria, viruses, and parasites. We finally provide perspectives on how sdAbs may be applied industrially and what challenges should be overcome for orally delivered sdAbs to reach the market.
Collapse
Affiliation(s)
- Marcus Petersson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Bactolife A/S, Copenhagen East, Denmark
| | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Bactolife A/S, Copenhagen East, Denmark.
| |
Collapse
|
11
|
Hussack G, Rossotti MA, van Faassen H, Murase T, Eugenio L, Schrag JD, Ng KKS, Tanha J. Structure-guided design of a potent Clostridiodes difficile toxin A inhibitor. Front Microbiol 2023; 14:1110541. [PMID: 36778856 PMCID: PMC9909335 DOI: 10.3389/fmicb.2023.1110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.
Collapse
Affiliation(s)
- Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Martin A. Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Tomohiko Murase
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Luiz Eugenio
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joseph D. Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Kenneth K.-S. Ng
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada,*Correspondence: Kenneth K.-S. Ng,
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada,Jamshid Tanha,
| |
Collapse
|
12
|
Chen B, Perry K, Jin R. Neutralizing epitopes on Clostridioides difficile toxin A revealed by the structures of two camelid VHH antibodies. Front Immunol 2022; 13:978858. [PMID: 36466927 PMCID: PMC9709291 DOI: 10.3389/fimmu.2022.978858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Toxin A (TcdA) and toxin B (TcdB) are two key virulence factors secreted by Clostridioides difficile, which is listed as an urgent threat by the CDC. These two large homologous exotoxins are mainly responsible for diseases associated with C. difficile infection (CDI) with symptoms ranging from diarrhea to life threatening pseudomembranous colitis. Single-domain camelid antibodies (VHHs) AH3 and AA6 are two potent antitoxins against TcdA, which when combined with two TcdB-targeting VHHs showed effective protection against both primary and recurrent CDI in animal models. Here, we report the co-crystal structures of AH3 and AA6 when they form complexes with the glucosyltransferase domain (GTD) and a fragment of the delivery and receptor-binding domain (DRBD) of TcdA, respectively. Based on these structures, we find that AH3 binding enhances the overall stability of the GTD and interferes with its unfolding at acidic pH, and AA6 may inhibit the pH-dependent conformational changes in the DRBD that is necessary for pore formation of TcdA. These studies reveal two functionally critical epitopes on TcdA and shed new insights into neutralizing mechanisms and potential development of epitope-focused vaccines against TcdA.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States
| | - Kay Perry
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, United States,Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL, United States
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States,*Correspondence: Rongsheng Jin,
| |
Collapse
|
13
|
Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Front Immunol 2022; 13:1014377. [PMID: 36248787 PMCID: PMC9558170 DOI: 10.3389/fimmu.2022.1014377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.
Collapse
Affiliation(s)
- Qian Qin
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Wenbo He
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junjun She
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sicai Zhang
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Gelfat I, Aqeel Y, Tremblay JM, Jaskiewicz JJ, Shrestha A, Lee JN, Hu S, Qian X, Magoun L, Sheoran A, Bedenice D, Giem C, Manjula-Basavanna A, Pulsifer AR, Tu HX, Li X, Minus ML, Osburne MS, Tzipori S, Shoemaker CB, Leong JM, Joshi NS. Single domain antibodies against enteric pathogen virulence factors are active as curli fiber fusions on probiotic E. coli Nissle 1917. PLoS Pathog 2022; 18:e1010713. [PMID: 36107831 PMCID: PMC9477280 DOI: 10.1371/journal.ppat.1010713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.
