1
|
Dangi T, Sanchez S, Awakoaiye B, Lew MH, Irani N, Penaloza-MacMaster P. Breast Milk-Derived Antibodies Impair Vaccine Immunity in Suckling Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:612-618. [PMID: 39007643 PMCID: PMC11333162 DOI: 10.4049/jimmunol.2400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Breast milk confers multiple benefits to the neonate, including passive immunity against multiple microorganisms via Abs. However, it remains unclear whether breast milk-derived Abs affect vaccine-induced immunity in the neonate. We evaluated in C57BL/6 and BALB/c mice whether breastfeeding from an mRNA-SARS-CoV-2-vaccinated dam affects vaccine-induced immunity in neonate mice. Using an experimental model that allows the distinction of maternal Abs and neonate Abs based on their allotype, we show that breastfeeding from an immune dam is associated with reduced vaccine immunity in the neonate. Importantly, mice that breastfed from an immune dam showed reduced numbers of plasma cells after vaccination, relative to mice that breastfed from a naive dam. Our subsequent studies using an mRNA-luciferase reporter system show that passive transfer of Abs through breastfeeding accelerates the clearance of vaccine Ag in suckling mice, resulting in reduced Ag availability. Altogether, maternal Abs transferred through breast milk can protect against infectious microorganisms, but they may also interfere with the neonate's response to vaccination by accelerating the clearance of vaccine Ag. These findings are important for understanding the effects of maternal Abs on the neonate's response to vaccines and may provide insights for improving neonatal vaccines.
Collapse
Affiliation(s)
- Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bakare Awakoaiye
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Min Han Lew
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nahid Irani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Jelínková L, Roberts B, Ajayi DT, Peabody DS, Chackerian B. The Immunogenicity of a VLP-based Malaria Vaccine Targeting CSP in Pregnant and Neonatal Mice. Biomolecules 2023; 13:202. [PMID: 36830571 PMCID: PMC9953288 DOI: 10.3390/biom13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Maternal antibodies are passively transferred to the fetus via the placenta during gestation and can play an important role in protecting the newborn from infection. For example, in malaria-endemic regions, maternal antibodies likely provide substantial protection against Plasmodium falciparum malaria in the first 6 months of life. However, circulating maternal antibodies can also interfere with vaccine efficacy. Here, we used a mouse maternal transfer model to evaluate whether maternal antibodies interfere with the responsiveness to a virus-like particle (VLP)-based vaccine targeting the CIS43 epitope of the malaria circumsporozoite protein (CSP). We found immunized dams passively transfer to pups high levels of anti-CSP IgG antibodies that steadily decline as the animals age. We also found that the neonatal offspring of immunized mice do not respond to de novo immunization with the CIS43-targeted VLP vaccine until maternal antibody titers decline below an inhibitory threshold. These findings may have important implications for delineating the delicate balance between protection conferred by maternal antibodies and the offspring's ability to respond to immunization.
Collapse
Affiliation(s)
| | | | | | | | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Otero CE, Langel SN, Blasi M, Permar SR. Maternal antibody interference contributes to reduced rotavirus vaccine efficacy in developing countries. PLoS Pathog 2020; 16:e1009010. [PMID: 33211756 PMCID: PMC7676686 DOI: 10.1371/journal.ppat.1009010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.
Collapse
Affiliation(s)
- Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Abstract
Mucosal surfaces are the interface between the host’s internal milieu and the external environment, and they have dual functions, serving as physical barriers to foreign antigens and as accepting sites for vital materials. Mucosal vaccines are more favored to prevent mucosal infections from the portal of entry. Although mucosal vaccination has many advantages, licensed mucosal vaccines are scarce. The most widely studied mucosal routes are oral and intranasal. Licensed oral and intranasal vaccines are composed mostly of whole cell killed or live attenuated microorganisms serving as both delivery systems and built-in adjuvants. Future mucosal vaccines should be made with more purified antigen components, which will be relatively less immunogenic. To induce robust protective immune responses against well-purified vaccine antigens, an effective mucosal delivery system is an essential requisite. Recent developments in biomaterials and nanotechnology have enabled many innovative mucosal vaccine trials. For oral vaccination, the vaccine delivery system should be able to stably carry antigens and adjuvants and resist harsh physicochemical conditions in the stomach and intestinal tract. Besides many nano/microcarrier tools generated by using natural and chemical materials, the development of oral vaccine delivery systems using food materials should be more robustly researched to expand vaccine coverage of gastrointestinal infections in developing countries. For intranasal vaccination, the vaccine delivery system should survive the very active mucociliary clearance mechanisms and prove safety because of the anatomical location of nasal cavity separated by a thin barrier. Future mucosal vaccine carriers, regardless of administration routes, should have certain common characteristics. They should maintain stability in given environments, be mucoadhesive, and have the ability to target specific tissues and cells.
