1
|
Runno-Paurson E, Agho CA, Nassar H, Hansen M, Leitaru K, Hallikma T, Cooke DEL, Niinemets Ü. The Variability of Phytophthora infestans Isolates Collected from Estonian Islands in the Baltic Sea. PLANT DISEASE 2024; 108:1645-1658. [PMID: 38127634 DOI: 10.1094/pdis-07-23-1399-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Knowledge of a pathogen's genetic variability and population structure is of great importance to effective disease management. In this study, 193 isolates of Phytophthora infestans collected from three Estonian islands were characterized over 3 years using simple sequence repeat (SSR) marker data complemented by information on their mating type and resistance to metalaxyl. In combination with SSR marker data from samples in the neighboring Pskov region of Northwest Russia, the impact of regional and landscape structure on the level of genetic exchange was also examined. Among the 111 P. infestans isolates from Estonian islands, 49 alleles were detected among 12 SSR loci, and 59 SSR multilocus genotypes were found, of which 64% were unique. The genetic variation was higher among years than that among islands, as revealed by the analysis of molecular variance. The frequency of metalaxyl-resistant isolates increased from 9% in 2012 to 30% in 2014, and metalaxyl resistance was most frequent among A1 isolates. The test for isolation by distance among the studied regions was not significant, and coupled with the absence of genetic differentiation, the result revealed gene flow and the absence of local adaptation. The data are consistent with a sexual population in which diversity is driven by an annual germination of soilborne oospores. The absence of shared genotypes over the years has important implications when it comes to the management of diseases. Such population diversity can make it difficult to predict the nature of the outbreak in the coming year as the genetic makeup is different for each year.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Collins A Agho
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kätlin Leitaru
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Tiit Hallikma
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | | | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
2
|
Dunaiski CM, Kock MM, Chan WY, Ismail A, Peters RPH. Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol 2024; 62:myae009. [PMID: 38308518 DOI: 10.1093/mmy/myae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024] Open
Abstract
Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.
Collapse
Affiliation(s)
- Cara M Dunaiski
- Namibia University of Sciences and Technology, Department of Health and Applied Sciences, Windhoek 10005, Namibia
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
| | - Marleen M Kock
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
- National Health Laboratory Service, Tshwane, Academic Division, Pretoria 3191, South Africa
| | - Wai Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0081, South Africa
- Right to care, Centurion 0157, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Remco P H Peters
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
- University of Cape Town, Division of Medical Microbiology, Cape Town 7701, South Africa
- Foundation for Professional Development, Research Unit, East London 5217, South Africa
| |
Collapse
|
3
|
Asadzadeh M, Ahmad S, Al-Sweih N, Khan Z. Molecular fingerprinting by multi-locus sequence typing identifies microevolution and nosocomial transmission of Candida glabrata in Kuwait. Front Public Health 2023; 11:1242622. [PMID: 37744513 PMCID: PMC10515652 DOI: 10.3389/fpubh.2023.1242622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Backgrounds Candida glabrata is a frequently isolated non-albicans Candida species and invasive C. glabrata infections in older patients are associated with high mortality rates. Opportunistic Candida infections in critically ill patients may be either endogenous or nosocomial in origin and this distinction is critical for effective intervention strategies. This study performed multi-locus sequence typing (MLST) to study genotypic relatedness among clinical C. glabrata isolates in Kuwait. Methods Candida glabrata isolates (n = 91) cultured from 91 patients were analyzed by MLST. Repeat isolates (n = 16) from 9 patients were also used. Antifungal susceptibility testing for fluconazole, voriconazole, caspofungin and amphotericin B (AMB) was determined by Etest. Genetic relatedness was determined by constructing phylogenetic tree and minimum spanning tree by using BioNumerics software. Results Resistance to fluconazole, voriconazole and AMB was detected in 7, 2 and 10 C. glabrata isolates, respectively. MLST identified 28 sequence types (STs), including 12 new STs. ST46 (n = 33), ST3 (n = 8), ST7 (n = 6) and ST55 (n = 6) were prevalent in ≥4 hospitals. Repeat isolates obtained from same or different site yielded identical ST. No association of ST46 with source of isolation or resistance to antifungals was apparent. Microevolution and cross-transmission of infection was indicated in two hospitals that yielded majority (57 of 91, 67%) of C. glabrata. Conclusion Our data suggest that C. glabrata undergoes microevolution in hospital environment and can be nosocomially transmitted to other susceptible patients. Thus, proper infection control practices during routine procedures on C. glabrata-infected patients may prevent transmission of this pathogen to other hospitalized patients.