Collapse
Affiliation(s)
- Ilia Gelfat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yousuf Aqeel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Justyna J. Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James N. Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Xi Qian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Loranne Magoun
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Abhineet Sheoran
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniela Bedenice
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Colter Giem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Amanda R. Pulsifer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hann X. Tu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Xiaoli Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marilyn L. Minus
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Medford, Massachusetts, United States of America
| | - Neel S. Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Nyblade C, Parreno V, Zhou P, Hensley C, Oakes V, Mahsoub HM, Kiley K, Frazier M, Frazier A, Zhang Y, Feng H, Yuan L. Establishment of a gnotobiotic pig model of Clostridioides difficile infection and disease. Gut Pathog 2022; 14:22. [PMID: 35668452 PMCID: PMC9169267 DOI: 10.1186/s13099-022-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
Clostridioides difficile (C. difficile) is a gram-positive, spore-forming, anaerobic bacterium known to be the most common cause of hospital-acquired and antibiotic-associated diarrhea. C. difficile infection rates are on the rise worldwide and treatment options are limited, indicating a clear need for novel therapeutics. Gnotobiotic piglets are an excellent model to reproduce the acute pseudomembranous colitis (PMC) caused by C. difficile due to their physiological similarities to humans and high susceptibility to infection. Here, we established a gnotobiotic pig model of C. difficile infection and disease using a hypervirulent strain. C. difficile-infected pigs displayed classic signs of C. difficile infection, including severe diarrhea and weight loss. Inoculated pigs had severe gross and microscopic intestinal lesions. C. difficile infection caused an increase in pro-inflammatory cytokines in samples of serum, large intestinal contents, and pleural effusion. C. difficile spores and toxins were detected in the feces of inoculated animals as tested by anaerobic culture and cytotoxicity assays. Successful establishment of this model is key for future work as therapeutics can be evaluated in an environment that accurately mimics what happens in humans. The model is especially suitable for evaluating potential prophylactics and therapeutics, including vaccines and passive immune strategies.
Collapse
Affiliation(s)
- Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Viviana Parreno
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- INCUINTA, Instituto Nacional de Tecnologia Agropecuaria (INTA), Instituto de Virologia e Innovaciones Tecnologicas (IVIT INTA CONICET), Buenos Aires, Argentina
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kelsey Kiley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland at Baltimore, Baltimore, MD, 21201, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland at Baltimore, Baltimore, MD, 21201, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
16
|
Cable J, Leonard JN, Lu TK, Xie Z, Chang MW, Fernández LÁ, Lora JM, Kaufman HL, Quintana FJ, Geiger R, F Lesser C, Lynch JP, Hava DL, Cornish VW, Lee GK, DiAndreth B, Fero M, Srivastava R, De Coster T, Roybal KT, Rackham OJL, Kiani S, Zhu I, Hernandez-Lopez RA, Guo T, Chen WCW. Synthetic biology: at the crossroads of genetic engineering and human therapeutics-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:98-117. [PMID: 34786712 DOI: 10.1111/nyas.14710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.
Collapse
Affiliation(s)
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Interdisciplinary Biological Sciences Program, Chemistry of Life Processes Institute; and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
| | - Timothy K Lu
- Research Lab of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Senti Biosciences, South San Francisco, California
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Matthew Wook Chang
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José M Lora
- Intergalactic Therapeutics, Cambridge, Massachusetts
| | - Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston and The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Roger Geiger
- Institute for Research in Biomedicine, and Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cammie F Lesser
- Department of Microbiology, Blavatnik Institute, Harvard Medical School and Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jason P Lynch
- Department of Microbiology, Blavatnik Institute, Harvard Medical School and Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - David L Hava
- Research Lab of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Gary K Lee
- Senti Biosciences, South San Francisco, California
| | | | - Michael Fero
- TeselaGen Biotechnology, San Francisco, California
| | - Rajkamal Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kole T Roybal
- Department of Microbiology and Immunology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Chan Zuckerberg Biohub; Parker Institute for Cancer Immunotherapy, Gladstone-UCSF Institute for Genomic Immunology; and UCSF Cell Design Institute, San Francisco, California
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Samira Kiani
- Division of Experimental Pathology, Department of Pathology, School of Medicine; and Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iowis Zhu
- University of California, San Francisco, San Francisco, California
| | - Rogelio A Hernandez-Lopez
- Cell Design Institute, Department of Cellular and Molecular Pharmacology; and Center for Cellular Construction, University of California San Francisco, San Francisco, California
| | - Tingxi Guo
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - William C W Chen
- Research Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge; and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
de Smit H, Ackerschott B, Tierney R, Stickings P, Harmsen MM. A novel single-domain antibody multimer that potently neutralizes tetanus neurotoxin. Vaccine X 2021; 8:100099. [PMID: 34169269 PMCID: PMC8207222 DOI: 10.1016/j.jvacx.2021.100099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/17/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Tetanus antitoxin, produced in animals, has been used for the prevention and treatment of tetanus for more than 100 years. The availability of antitoxins, ethical issues around production, and risks involved in the use of animal derived serum products are a concern. We therefore developed a llama derived single-domain antibody (VHH) multimer to potentially replace the conventional veterinary product. In total, 28 different tetanus neurotoxin (TeNT) binding VHHs were isolated, 14 of which were expressed in yeast for further characterization. Four VHH monomers (T2, T6, T15 and T16) binding TeNT with high affinity (KD < 1 nM), covering different antigenic domains as revealed by epitope binning, and including 3 monomers (T6, T15 and T16) that inhibited TeNT binding to neuron gangliosides, were chosen as building blocks to generate 11 VHH multimers. These multimers contained either 1 or 2 different TeNT binding VHHs fused to 1 VHH binding to either albumin (A12) or immunoglobulin (G13) to extend serum half-life in animals. Multimers consisting of 2 TeNT binding VHHs showed more than a 10-fold increase in affinity (KD of 4-23 pM) when compared to multimers containing only one TeNT binding VHH. The T6 and T16 VHHs showed synergistic in vivo TeNT neutralization and, when incorporated into a single VHH trimer (T6T16A12), they showed a very high TeNT neutralizing capacity (1,510 IU/mg).