Collapse
|
5
|
The distinct impact of maternal antibodies on the immunogenicity of live and recombinant rotavirus vaccines. Vaccine 2019; 37:4061-4067. [DOI: 10.1016/j.vaccine.2019.05.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/30/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
|
6
|
Tallmadge RL, Miller SC, Parry SA, Felippe MJB. Antigen-specific immunoglobulin variable region sequencing measures humoral immune response to vaccination in the equine neonate. PLoS One 2017; 12:e0177831. [PMID: 28520789 PMCID: PMC5433778 DOI: 10.1371/journal.pone.0177831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Steven C. Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Stephen A. Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Maria Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
8
|
The Impact of the Gut Microbiota on Humoral Immunity to Pathogens and Vaccination in Early Infancy. PLoS Pathog 2016; 12:e1005997. [PMID: 28006021 PMCID: PMC5179050 DOI: 10.1371/journal.ppat.1005997] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Li JT, Wei J, Guo HX, Han JB, Ye N, He HY, Yu TT, Wu YZ. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs. World J Gastroenterol 2016; 22:7135-7145. [PMID: 27610023 PMCID: PMC4988310 DOI: 10.3748/wjg.v22.i31.7135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines.
METHODS: 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography.
RESULTS: When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea.
CONCLUSION: These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.
Collapse
|
10
|
Poonsuk K, Giménez-Lirola LG, Zhang J, Arruda P, Chen Q, Correa da Silva Carrion L, Magtoto R, Pineyro P, Sarmento L, Wang C, Sun Y, Madson D, Johnson J, Yoon KJ, Zimmerman J, Main R. Does Circulating Antibody Play a Role in the Protection of Piglets against Porcine Epidemic Diarrhea Virus? PLoS One 2016; 11:e0153041. [PMID: 27050556 PMCID: PMC4822964 DOI: 10.1371/journal.pone.0153041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/22/2016] [Indexed: 01/23/2023] Open
Abstract
The contribution of circulating antibody to the protection of naïve piglets against porcine epidemic diarrhea virus (PEDV) was evaluated using a passive antibody transfer model. Piglets (n = 62) derived from 6 sows were assigned to one of 6 different treatments using a randomized block design which provided for allocation of all treatments to all sows' litters. Each treatment was designed to achieve a different level of circulating anti-PEDV antibody via intraperitoneally administration of concentrated serum antibody. Piglets were orally inoculated with PEDV (USA/IN/2013/19338E, 1 x 103 TCID50 per piglet) 24 hours later and then monitored for 14 days. Piglets remained with their dam throughout the experiment. Sow milk samples, piglet fecal samples, and data on piglet clinical signs, body weight, and body temperature were collected daily. Fecal samples were tested by PEDV real-time reverse transcriptase PCR. Serum, colostrum, and milk were tested for PEDV IgG, IgA, and virus-neutralizing antibody. The data were evaluated for the effects of systemic PEDV antibody levels on growth, body temperature, fecal shedding, survival, and antibody response. The analysis showed that circulating antibody partially ameliorated the effect of PEDV infection. Specifically, antibody-positive groups returned to normal body temperature faster and demonstrated a higher rate of survivability than piglets without PEDV antibody. When combined with previous literature on PEDV, it can be concluded that both systemic antibodies and maternal secretory IgA in milk contribute to the protection of the neonatal pig against PEDV infections. Overall, the results of this experiment suggested that passively administered circulating antibodies contributed to the protection of neonatal piglets against PEDV infection.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Luis Gabriel Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Paolo Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Lucas Correa da Silva Carrion
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Pablo Pineyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Luciana Sarmento
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Yaxuan Sun
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
- Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Darin Madson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - John Johnson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, United States of America
| |
Collapse
|
11
|
Abstract
Rotaviruses (RV) are ubiquitous, highly infectious, segmented double-stranded RNA genome viruses of importance in public health because of the severe acute gastroenteritis they cause in young children and many animal species. They are very well adapted to their host, with symptomatic and asymptomatic reinfections being virtually universal during the first 3 years of life. Antibodies are the major arm of the immune system responsible for protecting infants from RV reinfection. The relationship between the virus and the B cells (Bc) that produce these antibodies is complex and incompletely understood: most blood-circulating Bc that express RV-specific immunoglobulin (Ig) on their surface (RV-Ig) are naive Bc and recognize the intermediate capsid viral protein VP6 with low affinity. When compared to non-antigen-specific Bc, RV-Bc are enriched in CD27+ memory Bc (mBc) that express IgM. The Ig genes used by naive RV-Bc are different than those expressed by RV-mBc, suggesting that the latter do not primarily develop from the former. Although RV predominantly infects mature villus enterocytes, an acute systemic viremia also occurs and RV-Bc can be thought of as belonging to either the intestinal or systemic immune compartments. Serotype-specific or heterotypic RV antibodies appear to mediate protection by multiple mechanisms, including intracellular and extracellular homotypic and heterotypic neutralization. Passive administration of RV-Ig can be used either prophylactically or therapeutically. A better understanding of the Bc response generated against RV will improve our capacity to identify improved correlates of protection for RV vaccines.
Collapse
|
12
|
Nguyen UV, Melkebeek V, Devriendt B, Goetstouwers T, Van Poucke M, Peelman L, Goddeeris BM, Cox E. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae. Vet Res 2015; 46:72. [PMID: 26100608 PMCID: PMC4476233 DOI: 10.1186/s13567-015-0210-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/08/2015] [Indexed: 01/28/2023] Open
Abstract
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA+ B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA+ B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Collapse
Affiliation(s)
- Ut V Nguyen
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| | - Bruno M Goddeeris
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium.