Collapse
Affiliation(s)
| | - Suhail Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | | |
Collapse
|
4
|
Harun A, Kan A, Schwabenbauer K, Gilgado F, Perdomo H, Firacative C, Losert H, Abdullah S, Giraud S, Kaltseis J, Fraser M, Buzina W, Lackner M, Blyth CC, Arthur I, Rainer J, Lira JFC, Artigas JG, Tintelnot K, Slavin MA, Heath CH, Bouchara JP, Chen SCA, Meyer W. Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen Scedosporium aurantiacum. Front Cell Infect Microbiol 2022; 11:761596. [PMID: 35024355 PMCID: PMC8744116 DOI: 10.3389/fcimb.2021.761596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023] Open
Abstract
Scedosporium spp. are the second most prevalent filamentous fungi after Aspergillus spp. recovered from cystic fibrosis (CF) patients in various regions of the world. Although invasive infection is uncommon prior to lung transplantation, fungal colonization may be a risk factor for invasive disease with attendant high mortality post-transplantation. Abundant in the environment, Scedosporium aurantiacum has emerged as an important fungal pathogen in a range of clinical settings. To investigate the population genetic structure of S. aurantiacum, a MultiLocus Sequence Typing (MLST) scheme was developed, screening 24 genetic loci for polymorphisms on a tester strain set. The six most polymorphic loci were selected to form the S. aurantiacum MLST scheme: actin (ACT), calmodulin (CAL), elongation factor-1α (EF1α), RNA polymerase subunit II (RPB2), manganese superoxide dismutase (SOD2), and β-tubulin (TUB). Among 188 global clinical, veterinary, and environmental strains, 5 to 18 variable sites per locus were revealed, resulting in 8 to 23 alleles per locus. MLST analysis observed a markedly high genetic diversity, reflected by 159 unique sequence types. Network analysis revealed a separation between Australian and non-Australian strains. Phylogenetic analysis showed two major clusters, indicating correlation with geographic origin. Linkage disequilibrium analysis revealed evidence of recombination. There was no clustering according to the source of the strains: clinical, veterinary, or environmental. The high diversity, especially amongst the Australian strains, suggests that S. aurantiacum may have originated within the Australian continent and was subsequently dispersed to other regions, as shown by the close phylogenetic relationships between some of the Australian sequence types and those found in other parts of the world. The MLST data are accessible at http://mlst.mycologylab.org. This is a joined publication of the ISHAM/ECMM working groups on “Scedosporium/Pseudallescheria Infections” and “Fungal Respiratory Infections in Cystic Fibrosis”.