Collapse
Affiliation(s)
- Hans de Smit
- R&D, Smivet B.V., Diemewei 4110, 6605XC Wijchen, the Netherlands
| | - Bart Ackerschott
- R&D, Smivet B.V., Diemewei 4110, 6605XC Wijchen, the Netherlands
| | - Robert Tierney
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Paul Stickings
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), MHRA, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Michiel M. Harmsen
- Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB Lelystad, the Netherlands
| |
Collapse
|
18
|
Chin-Fatt A, Menassa R. A V HH-Fc Fusion Targeted to the Chloroplast Thylakoid Lumen Assembles and Neutralizes Enterohemorrhagic E. coli O157:H7. FRONTIERS IN PLANT SCIENCE 2021; 12:686421. [PMID: 34122494 PMCID: PMC8193579 DOI: 10.3389/fpls.2021.686421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Chimeric fusion proteins comprising a single domain antibody (VHH) fused to a crystallizable fragment (Fc) of an immunoglobulin are modular glycoproteins that are becoming increasingly in demand because of their value as diagnostics, research reagents and passive immunization therapeutics. Because ER-associated degradation and misfolding may potentially be limiting factors in the oxidative folding of VHH-Fc fusion proteins in the ER, we sought to explore oxidative folding in an alternative sub-compartment, the chloroplast thylakoid lumen, and determine its viability in a molecular farming context. We developed a set of in-house expression vectors for transient transformation of Nicotiana benthamiana leaves that target a VHH-Fc to the thylakoid lumen via either secretory (Sec) or twin-arginine translocation (Tat) import pathways. Compared to stromal [6.63 ± 3.41 mg/kg fresh weight (FW)], cytoplasmic (undetectable) and Tat-import pathways (5.43 ± 2.41 mg/kg FW), the Sec-targeted VHH-Fc showed superior accumulation (30.56 ± 5.19 mg/kg FW), but was less than that of the ER (51.16 ± 9.11 mg/kg FW). Additionally, the introduction of a rationally designed de novo disulfide bond enhances in planta accumulation when introduced into the Sec-targeted Fc fusion protein from 50.24 ± 4.08 mg/kg FW to 110.90 ± 6.46 mg/kg FW. In vitro immunofluorescent labeling assays on VHH-Fc purified from Sec, Tat, and stromal pathways demonstrate that the antibody still retains VHH functionality in binding Escherichia coli O157:H7 and neutralizing its intimate adherence to human epithelial type 2 cells. These results overall provide a proof of concept that the oxidative folding environment of the thylakoid lumen may be a viable compartment for stably folding disulfide-containing recombinant VHH-Fc proteins.
Collapse
Affiliation(s)
- Adam Chin-Fatt
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Rep 2021; 30:2526-2539.e6. [PMID: 32101733 PMCID: PMC7138525 DOI: 10.1016/j.celrep.2020.01.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is one of the most acutely lethal toxins known to humans, and effective treatment for BoNT intoxication is urgently needed. Single-domain antibodies (VHH) have been examined as a countermeasure for BoNT because of their high stability and ease of production. Here, we investigate the structures and the neutralization mechanisms for six unique VHHs targeting BoNT/A1 or BoNT/B1. These studies reveal diverse neutralizing mechanisms by which VHHs prevent host receptor binding or block transmembrane delivery of the BoNT protease domain. Guided by this knowledge, we design heterodimeric VHHs by connecting two neutralizing VHHs via a flexible spacer so they can bind simultaneously to the toxin. These bifunctional VHHs display much greater potency in a mouse co-intoxication model than similar heterodimers unable to bind simultaneously. Taken together, our studies offer insight into antibody neutralization of BoNTs and advance our ability to design multivalent anti-pathogen VHHs with improved therapeutic properties. Botulinum neurotoxins (BoNTs) are extremely toxic biothreats. Lam et al. report the crystal structures and neutralizing mechanisms of six unique antitoxin VHHs against BoNT/A1 and BoNT/B1, the two major human pathogenic BoNTs. They then develop a platform for structure-based rational design of bifunctional VHH heterodimers with superior antitoxin potencies.