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
13
|
Hodgins DC, Chattha K, Vlasova A, Parreño V, Corbeil LB, Renukaradhya GJ, Saif LJ. Mucosal Veterinary Vaccines. Mucosal Immunol 2015. [PMCID: PMC7149859 DOI: 10.1016/b978-0-12-415847-4.00068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Marquet F, Vu Manh TP, Maisonnasse P, Elhmouzi-Younes J, Urien C, Bouguyon E, Jouneau L, Bourge M, Simon G, Ezquerra A, Lecardonnel J, Bonneau M, Dalod M, Schwartz-Cornil I, Bertho N. Pig Skin Includes Dendritic Cell Subsets Transcriptomically Related to Human CD1a and CD14 Dendritic Cells Presenting Different Migrating Behaviors and T Cell Activation Capacities. THE JOURNAL OF IMMUNOLOGY 2014; 193:5883-93. [DOI: 10.4049/jimmunol.1303150] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Abstract
Enteric viral infections in domestic animals cause significant economic losses. The recent emergence of virulent enteric coronaviruses [porcine epidemic diarrhea virus (PEDV)] in North America and Asia, for which no vaccines are available, remains a challenge for the global swine industry. Vaccination strategies against rotavirus and coronavirus (transmissible gastroenteritis virus) infections are reviewed. These vaccination principles are applicable against emerging enteric infections such as PEDV. Maternal vaccines to induce lactogenic immunity, and their transmission to suckling neonates via colostrum and milk, are critical for early passive protection. Subsequently, in weaned animals, oral vaccines incorporating novel mucosal adjuvants (e.g., vitamin A, probiotics) may provide active protection when maternal immunity wanes. Understanding intestinal and systemic immune responses to experimental rotavirus and transmissible gastroenteritis virus vaccines and infection in pigs provides a basis and model for the development of safe and effective vaccines for young animals and children against established and emerging enteric infections.
Collapse
Affiliation(s)
- Kuldeep S Chattha
- Canadian Food Inspection Agency, Lethbridge, Alberta T1H 6P7, Canada;
| | | | | |
Collapse
|
16
|
Activation of the RIG-I pathway during influenza vaccination enhances the germinal center reaction, promotes T follicular helper cell induction, and provides a dose-sparing effect and protective immunity. J Virol 2014; 88:13990-4001. [PMID: 25253340 DOI: 10.1128/jvi.02273-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Pattern recognition receptors (PRR) sense certain molecular patterns uniquely expressed by pathogens. Retinoic-acid-inducible gene I (RIG-I) is a cytosolic PRR that senses viral nucleic acids and induces innate immune activation and secretion of type I interferons (IFNs). Here, using influenza vaccine antigens, we investigated the consequences of activating the RIG-I pathway for antigen-specific adaptive immune responses. We found that mice immunized with influenza vaccine antigens coadministered with 5'ppp-double-stranded RNA (dsRNA), a RIG-I ligand, developed robust levels of hemagglutination-inhibiting antibodies, enhanced germinal center reaction, and T follicular helper cell responses. In addition, RIG-I activation enhanced antibody affinity maturation and plasma cell responses in the draining lymph nodes, spleen, and bone marrow and conferred protective immunity against virus challenge. Importantly, activation of the RIG-I pathway was able to reduce the antigen requirement by 10- to 100-fold in inducing optimal influenza-specific cellular and humoral responses, including protective immunity. The effects induced by 5'ppp-dsRNA were significantly dependent on type I IFN and IPS-1 (an adapter protein downstream of the RIG-I pathway) signaling but were independent of the MyD88- and TLR3-mediated pathways. Our results show that activation of the RIG-I-like receptor pathway programs the innate immunity to achieve qualitatively and quantitatively enhanced protective cellular adaptive immune responses even at low antigen doses, and this indicates the potential utility of RIG-I ligands as molecular adjuvants for viral vaccines. IMPORTANCE The recently discovered RNA helicase family of RIG-I-like receptors (RLRs) is a critical component of host defense mechanisms responsible for detecting viruses and triggering innate antiviral cytokines that help control viral replication and dissemination. In this study, we show that the RLR pathway can be effectively exploited to enhance adaptive immunity and protective immune memory against viral infection. Our results show that activation of the RIG-I pathway along with influenza vaccination programs the innate immunity to induce qualitatively and quantitatively superior protective adaptive immunity against pandemic influenza viruses. More importantly, RIG-I activation at the time of vaccination allows induction of robust adaptive responses even at low vaccine antigen doses. These results highlight the potential utility of exploiting the RIG-I pathway to enhance viral-vaccine-specific immunity and have broader implications for designing better vaccines in general.
Collapse
|
17
|
Guzman-Bautista ER, Garcia-Ruiz CE, Gama-Espinosa AL, Ramirez-Estudillo C, Rojas-Gomez OI, Vega-Lopez MA. Effect of age and maternal antibodies on the systemic and mucosal immune response after neonatal immunization in a porcine model. Immunology 2014; 141:609-16. [PMID: 24754050 DOI: 10.1111/imm.12222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Newborn mammals are highly susceptible to respiratory infections. Although maternal antibodies (MatAb) offer them some protection, they may also interfere with their systemic immune response to vaccination. However, the impact of MatAb on the neonatal mucosal immune response remains incompletely described. This study was performed to determine the effect of ovalbumin (OVA) -specific MatAb on the anti- OVA antibody response in sera, nasal secretions and saliva from specific pathogen-free Vietnamese miniature piglets immunized at 7 or 14 days of age. Our results demonstrated that MatAb increased antigen-specific IgA and IgG responses in sera, and transiently enhanced an early secretory IgA response in nasal secretions of piglets immunized at 7 days of age. In contrast, we detected a lower mucosal (nasal secretion and saliva) anti- OVA IgG response in piglets with MatAb immunized at 14 days of age, compared with piglets with no MatAb, suggesting a modulatory effect of antigen-specific maternal factors on the isotype transfer to the mucosal immune exclusion system. In our porcine model, we demonstrated that passive maternal immunity positively modulated the systemic and nasal immune responses of animals immunized early in life. Our results, therefore, open the possibility of inducing systemic and respiratory mucosal immunity in the presence of MatAb through early vaccination.