Collapse
Affiliation(s)
- Azian Harun
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Alex Kan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Katharina Schwabenbauer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Felix Gilgado
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Haybrig Perdomo
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | | | - Sarimah Abdullah
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Sandrine Giraud
- UNIV Angers, Université de Bretagne Occidentale, Centre Hospitalier Universitaire (CHU) d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA3142, Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques (SFR ICAT), Angers, France
| | - Josef Kaltseis
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Mark Fraser
- UK National Mycology Reference Laboratory, National Infection Service, Public Health England South-West, Bristol, United Kingdom
| | - Walter Buzina
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University, Graz, Austria
| | - Michaela Lackner
- Institute of Hygiene and Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christopher C Blyth
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Telethon Kids Institute and Medical School, University of Western Australia, Perth, WA, Australia
| | - Ian Arthur
- Mycology Laboratory, Division of Microbiology and Infectious Diseases, PathWest Laboratory Medicine Western Australia, Perth, WA, Australia
| | - Johannes Rainer
- Institute of Microbiology, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - José F Cano Lira
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro Artigas
- Unitat de Microbiologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | - Monica A Slavin
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Christopher H Heath
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch; & Infectious Diseases Department, Fiona Stanley Hospital, Murdoch; Department of Microbiology & Infectious Diseases, Royal Perth Hospital, Perth; & the University of Western Australia, Perth, WA, Australia
| | - Jean-Philippe Bouchara
- UNIV Angers, Université de Bretagne Occidentale, Centre Hospitalier Universitaire (CHU) d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA3142, Structure Fédérative de Recherche "Interactions Cellulaires et Applications Thérapeutiques (SFR ICAT), Angers, France
| | - Sharon C A Chen
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia.,Center for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Arastehfar A, Marcet-Houben M, Daneshnia F, Taj-Aldeen S, Batra D, Lockhart S, Shor E, Gabaldón T, Perlin D. Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy. Stud Mycol 2021; 100:100133. [PMID: 34909054 PMCID: PMC8640552 DOI: 10.1016/j.simyco.2021.100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - F. Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | | | - D. Batra
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - S.R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - E. Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
| | - T. Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Washington, DC, 20057, USA
| |
Collapse
|
6
|
Moorhouse AJ, Moreno-Lopez R, Gow NAR, Hijazi K. Clonal evolution of Candida albicans, Candida glabrata and Candida dubliniensis at oral niche level in health and disease. J Oral Microbiol 2021; 13:1894047. [PMID: 33796227 PMCID: PMC7971237 DOI: 10.1080/20002297.2021.1894047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background:Candida species have long been recognised as aetiological agents of opportunistic infections of the oral mucosa, and more recently, as players of polymicrobial interactions driving caries, periodontitis and oral carcinogenesis. Methods: We studied the clonal structure of Candida spp. at oral niche resolution in patients (n = 20) with a range of oral health profiles over 22 months. Colonies from oral micro-environments were examined with multilocus sequencing typing. Results:Candida spp. identified were C. albicans, C. glabrata and C. dubliniensis. Increased propensity for micro-variations giving rise to multiple diploid strain types (DST), as a result of loss of heterozygosity, was observed among C. albicans clade 1 isolates compared to other clades. Micro-variations among isolates were also observed in C. dubliniensis contra to expectations of stable population structures for this species. Multiple sequence types were retrieved from patients without clinical evidence of oral candidosis, while single sequence types were isolated from oral candidosis patients. Conclusion: This is the first study to describe the clonal population structure, persistence and stability of Candida spp. at oral niche level. Future research investigating links between Candida spp. clonality and oral disease should recognise the propensity to micro-variations amongst oral niches in C. albicans and C. dubliniensis identified here.
Collapse
Affiliation(s)
- Alexander J Moorhouse
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Rosa Moreno-Lopez
- Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Neil A R Gow
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Medical Research Council Centre for Medical Mycology at The University of Exeter, University of Exeter, UK
| | - Karolin Hijazi
- Institute of Medical Sciences, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.,Institute of Dentistry, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
7
|
Shor E, Perlin DS. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity. Curr Genet 2021; 67:439-445. [PMID: 33620543 DOI: 10.1007/s00294-021-01162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
How cells respond to DNA damage is key to maintaining genome integrity or facilitating genetic change. In fungi, DNA damage responses have been extensively characterized in the model budding yeast Saccharomyces cerevisiae, which is generally not pathogenic. However, it is not clear how closely these responses resemble those in fungal pathogens, in which genetic change plays an important role in the evolutionary arms race between pathogen and host and the evolution of antifungal drug resistance. A close relative of S. cerevisiae, Candida glabrata, is an opportunistic pathogen that displays high variability in chromosome structure among clinical isolates and rapidly evolves antifungal drug resistance. The mechanisms facilitating such genomic flexibility and evolvability in this organism are unknown. Recently we characterized the DNA damage response of C. glabrata and identified several features that distinguish it from the well characterized DNA damage response of S. cerevisiae. First, we discovered that, in contrast to the established paradigm, C. glabrata effector kinase Rad53 is not hyperphosphorylated upon DNA damage. We also uncovered evidence of an attenuated DNA damage checkpoint response, wherein in the presence of DNA damage C. glabrata cells did not accumulate in S-phase and proceeded with cell division, leading to aberrant mitoses and cell death. Finally, we identified evidence of transcriptional rewiring of the DNA damage response of C. glabrata relative to S. cerevisiae, including an upregulation of genes involved in mating and meiosis-processes that have not been reported in C. glabrata. Together, these results open new possibilities and raise tantalizing questions of how this major fungal pathogen facilitates genetic change.