Collapse
|
20
|
McNutt PM, Vazquez-Cintron EJ, Tenezaca L, Ondeck CA, Kelly KE, Mangkhalakhili M, Machamer JB, Angeles CA, Glotfelty EJ, Cika J, Benjumea CH, Whitfield JT, Band PA, Shoemaker CB, Ichtchenko K. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci Transl Med 2021; 13:eabd7789. [PMID: 33408188 PMCID: PMC8176400 DOI: 10.1126/scitranslmed.abd7789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/02/2022]
Abstract
Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Edwin J Vazquez-Cintron
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- City College of City University of New York, NY 10031, USA
| | - Luis Tenezaca
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle E Kelly
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Mangkhalakhili
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - James B Machamer
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Christopher A Angeles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elliot J Glotfelty
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Cesar H Benjumea
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Philip A Band
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- Department of Orthopaedic Surgery, New York University Langone Orthopedic Hospital, New York, NY 10016, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
21
|
Moliner-Morro A, J. Sheward D, Karl V, Perez Vidakovics L, Murrell B, McInerney GM, Hanke L. Picomolar SARS-CoV-2 Neutralization Using Multi-Arm PEG Nanobody Constructs. Biomolecules 2020; 10:biom10121661. [PMID: 33322557 PMCID: PMC7764822 DOI: 10.3390/biom10121661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/29/2022] Open
Abstract
Multivalent antibody constructs have a broad range of clinical and biotechnological applications. Nanobodies are especially useful as components for multivalent constructs as they allow increased valency while maintaining a small molecule size. We here describe a novel, rapid method for the generation of bi- and multivalent nanobody constructs with oriented assembly by Cu-free strain promoted azide-alkyne click chemistry (SPAAC). We used sortase A for ligation of click chemistry functional groups site-specifically to the C-terminus of nanobodies before creating C-to-C-terminal nanobody fusions and 4-arm polyethylene glycol (PEG) tetrameric nanobody constructs. We demonstrated the viability of this approach by generating constructs with the SARS-CoV-2 neutralizing nanobody Ty1. We compared the ability of the different constructs to neutralize SARS-CoV-2 pseudotyped virus and infectious virus in neutralization assays. The generated dimers neutralized the virus similarly to a nanobody-Fc fusion variant, while a 4-arm PEG based tetrameric Ty1 construct dramatically enhanced neutralization of SARS-CoV-2, with an IC50 in the low picomolar range.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
- Division of Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Vivien Karl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Laura Perez Vidakovics
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (A.M.-M.); (D.J.S.); (V.K.); (L.P.V.); (B.M.); (G.M.M.)
- Correspondence:
| |
Collapse
|
22
|
Danz HR, Lee S, Chapman-Bonofiglio SP, Ginese M, Beamer G, Girouard DJ, Tzipori S. The Impact of Actotoxumab Treatment of Gnotobiotic Piglets Infected With Different Clostridium difficile Isogenic Mutants. J Infect Dis 2020; 221:276-284. [PMID: 31495879 DOI: 10.1093/infdis/jiz459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 11/14/2022] Open
Abstract
Nosocomial infections with Clostridium difficile are on the rise in the Unites States, attributed to emergence of antibiotic-resistant and hypervirulent strains associated with greater likelihood of recurrent infections. In addition to antibiotics, treatment with Merck anti-toxin B (TcdB) antibody bezlotoxumab is reported to reduce recurrent infections. However, treatment with anti-toxin A (TcdA) antibody actotoxumab was associated with dramatically increased disease severity and mortality rates in humans and gnotobiotic piglets. Using isogenic mutants of C. difficile strain NAPI/BI/027 deficient in TcdA (A-B+) or TcdB (A+B-), and the wild type, we investigated how and why treatment of infected animals with anti-TcdA dramatically increased disease severity. Contrary to the hypothesis, among piglets treated with anti-TcdA, those with A+B- infection were disease free, in contrast to the disease enhancement seen in those with wild-type or A-B+ infection. It seems that the lack of TcdA, through either deletion or neutralization with anti-TcdA, reduces a competitive pressure, allowing TcdB to freely exert its profound effect, leading to increased mucosal injury and disease severity.