Collapse
|
18
|
Appaiahgari MB, Glass R, Singh S, Taneja S, Rongsen-Chandola T, Bhandari N, Mishra S, Vrati S. Transplacental rotavirus IgG interferes with immune response to live oral rotavirus vaccine ORV-116E in Indian infants. Vaccine 2014; 32:651-6. [DOI: 10.1016/j.vaccine.2013.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/15/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
19
|
Abstract
A new paradigm of rotavirus disease is emerging and rotavirus infection is no longer considered to be localized and confined to the GI tract. New evidence indicates that rotavirus infection is systemic. Viral antigen and infectious virus frequently enter the circulation in both children and animal model systems. Clinical case reports of systemic sequelae to rotavirus infection in children continue to accumulate, suggesting involvement in systemic disease syndromes. The use of animal models is providing biological and molecular evidence for infection at peripheral sites. Thus, infection at peripheral sites may account for reports of systemic sequelae to rotavirus infection. The importance of systemic sequelae and the ability of vaccination to prevent such sequelae remains to be determined.
Collapse
Affiliation(s)
- Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Abstract
Although vaccine adjuvants have been used for almost a century, alum is the only adjuvant licensed by the US FDA for human vaccine use. Many adjuvants studied to date have generalized inflammatory properties and lack specificity in terms of targeting immune compartments and cell populations. Indeed, such adjuvants have often been crude in formulation, their effects usually restricted to T-helper 2-type immunity and their use limited owing to inherent toxicity. However, recent advances in immunology have resulted in a number of potential adjuvant candidates that are able to modulate the immune response in a more controlled and specific manner. These novel adjuvants are attractive for inclusion in current and future vaccine strategies since they have better-defined mechanisms of action. In this article, we review several compounds that target specific immune components, such as cells, receptors or signaling pathways, and have termed such reagents 'smart adjuvants'.
Collapse
Affiliation(s)
- Clint S Schmidt
- Scientist II, Dendreon Corporation, 3005 1st Avenue, Seattle, WA 98121, USA.
| | | | | |
Collapse
|
21
|
Azevedo MP, Vlasova AN, Saif LJ. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev Vaccines 2014; 12:169-81. [DOI: 10.1586/erv.13.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Fossum C, Hjertner B, Ahlberg V, Charerntantanakul W, McIntosh K, Fuxler L, Balagunaseelan N, Wallgren P, Lövgren Bengtsson K. Early inflammatory response to the saponin adjuvant Matrix-M in the pig. Vet Immunol Immunopathol 2013; 158:53-61. [PMID: 23988177 DOI: 10.1016/j.vetimm.2013.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 02/07/2023]
Abstract
The early inflammatory response to Matrix-M was evaluated in pigs. Adverse reactions measured as body temperature, appetite, activity level and reaction at the site of injection were not observed after s.c. injection with three doses of the adjuvant (75, 100 or 150μg) into one week old piglets. Analyses of the immediate cytokine response of PBMC after in vitro exposure to Matrix-M (AbISCO-100(®)) revealed only a low expression of mRNA for tumour necrosis factor-α (p<0.05) after 6h incubation. Histological examination revealed an infiltration of leukocytes, haemorrhage and necrosis in muscle 24h after i.m. injection of 150μg Matrix-M in pigs aged eleven weeks. At this time, different grades of reactive lymphoid hyperplasia were recorded in the draining lymph node that was enlarged in three of these six pigs injected with Matrix-M. The global transcriptional response at the site of injection and in the draining lymph node was analyzed using Affymetrix GeneChip Porcine Genome Array. A significant enrichment of gene signatures for the cell types described as "myeloid cells" and "plasmacytoid dendritic cells" was observed at the site of injection in Matrix-M injected pigs compared with pigs injected with saline. A number of genes encoding cytokines/chemokines or their receptors were upregulated at the injection site as well as in the draining lymph node. In the draining lymph node, a majority of the upregulated genes were interferon-regulated genes (IRGs). The expression of IFN-β, but not IFN-α, was increased in the draining lymph nodes of a majority of the pigs exposed to Matrix-M. These IFN-β expressing pigs also expressed increased levels of osteopontin (OPN) or stimulator of interferon genes (STING), two factors known to facilitate the expression of type I IFNs in response to viral infection. Thus, Matrix-M does not appear to induce any harmful inflammatory response in piglets whilst contributing to the innate immunity by activating the type I IFN system, possibly through several alternative signalling pathways.