Collapse
Affiliation(s)
- Erika Shor
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA. .,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA.,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.,Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA
| |
Collapse
|
8
|
Genetic Basis of Azole and Echinocandin Resistance in Clinical Candida glabrata in Japan. Antimicrob Agents Chemother 2020; 64:AAC.00783-20. [PMID: 32571826 DOI: 10.1128/aac.00783-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Infections caused by Candida glabrata have caused worldwide concern, especially when they are associated with increasing echinocandin and azole resistance. In this study, we analyzed the molecular mechanisms of azole and echinocandin resistance in C. glabrata isolates obtained from hospitalized patients in Japan from 1997 to 2019. All isolates were checked phenotypically for resistance and genotypically for mutations in PDR1, ERG11, hot spot 1 (HS1), HS2, and HS3 of FKS1, and HS1 and HS2 of FKS2, and all isolates were genotyped by multilocus sequence typing (MLST). Interestingly, 32.6% of the isolates were resistant to caspofungin, and 4.7% were resistant to micafungin. The isolates showed low rates of resistance to azoles, ranging from 2.3% to 9.3%, and only 4.7% of the isolates were non-wild type for flucytosine susceptibility. For the first time in Japan, 4.7% of the isolates were identified as multidrug-resistant strains. Nonsynonymous mutations in PDR1, including two novel mutations associated with azole resistance, were identified in 39.5% of the isolates, and a single nonsynonymous mutation was identified in ERG11 Nine isolates from the same patient harbored nonsynonymous mutations in HS1 of FKS2, and a single isolate harbored a single nonsynonymous mutation in HS1 of FKS1 MLST genotyping revealed 13 different sequence types (STs), with 3 new STs, and ST7 was the most prevalent among the patients (35%) and was associated with high resistance rates. Our results are of crucial clinical concern, since understanding the molecular mechanisms underlying fungal resistance is imperative for guiding specific therapy for efficient patient treatment and promoting strategies to prevent epidemic spread.
Collapse
|
9
|
Mushi M, Okamo B, Majinge D, Gross U, Bader O, Mshana S. Diversity of the diploid sequence type of Candida albicans clinical isolates from a tertiary-care hospital in Mwanza, Tanzania. New Microbes New Infect 2020; 37:100731. [PMID: 32884820 PMCID: PMC7452097 DOI: 10.1016/j.nmni.2020.100731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
Geographical strain variations of Candida albicans causing different clinical conditions in susceptible individuals have been reported. In this study, the distribution of diploid sequence type of C. albicans was investigated in Mwanza, Tanzania. A total of 64 C. albicans were selected on the basis of their antifungal susceptibility patterns, followed by multilocus sequence typing (MLST) to establish the circulating sequence types (STs). Forty-eight MLST were obtained out of 64 isolates amounting to 75% population structure differences. Out of these STs, 27 (56.3%) were new diploid ST types. C. albicans isolates with new ST were more diverse than isolates with known STs (27/29, 93.1% vs. 21/35, 60%, p 0.002). In conclusion, C. albicans from clinical specimens were highly diverse, with more than half of the detected diploid ST not previously reported in the MLST database, thus confirming the genetic differences of C. albicans from different geographical regions.
Collapse
Affiliation(s)
- M.F. Mushi
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Heath and Allied Sciences, Mwanza, Tanzania
| | - B. Okamo
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Heath and Allied Sciences, Mwanza, Tanzania
| | - D.C. Majinge
- Department of Internal Medicine, Bugando Medical Centre/Catholic University of Health and Allied Science, Mwanza, Tanzania
| | - U. Gross
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - O. Bader
- Institute of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - S.E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Heath and Allied Sciences, Mwanza, Tanzania
- Corresponding author: S. E. Mshana, Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Heath and Allied Sciences, Mwanza, Tanzania.