Collapse
Affiliation(s)
- Hillary R Danz
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Sangun Lee
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Susan P Chapman-Bonofiglio
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Melanie Ginese
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Gillian Beamer
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Donald J Girouard
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| | - Saul Tzipori
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
23
|
Tremblay JM, Vazquez-Cintron E, Lam KH, Mukherjee J, Bedenice D, Ondeck CA, Conroy MT, Bodt SML, Winner BM, Webb RP, Ichtchenko K, Jin R, McNutt PM, Shoemaker CB. Camelid VHH Antibodies that Neutralize Botulinum Neurotoxin Serotype E Intoxication or Protease Function. Toxins (Basel) 2020; 12:toxins12100611. [PMID: 32987745 PMCID: PMC7598594 DOI: 10.3390/toxins12100611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxin (BoNT) serotype E is one of three serotypes that cause the preponderance of human botulism cases and is a Tier 1 Select Agent. BoNT/E is unusual among BoNT serotypes for its rapid onset and short duration of intoxication. Here we report two large panels of unique, unrelated camelid single-domain antibodies (VHHs) that were selected for their ability to bind to BoNT/E holotoxin and/or to the BoNT/E light chain protease domain (LC/E). The 19 VHHs which bind to BoNT/E were characterized for their subunit specificity and 8 VHHs displayed the ability to neutralize BoNT/E intoxication of neurons. Heterodimer antitoxins consisting of two BoNT/E-neutralizing VHHs, including one heterodimer designed using structural information for simultaneous binding, were shown to protect mice against co-administered toxin challenges of up to 500 MIPLD50. The 22 unique VHHs which bind to LC/E were characterized for their binding properties and 9 displayed the ability to inhibit LC/E protease activity. Surprisingly, VHHs selected on plastic-coated LC/E were virtually unable to recognize soluble or captured LC/E while VHHs selected on captured LC/E were poorly able to recognize LC/E coated to a plastic surface. This panel of anti-LC/E VHHs offer insight into BoNT/E function, and some may have value as components of therapeutic antidotes that reverse paralysis following BoNT/E exposures.
Collapse
Affiliation(s)
- Jacqueline M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (J.M.T.); (J.M.)
| | - Edwin Vazquez-Cintron
- The United States Army Medical Research Institute of Chemical Defense, Fort Detrick, MD 21010, USA; (E.V.-C.); (C.A.O.); (M.T.C.); (S.M.L.B.); (B.M.W.); (P.M.M.)
| | - Kwok-Ho Lam
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697-4560, USA; (K.-H.L.); (R.J.)
| | - Jean Mukherjee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (J.M.T.); (J.M.)
| | - Daniela Bedenice
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA;
| | - Celinia A. Ondeck
- The United States Army Medical Research Institute of Chemical Defense, Fort Detrick, MD 21010, USA; (E.V.-C.); (C.A.O.); (M.T.C.); (S.M.L.B.); (B.M.W.); (P.M.M.)
| | - Matthieu T. Conroy
- The United States Army Medical Research Institute of Chemical Defense, Fort Detrick, MD 21010, USA; (E.V.-C.); (C.A.O.); (M.T.C.); (S.M.L.B.); (B.M.W.); (P.M.M.)
| | - Skylar M. L. Bodt
- The United States Army Medical Research Institute of Chemical Defense, Fort Detrick, MD 21010, USA; (E.V.-C.); (C.A.O.); (M.T.C.); (S.M.L.B.); (B.M.W.); (P.M.M.)
| | - Brittany M. Winner
- The United States Army Medical Research Institute of Chemical Defense, Fort Detrick, MD 21010, USA; (E.V.-C.); (C.A.O.); (M.T.C.); (S.M.L.B.); (B.M.W.); (P.M.M.)
| | - Robert P. Webb
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD 21702-5011, USA;
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA;
| | - Rongsheng Jin
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697-4560, USA; (K.-H.L.); (R.J.)
| | - Patrick M. McNutt
- The United States Army Medical Research Institute of Chemical Defense, Fort Detrick, MD 21010, USA; (E.V.-C.); (C.A.O.); (M.T.C.); (S.M.L.B.); (B.M.W.); (P.M.M.)