Collapse
Affiliation(s)
- Caroline Fossum
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden.
| | - Bernt Hjertner
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Viktor Ahlberg
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Wasin Charerntantanakul
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden; Research Laboratory for Immunity Enhancement in Humans and Domestic Animals Maejo University, Chiang Mai 50290, Thailand
| | - Kathy McIntosh
- Department of Veterinary Microbiology, University of Saskatchewan, Western College of Veterinary Medicine, Saskatoon, Canada
| | - Lisbeth Fuxler
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Navisraj Balagunaseelan
- Department of Biomedicine and Veterinary Public Health, Section for Immunology, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala, Sweden
| | - Per Wallgren
- National Veterinary Institute, SVA, SE-751 89 Uppsala, Sweden
| | | |
Collapse
|
23
|
Seroprevalence and placental transmission of maternal antibodies specific for Neisseria meningitidis Serogroups A, C, Y and W135 and influence of maternal antibodies on the immune response to a primary course of MenACWY-CRM vaccine in the United Kingdom. Pediatr Infect Dis J 2013; 32:768-76. [PMID: 23538521 DOI: 10.1097/inf.0b013e318292f425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Maternal antibodies give neonates some protection against bacterial infection. We measured antibodies against Neisseria meningitidis serogroups A, C, Y and W135 in mothers and their 2-month-old infants at study enrollment. We also assessed the impact of maternal antibody present at 2 months of age on the immune response to a primary course of quadrivalent meningococcal conjugate vaccine (MenACWY-CRM197) given at 2 and 4 months of age. METHODS This was a single-center, open-label, randomized study undertaken in Oxford, United Kingdom. Two hundred sixteen healthy infants were enrolled in the study and vaccinated with MenACWY-CRM197 at 2 and 4 months of age. Blood was obtained from all mothers, in a subset of infants at 2 months and all infants at 5 months. Antibody and memory B-cell responses at 5 months were correlated with maternal antibodies. RESULTS Mothers had low IgG antibodies against serogroups C, W135 and Y polysaccharides, but high serogroup A antibody, whereas 61-78% had protective human complement serum bactericidal activity (hSBA) (≥1:4) for serogroups C, W135 and Y but only 31% for serogroup A. Only 9%, 32%, 45% and 19% of 2-month-old infants had hSBA ≥1:4 for serogroups A, C, W135 and Y, respectively. Maternal antibody had little association on responses to MenACWY-CRM197, except a moderate negative association between MenC-specific bactericidal antibody at 2 and 5 months (r = -0.5, P = 0.006, n = 28) and between carrier-specific IgG antibody at 2 months and MenC-specific hSBA/IgG antibody at 5 months (r = -0.4, P = 0.02 and 0.04, n = 32 and 23). Nonetheless, 90% of infants achieved protective MenC-hSBA titers after vaccination at 2 and 4 months of age. CONCLUSIONS The levels of serogroup-specific meningococcal antibodies were low in mothers and 2-month-old infants. Immunizing mothers before or during pregnancy with meningococcal conjugate vaccines might increase antibody levels in early infancy and provide protection against infection due to N. meningitidis.
Collapse
|
24
|
Yang P, Zhang L, Shi W, Lu G, Cui S, Peng X, Zhang D, Liu Y, Liang H, Pang X, Wang Q. Seroprevalence of pandemic (H1N1) 2009 influenza and effectiveness of 2010/2011 influenza vaccine during 2010/2011 season in Beijing, China. Influenza Other Respir Viruses 2012; 6:381-8. [PMID: 22212858 PMCID: PMC4941694 DOI: 10.1111/j.1750-2659.2011.00326.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the post-pandemic period, pandemic (H1N1) 2009 virus was expected to circulate seasonally and was introduced into trivalent influenza vaccine during 2010/2011 season in the Northern Hemisphere. OBJECTIVES The aim of this study was to examine the evolution of herd immunity against pandemic (H1N1) 2009 virus in Beijing, China, during 2010/2011 season and effectiveness of the 2010/2011 trivalent vaccine. METHODS Two serological surveys were conducted before and after 2010/2011 season in Beijing. A case-control study was used to investigate vaccine effectiveness against influenza-like illness (ILI) and lower respiratory tract infection (LRI). RESULTS A total of 4509 and 4543 subjects participated in the pre- and post-season surveys, respectively. The standardized seroprevalence of pandemic (H1N1) 2009 influenza increased from 22.1% pre-season to 24.3% post-season (P<0.001). Significant elevation in seroprevalence appeared in the ≥ 60 years age-group (P<0.001), but not in others. The 2010/2011 trivalent vaccine contributed to the higher post-seasonal seroprevalence in unvaccinated individuals (P=0.024), but not in those vaccinated with monovalent pandemic vaccine (P=0.205), as well as in those without prior immunity versus those with immunity. The adjusted effectiveness of the 2010/2011 trivalent vaccine was 79% protection against ILI (95% CI, 61-89%) and 95% against LRI (95% CI: 59-99%). CONCLUSIONS A slight increase in herd immunity against pandemic (H1N1) 2009 influenza was observed in Beijing, China, during the 2010/2011 season. Prior vaccination and immunity had a suppressive impact on immune response toward this novel influenza virus, elicited by 2010/2011 trivalent vaccine. This trivalent vaccine conferred good protection against ILI and LRI.
Collapse
Affiliation(s)
- Peng Yang
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Li Zhang
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Weixian Shi
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Guilan Lu
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Shujuan Cui
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Xiaomin Peng
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Daitao Zhang
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Yimeng Liu
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Huijie Liang
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Xinghuo Pang
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control (CDC), Capital Medical University School of Public Health and Family Medicine, Beijing, China
| |
Collapse
|
25
|
Fraile L, Grau-Roma L, Sarasola P, Sinovas N, Nofrarías M, López-Jimenez R, López-Soria S, Sibila M, Segalés J. Inactivated PCV2 one shot vaccine applied in 3-week-old piglets: Improvement of production parameters and interaction with maternally derived immunity. Vaccine 2012; 30:1986-92. [DOI: 10.1016/j.vaccine.2012.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/29/2022]
|
26
|
George JA, Eo SK. Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2. Immune Netw 2011; 11:268-80. [PMID: 22194710 PMCID: PMC3243001 DOI: 10.4110/in.2011.11.5.268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). METHODS Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-γ staining. RESULTS Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. CONCLUSION These results indicate that priming with live viral vector vaccines could induce different patterns of E protein- specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.
Collapse
Affiliation(s)
- Junu A George
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | | |
Collapse
|
27
|
Abstract
A “Meeting on Upstream Rotavirus Vaccines and Emerging Vaccine Producers” was held at the World Health Organization in Geneva, Switzerland on March 28–30, 2006. The purpose was to discuss, evaluate, and weigh the importance of additional rotavirus vaccine candidates following the successful international licensure of rotavirus vaccines by two major pharmaceutical companies (GlaxoSmithKline and Merck) that had been in development for many years. Both licensed vaccines are composed of live rotaviruses that are delivered orally as have been all candidate rotavirus vaccines evaluated in humans. Each is built on the experience gained with previous candidates whose development had either been discontinued or, in the case of the previously licensed rhesus rotavirus reassortant vaccine (Rotashield), was withdrawn by its manufacturer after the discovery of a rare association with intussusception. Although which alternative candidate vaccines should be supported for development and where this should be done are controversial topics, there was general agreement expressed at the Geneva meeting that further development of alternative candidates is a high priority. This development will help insure that the most safe, effective and economic vaccines are available to children in Third World nations where the vast majority of the >600,000 deaths due to rotavirus occur each year. This review is intended to provide the history and present status of rotavirus vaccines as well as a perspective on the future development of candidate vaccines as a means of promulgating plans suggested at the Geneva meeting.
Collapse
Affiliation(s)
- Richard L Ward
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | | | | |
Collapse
|
28
|
Immunogenicity of an autogenous Streptococcus suis bacterin in preparturient sows and their piglets in relation to protection after weaning. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1589-97. [PMID: 20739502 DOI: 10.1128/cvi.00159-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus suis is an important porcine pathogen causing meningitis and other invasive diseases in piglets of different ages. Application of S. suis serotype 2 bacterins to specific-pathogen-free (SPF) weaning piglets has been demonstrated to protect against the homologous serotype. However, autogenous S. suis bacterins are also applied to sows and suckling piglets in the field. Therefore, comparative evaluation of different bacterin immunization regimes, including sow vaccination, was performed in this study. The main objectives were to determine the immunogenicity of an S. suis bacterin in sows prepartum and its influence on active immunization of piglets. Experimental infection of 6- and 8-week-old weaning piglets was performed to elucidate protective efficacies. Humoral immune responses were investigated by an enzyme-linked immunosorbent assay (ELISA) measuring muramidase-released protein (MRP)-specific IgG titers and by opsonophagocytosis assays. Bacterin application elicited high MRP-specific IgG titers in the serum and colostrum of sows, as well as opsonizing antibodies. Piglets from vaccinated sows had significantly higher MRP-specific titers than respective piglets from nonvaccinated sows until 6 weeks postpartum. Vaccination of suckling piglets did not result in high MRP-specific titers nor in induction of opsonizing antibodies. Furthermore, neither vaccination of suckling nor of weaning piglets from immunized sows was associated with a prominent active immune response and protection at 8 weeks postpartum. However, protection was observed in respective 6-week-old weaning piglets, most likely because of protective maternal immunity. In conclusion, this study provides the first results suggesting protective passive maternal immunity for S. suis serotype 2 after bacterin vaccination of sows and a strong inhibitory effect on active immunization of suckling and weaning piglets, leading to highly susceptible growers.
Collapse
|
29
|
Staszewski V, Siitari H. Antibody injection in the egg yolk: maternal antibodies affect humoral immune response of the offspring. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01745.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sturgill TL, Horohov DW. Vaccination Response of Young Foals to Keyhole Limpet Hemocyanin: Evidence of Effective Priming in the Presence of Maternal Antibodies. J Equine Vet Sci 2010. [DOI: 10.1016/j.jevs.2010.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Chattha KS, Firth MA, Hodgins DC, Shewen PE. Variation in expression of membrane IgM, CD21 (CR2) and CD32 (Fcgamma RIIB) on bovine lymphocytes with age: a longitudinal study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:510-517. [PMID: 20036278 DOI: 10.1016/j.dci.2009.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
Typically, neonatal calves have poor active antibody responses to vaccination, attributed to immaturity of the neonatal immune system and suppressive effects of maternal (colostral) antibodies. Responses of naïve B cells are regulated by ligation of opposing activating (CD21, membrane IgM [mIgM]) and inhibitory (CD32) receptors. Expression of these receptors on blood lymphocytes of 15 calves, from birth to 6 months of age, was investigated by three-colour flow cytometry. Although the absolute number of mIgM(+) B lymphocytes was low in calves under 6 weeks, the intensity of mIgM expression per cell was significantly higher than for adults and >90% expressed both CD21 and CD32. The intensity of CD21 expression in calves did not differ significantly from adults, whereas CD32 expression was lower. Paradoxically, these findings suggest that responses of neonates should bias toward activation at the B cell level, warranting further investigation to reveal strategies for development of vaccines that are efficacious at an early age.