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (J.M.T.); (J.M.)
- Correspondence:
| |
Collapse
|
24
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
25
|
Chen P, Lam KH, Liu Z, Mindlin FA, Chen B, Gutierrez CB, Huang L, Zhang Y, Hamza T, Feng H, Matsui T, Bowen ME, Perry K, Jin R. Structure of the full-length Clostridium difficile toxin B. Nat Struct Mol Biol 2019; 26:712-719. [PMID: 31308519 PMCID: PMC6684407 DOI: 10.1038/s41594-019-0268-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Simeon R, Jiang M, Chamoun-Emanuelli AM, Yu H, Zhang Y, Meng R, Peng Z, Jakana J, Zhang J, Feng H, Chen Z. Selection and characterization of ultrahigh potency designed ankyrin repeat protein inhibitors of C. difficile toxin B. PLoS Biol 2019; 17:e3000311. [PMID: 31233493 PMCID: PMC6590788 DOI: 10.1371/journal.pbio.3000311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major nosocomial disease associated with significant morbidity and mortality. The pathology of CDI stems primarily from the 2 C. difficile-secreted exotoxins-toxin A (TcdA) and toxin B (TcdB)-that disrupt the tight junctions between epithelial cells leading to the loss of colonic epithelial barrier function. Here, we report the engineering of a series of monomeric and dimeric designed ankyrin repeat proteins (DARPins) for the neutralization of TcdB. The best dimeric DARPin, DLD-4, inhibited TcdB with a half maximal effective concentration (EC50) of 4 pM in vitro, representing an approximately 330-fold higher potency than the Food and Drug Administration (FDA)-approved anti-TcdB monoclonal antibody bezlotoxumab in the same assay. DLD-4 also protected mice from a toxin challenge in vivo. Cryo-electron microscopy (cryo-EM) studies revealed that the 2 constituent DARPins of DLD-4-1.4E and U3-bind the central and C-terminal regions of the delivery domain of TcdB. Competitive enzyme-linked immunosorbent assay (ELISA) studies showed that the DARPins 1.4E and U3 interfere with the interaction between TcdB and its receptors chondroitin sulfate proteoglycan 4 (CSPG4) and frizzled class receptor 2 (FZD2), respectively. Our cryo-EM studies revealed a new conformation of TcdB (both apo- and DARPin-bound at pH 7.4) in which the combined repetitive oligopeptides (CROPS) domain points away from the delivery domain. This conformation of the CROPS domain is in stark contrast to that seen in the negative-stain electron microscopy (EM) structure of TcdA and TcdB at the same pH, in which the CROPS domain bends toward and "kisses" the delivery domain. The ultrapotent anti-TcdB molecules from this study serve as candidate starting points for CDI drug development and provide new biological tools for studying the pathogenicity of C. difficile. The structural insights regarding both the "native" conformation of TcdB and the putative sites of TcdB interaction with the FZD2 receptor, in particular, should help accelerate the development of next-generation anti-C. difficile toxin therapeutics.
Collapse
Affiliation(s)
- Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Mengqiu Jiang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ana M. Chamoun-Emanuelli
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Hua Yu
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Ran Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Joanita Jakana
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United Sates of America
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, United States of America
| |
Collapse
|
27
|
Schlake T, Thran M, Fiedler K, Heidenreich R, Petsch B, Fotin-Mleczek M. mRNA: A Novel Avenue to Antibody Therapy? Mol Ther 2019; 27:773-784. [PMID: 30885573 PMCID: PMC6453519 DOI: 10.1016/j.ymthe.2019.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
First attempts to use exogenous mRNA for protein expression in vivo were made more than 25 years ago. However, widespread appreciation of in vitro transcribed mRNA as a powerful technology for supplying therapeutic proteins to the body has evolved only during the past few years. Various approaches to turning mRNA into a potent therapeutic have been developed. All of them share utilization of specifically designed, rather than endogenous, sequences and thorough purification protocols. Apart from this, there are two fundamental philosophies, one promoting the use of chemically modified nucleotides, the other advocating restriction to unmodified building blocks. Meanwhile, both strategies have received broad support by successful mRNA-based protein treatments in animal models. For such in vivo use, specifically optimized mRNA had to be combined with potent formulations to enable efficient in vivo delivery. The present review analyzes the applicability of mRNA technology to antibody therapy in all main fields: antitoxins, infectious diseases, and oncology.