Collapse
Affiliation(s)
- Kuldeep S Chattha
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
An oral versus intranasal prime/boost regimen using attenuated human rotavirus or VP2 and VP6 virus-like particles with immunostimulating complexes influences protection and antibody-secreting cell responses to rotavirus in a neonatal gnotobiotic pig model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:420-8. [PMID: 20107005 DOI: 10.1128/cvi.00395-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We determined the impact of mucosal prime/boost regimens and vaccine type (attenuated Wa human rotavirus [AttHRV] or nonreplicating Wa 2/6 rotavirus-like particles [VLP]) on protection and antibody-secreting cell (ASC) responses to HRV in a neonatal gnotobiotic pig disease model. Comparisons of delivery routes for AttHRV and evaluation of nonreplicating VLP vaccines are important as alternative vaccine approaches to overcome risks associated with live oral vaccines. Groups of neonatal gnotobiotic pigs were vaccinated using combinations of oral (PO) and intranasal (IN) inoculation routes as follows: (i) 3 oral doses of AttHRV (AttHRV3xPO); (ii) AttHRV3xIN; (iii) AttHRVPO, then 2/6VLP2xIN; (iv) AttHRVIN, then 2/6VLP2xIN; and (v) mock-inoculated controls. Subsets of pigs from each group were challenged with virulent Wa HRV [P1A(8) G1] (4 weeks post-primary inoculation) to assess protection. The AttHRVPO+2/6VLP2xIN pigs had the highest protection rates against virus shedding and diarrhea (71% each); however, these rates did not differ statistically among the vaccine groups, except for the AttHRVIN+2/6VLPIN group, which had a significantly lower protection rate (17%) against diarrhea. The isotype, magnitude, and tissue distribution of ASCs were analyzed by enzyme-linked immunospot assay. The highest mean numbers of virus-specific IgG and IgA ASCs were observed pre- and postchallenge in both intestinal and systemic lymphoid tissues of the AttHRVPO+2/6VLPIN group. Thus, the AttHRVPO+2/6VLPIN vaccine regimen using immunostimulating complexes (ISCOM) and multiple mucosal inductive sites, followed by AttHRV3xPO or IN regimens, were the most effective vaccine regimens, suggesting that either AttHRVPO+2/6VLPIN or AttHRV3xIN may be an alternative approach to AttHRV3xPO for inducing protective immunity against rotavirus diarrhea.
Collapse
|
33
|
Buonaguro FM, Tornesello ML, Buonaguro L. Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 2009; 8:1379-98. [PMID: 19803760 DOI: 10.1586/erv.09.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Complex antigen structures currently represent the most-studied approach for prophylactic as well as therapeutic vaccines. Different types of complex vaccines, including virus-like particles and virosomes, have been developed depending on the nature of the viral pathogen they are trying to replicate (enveloped vs naked) or the modality to express antigenic epitopes (i.e., the binding of envelope protein on liposomic structures). The complex structure of these vaccines provides them with some adjuvanted properties, not uniformly present for all virus-like particle types. The further inclusion of specific adjuvants in vaccine preparations can modify the presentation modality of such particles to the immune system with a specific Th1 versus Th2 polarization efficacy. A paradigm of the relevance of these new adjuvants are the immunological results obtained with the inclusion of monophosphoryl lipid A adjuvant in the formulation of L1-based human papillomavirus-naked virus-like particles to reduce a Th1 cellular immunity impairment, peculiar for alum-derived adjuvants, along with the induction of highly enhanced humoral and memory B-cellular immunity.
Collapse
Affiliation(s)
- Franco Maria Buonaguro
- Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | |
Collapse
|
34
|
Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 2009; 27:4388-401. [PMID: 19450632 DOI: 10.1016/j.vaccine.2009.05.032] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 02/22/2009] [Accepted: 05/09/2009] [Indexed: 10/25/2022]
Abstract
Immunostimulatory complexes (ISCOMs) are particulate antigen delivery systems composed of antigen, cholesterol, phospholipid and saponin, while ISCOMATRIX is a particulate adjuvant comprising cholesterol, phospholipid and saponin but without antigen. The combination of an antigen with ISCOMATRIX is called an ISCOMATRIX vaccine. ISCOMs and ISCOMATRIX combine the advantages of a particulate carrier system with the presence of an in-built adjuvant (Quil A) and consequently have been found to be more immunogenic, while removing its haemolytic activity of the saponin, producing less toxicity. ISCOMs and ISCOMATRIX vaccines have now been shown to induce strong antigen-specific cellular or humoral immune responses to a broad range of antigens of viral, bacterial, parasite origin or tumor in a number of animal species including non-human primates and humans. These vaccines produced by well controlled and reproducible processes have also been evaluated in human clinical trials. In this review, we summarize the recent progress of ISCOMs and ISCOMATRIX, including preparation technology as well as their application in humans and veterinary vaccine designs with particular emphasis on the current understanding of the properties and features of ISCOMs and ISCOMATRIX vaccines to induce immune responses. The mechanisms of adjuvanticity are also discussed in the light of recent findings.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, Zhejiang, China.
| | | | | |
Collapse
|
35
|
Salmon H, Berri M, Gerdts V, Meurens F. Humoral and cellular factors of maternal immunity in swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:384-93. [PMID: 18761034 DOI: 10.1016/j.dci.2008.07.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/10/2023]
Abstract
Immunoglobulins cannot cross the placenta in pregnant sows. Neonatal pigs are therefore agammaglobulinemic at birth and, although immunocompetent, they cannot mount rapid immune responses at systemic and mucosal sites. Their survival depends directly on the acquisition of maternal immunity via colostrum and milk. Protection by maternal immunity is mediated by a number of factors, including specific systemic humoral immunity, involving mostly maternal IgG transferred from blood to colostrum and typically absorbed within the first 36 h of life. Passive mucosal immunity involves local humoral immunity, including the production of secretory IgA (sIgA), which is transferred principally via milk until weaning. The mammary gland (MG) produces sIgA, which is, then secreted into the milk via the poly-Ig receptor (pIgR) of epithelial cells. These antibodies are produced in response to intestinal and respiratory antigens, including pathogens and commensal organisms. Protection is also mediated by cellular immunity, which is transferred via maternal cells present in mammary secretions. The mechanisms underlying the various immunological links between MG and the mucosal surfaces involve hormonally regulated addressins and chemokines specific to these compartments. The enhancement of colostrogenic immunity depends on the stimulation of systemic immunity, whereas the enhancement of lactogenic immunity depends on appropriate stimulation at induction sites, an increase in cell trafficking from the gut and upper respiratory tract to the MG and, possibly, enhanced immunoglobulin production at the effector site and secretion in milk. In addition, mammary secretions provide factors other than immunoglobulins that protect the neonate and regulate the development of mucosal immunity--a key element of postnatal adaptation to environmental antigens.
Collapse
MESH Headings
- Animals
- Cell Movement
- Colostrum/cytology
- Colostrum/immunology
- Colostrum/metabolism
- Cytokines/metabolism
- Female
- Histocompatibility Antigens Class I/immunology
- Hormones/immunology
- Immunity, Maternally-Acquired
- Immunity, Mucosal
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Intercellular Signaling Peptides and Proteins/immunology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Pregnancy
- Receptors, Fc/immunology
- Receptors, Polymeric Immunoglobulin/immunology
- Receptors, Polymeric Immunoglobulin/metabolism
- Swine/embryology
- Swine/immunology
Collapse
Affiliation(s)
- Henri Salmon
- Institut National de la Recherche Agronomique (INRA), Lymphocytes et Immunité des Muqueuses UR1282, Infectiologie Animale et Santé Publique F-37380, Nouzilly (Tours), France.
| | | | | | | |
Collapse
|
36
|
Amount of maternal rotavirus-specific antibodies influence the outcome of rotavirus vaccination of newborn mice with virus-like particles. Vaccine 2008; 26:778-85. [DOI: 10.1016/j.vaccine.2007.11.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 11/19/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022]
|
37
|
Angel J, Franco MA, Greenberg HB. Rotavirus vaccines: recent developments and future considerations. Nat Rev Microbiol 2007; 5:529-39. [PMID: 17571094 DOI: 10.1038/nrmicro1692] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two new vaccines have recently been shown to be safe and effective in protecting young children against severe rotavirus gastroenteritis. Although both vaccines are now marketed worldwide, it is likely that improvements to these vaccines and/or the development of future generations of rotavirus vaccines will be desirable. This Review addresses recent advances in our knowledge of rotavirus, the host immune response to rotavirus infection and the efficacy and safety of the new vaccines that will be helpful for improving the existing rotavirus vaccines, or developing new rotavirus vaccines in the future.
Collapse
Affiliation(s)
- Juana Angel
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Carrera 7, 40-62, Bogotá, Colombia.
| | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Rotavirus is the most common cause of diarrhoea and dehydration in early childhood. The recent licensure in many nations of vaccines against rotavirus offers promise to significantly reduce this toll. The present review describes recent developments regarding rotavirus vaccines and the challenges they face. RECENT FINDINGS Rotavirus causes significant morbidity and impact upon healthcare systems, at both inpatient and outpatient levels. An earlier rotavirus vaccine, since withdrawn, was temporally associated with intussusception causing small bowel obstruction, especially in infants receiving their first dose at an older age. Large-scale safety and efficacy studies of two new live, oral, attenuated vaccines have shown excellent efficacy against severe rotavirus gastroenteritis. Importantly, both studies detected no association with intussusception with these new vaccines when administered at the scheduled ages. Developed using different rotavirus vaccinology philosophies, questions remain regarding their coverage against new rotavirus serotypes. Ongoing intussusception surveillance following introduction should answer whether they may be safely administered beyond scheduled ages. SUMMARY Safe, efficacious rotavirus vaccines are available in many developed countries, offering significant promise to reduce the burden of gastroenteritis and dehydration. The impact of these vaccines upon not only morbidity, but also circulating rotavirus serotypes, will be monitored with interest.
Collapse
Affiliation(s)
- Jim P Buttery
- NHMRC Centre of Clinical Research Excellence in Child and Adolescent Immunisation, Murdoch Children's Research Institute, Infectious Diseases Unit, Royal Children's Hospital, Parkville, Australia.
| | | |
Collapse
|