Collapse
|
28
|
Hussack G, Ryan S, van Faassen H, Rossotti M, MacKenzie CR, Tanha J. Neutralization of Clostridium difficile toxin B with VHH-Fc fusions targeting the delivery and CROPs domains. PLoS One 2018; 13:e0208978. [PMID: 30540857 PMCID: PMC6291252 DOI: 10.1371/journal.pone.0208978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
An increasing number of antibody-based therapies are being considered for controlling bacterial infections, including Clostridium difficile by targeting toxins A and B. In an effort to develop novel C. difficile immunotherapeutics, we previously isolated several single-domain antibodies (VHHs) capable of toxin A neutralization through recognition of the extreme C-terminal combined repetitive oligopeptides (CROPs) domain, but failed at identifying neutralizing VHHs that bound a similar region on toxin B. Here we report the isolation of a panel of 29 VHHs targeting at least seven unique epitopes on a toxin B immunogen composed of a portion of the central delivery domain and the entire CROPs domain. Despite monovalent affinities as high as KD = 70 pM, none of the VHHs tested were capable of toxin B neutralization; however, modest toxin B inhibition was observed with VHH-VHH dimers and to a much greater extent with VHH-Fc fusions, reaching the neutralizing potency of the recently approved anti-toxin B monoclonal antibody bezlotoxumab in in vitro assays. Epitope binning revealed that several VHH-Fcs bound toxin B at sites distinct from the region recognized by bezlotoxumab, while other VHH-Fcs partially competed with bezlotoxumab for toxin binding. Therefore, the VHHs described here are effective at toxin B neutralization when formatted as bivalent VHH-Fc fusions by targeting toxin B at regions both similar and distinct from the bezlotoxumab binding site.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- * E-mail:
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Martin Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - C. Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Chaudhury A, Dendi VSR, Chaudhury M, Jain A, Kasarla MR, Panuganti K, Jain G, Ramanujam A, Rena B, Koyagura SR, Fogla S, Kumar S, Shekhawat NS, Maddur S. HSV1/2 Genital Infection in Mice Cause Reversible Delayed Gastrointestinal Transit: A Model for Enteric Myopathy. Front Med (Lausanne) 2018; 5:176. [PMID: 30065927 PMCID: PMC6056620 DOI: 10.3389/fmed.2018.00176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
In an interesting investigation by Khoury-Hanold et al. (1), genital infection of mice with herpes simplex virus 1 (HSV1) were reported to cause multiple pelvic organ involvement and obstruction. A small subset of mice succumbed after the first week of HSV1 infection. The authors inferred that the mice died due to toxic megacolon. In a severe form of mechanical and/or functional obstruction involving gross dilation of the colon and profound toxemia, the presentation is called "toxic megacolon." The representative observations by Khoury-Hanold likely do not resemble toxic megacolon. The colon was only slightly dilated and benign appearing. Importantly, HSV1 infection affected the postjunctional mechanisms of smooth muscle relaxation like the sildenafil-response proteins, which may have been responsible for defective nitrergic neurotransmission and the delayed transit. Orally administered polyethylene glycol reversed the gastrointestinal "obstruction," suggesting a mild functional type of slowed luminal transit, resembling constipation, rather than toxic megacolon, which cannot be reversed by an osmotic laxative without perforating the gut. The authors suggest that the mice did not develop HSV1 encephalitis, the commonly known cause of mortality. The premature death of some of the mice could be related to the bladder outlet obstruction, whose backflow effects may alter renal function, electrolyte abnormalities and death. Muscle strip recordings of mechanical relaxation after electrical field stimulation of gastrointestinal, urinary bladder or cavernosal tissues shall help obtain objective quantitative evidence of whether HSV infection indeed cause pelvic multi-organ dysfunction and impairment of autonomic neurotransmission and postjunctional electromechanical relaxation mechanisms of these organs.
Collapse
Affiliation(s)
| | | | | | - Astha Jain
- Wanderful Media/University of Southern California, Los Angeles, CA, United States
| | | | | | - Gaurav Jain
- Berkshire Medical Center, Pittsfield, MA, United States
| | | | - Bhavin Rena
- Xenco Laboratories, Houston, TX, United States
| | | | - Sumit Fogla
- Beaumont Hospital, Grosse Pointe, MI, United States
| | - Sunil Kumar
- Neshoba County General Hospital, Philadelphia, MS, United States
| | | | - Srinivas Maddur
- All India Institute of Medical Sciences, New Delhi, India
- ESIC Medical College, Sanathnagar, India
| |
Collapse
|
30
|
Gil F, Calderón IL, Fuentes JA, Paredes-Sabja D. Clostridioides (Clostridium) difficile infection: current and alternative therapeutic strategies. Future Microbiol 2018; 13:469-482. [PMID: 29464969 DOI: 10.2217/fmb-2017-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clostridioides difficile (C. difficile) has become a pathogen of worldwide importance considering that epidemic strains are disseminated in hospitals of several countries, where community-acquired infections act as a constant source of new C. difficile strains into hospitals. Despite the advances in the treatment of infections, more effective therapies against C. difficile are needed but, at the same time, these therapies should be less harmful to the resident gastrointestinal microbiota. The purpose of this review is to present a description of issues associated to C. difficile infection, a summary of current therapies and those in developmental stage, and a discussion of potential combinations that may lead to an increased efficacy of C. difficile infection treatment.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota-Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, 8370035, Chile
| |
Collapse
|
31
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
32
|
Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun 2017; 8:423. [PMID: 28871080 PMCID: PMC5583347 DOI: 10.1038/s41467-017-00448-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
A short half-life in the circulation limits the application of therapeutics such as single-domain antibodies (VHHs). We utilize red blood cells to prolong the circulatory half-life of VHHs. Here we present VHHs against botulinum neurotoxin A (BoNT/A) on the surface of red blood cells by expressing chimeric proteins of VHHs with Glycophorin A or Kell. Mice whose red blood cells carry the chimeric proteins exhibit resistance to 10,000 times the lethal dose (LD50) of BoNT/A, and transfusion of these red blood cells into naive mice affords protection for up to 28 days. We further utilize an improved CD34+ culture system to engineer human red blood cells that express these chimeric proteins. Mice transfused with these red blood cells are resistant to highly lethal doses of BoNT/A. We demonstrate that engineered red blood cells expressing VHHs can provide prolonged prophylactic protection against bacterial toxins without inducing inhibitory immune responses and illustrates the potentially broad translatability of our strategy for therapeutic applications. The therapeutic use of single-chain antibodies (VHHs) is limited by their short half-life in the circulation. Here the authors engineer mouse and human red blood cells to express VHHs against botulinum neurotoxin A (BoNT/A) on their surface and show that an infusion of these cells into mice confers long lasting protection against a high dose of BoNT/A.
Collapse
|
33
|
Yao G, Lam KH, Weisemann J, Peng L, Krez N, Perry K, Shoemaker CB, Dong M, Rummel A, Jin R. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding. Sci Rep 2017; 7:7438. [PMID: 28785006 PMCID: PMC5547058 DOI: 10.1038/s41598-017-07457-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023] Open
Abstract
Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.
Collapse
Affiliation(s)
- Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lisheng Peng
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadja Krez
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
34
|
Péchiné S, Janoir C, Collignon A. Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther 2017; 17:415-427. [PMID: 28274145 DOI: 10.1080/14712598.2017.1300655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.
Collapse
Affiliation(s)
- Séverine Péchiné
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Claire Janoir
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Anne Collignon
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| |
Collapse
|
35
|
Fehér C, Soriano A, Mensa J. A Review of Experimental and Off-Label Therapies for Clostridium difficile Infection. Infect Dis Ther 2017; 6:1-35. [PMID: 27910000 PMCID: PMC5336415 DOI: 10.1007/s40121-016-0140-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
In spite of increased awareness and the efforts taken to optimize Clostridium difficile infection (CDI) management, with the limited number of currently available antibiotics for C. difficile the halt of this increasing epidemic remains out of reach. There are, however, close to 80 alternative treatment methods with controversial anti-clostridial efficacy or in experimental phase today. Indeed, some of these therapies are expected to become acknowledged members of the recommended anti-CDI arsenal within the next few years. None of these alternative treatment methods can respond in itself to all the major challenges of CDI management, which are primary prophylaxis in the susceptible population, clinical cure of severe cases, prevention of recurrences, and forestallment of asymptomatic C. difficile carriage and in-hospital spread. Yet, the greater the variety of treatment choices on hand, the better combination strategies can be developed to reach these goals in the future. The aim of this article is to provide a comprehensive summary of these experimental and currently off-label therapeutic options.
Collapse
Affiliation(s)
- Csaba Fehér
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain.
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|