| |
Collapse
|
10
|
Mushi MF, Gross U, Mshana SE, Bader O. High diversity of Candida glabrata in a tertiary hospital-Mwanza, Tanzania. Med Mycol 2020; 57:914-917. [PMID: 30597052 DOI: 10.1093/mmy/myy151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/01/2018] [Accepted: 12/08/2018] [Indexed: 11/14/2022] Open
Abstract
Candida glabrata is a genetically diverse human pathogenic yeast, whose subpopulations have been documented to vary geographically. Here, we report MLST genotypes and antifungal drug susceptibility of C. glabrata isolates from Africa. Among 47 mostly urogenital isolates, we found 13 sequence types, amounting to a 27% genetic population difference. More than half of the isolates were of novel sequence types. ST18 was most predominant and had reduced susceptibility to fluconazole. There was clear segregation of STs between urine and vaginal specimen. In Tanzania, the C. glabrata population is genetically diverse, and divergent from those seen in other countries.
Collapse
Affiliation(s)
- Martha F Mushi
- Department of Microbiology and immunology, Weill Bugando School of Medicine, Catholic University of Heath and Allied Sciences Mwanza, Tanzania
| | - Uwe Gross
- Institute of Medical Microbiology, University Medical Center Gottingen, Germany
| | - Stephen E Mshana
- Department of Microbiology and immunology, Weill Bugando School of Medicine, Catholic University of Heath and Allied Sciences Mwanza, Tanzania
| | - Oliver Bader
- Institute of Medical Microbiology, University Medical Center Gottingen, Germany
| |
Collapse
|
11
|
Gabaldón T, Gómez-Molero E, Bader O. Molecular Typing of Candida glabrata. Mycopathologia 2019; 185:755-764. [PMID: 31617105 DOI: 10.1007/s11046-019-00388-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
The yeast Candida glabrata has emerged, second only to Candida albicans, to be one of the most frequently isolated fungi in clinical specimen from human. Its frequent resistance towards azole antifungal drugs and the high capacity to form biofilms on indwelling catheters of individual isolates render it an often difficult to treat pathogen. Hence, there is a notably increasing scientific and clinical interest in this species. This has led to the development of a variety of molecular tools for genetic modification, strain collections, and last but not least different approaches to analyse the population structure among isolates of different geographical and clinical contexts. Often, these are used to study correlations (or the absence thereof) with different pathogenicity, virulence, or drug resistance traits. Three molecular methods have been used to type within the C. glabrata population on a genetic level by multiple studies: multi-locus sequence typing, microsatellite length polymorphisms, and clustering of whole-genome sequencing data, and these are subject of this review.
Collapse
Affiliation(s)
- Toni Gabaldón
- Comparative Genomics Group, Life Science Programme, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute of Research in Biomedicine (IRB), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Emilia Gómez-Molero
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| |
Collapse
|
12
|
Reyes-Montes MDR, Acosta-Altamirano G, Duarte-Escalante E, Salazar EG, Martínez-Herrera E, Arenas R, González G, Frías-De-León MG. Usefulness of a multiplex PCR for the rapid identification of Candida glabrata species complex in Mexican clinical isolates. Rev Inst Med Trop Sao Paulo 2019; 61:e37. [PMID: 31411267 PMCID: PMC6690577 DOI: 10.1590/s1678-9946201961037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/25/2019] [Indexed: 01/12/2023] Open
Abstract
Candida glabrata complex includes three species identified
through molecular biology methods: C. glabrata sensu stricto ,
C. nivariensis and C. bracarensis . In
Mexico, the phenotypic methods are still used in the diagnosis; therefore, the
presence of C. nivariensis and C. bracarensis
among clinical isolates is still unknown. The aim of this study was to evaluate
the utility of a multiplex PCR for the identification of the C.
glabrata species complex. DNA samples from 92 clinical isolates
that were previously identified through phenotypic characteristics as C.
glabrata were amplified by four oligonucleotides (UNI-5.8S, GLA-f,
BRA-f, and NIV-f) that generate amplicons of 397, 293 and 223-bp corresponding
to C. glabrata sensu stricto , C. nivariensis
, and C. bracarensis , respectively. The amplicon sequences
were used to perform a phylogenetic analysis through the Maximum Likelihood
method (MEGA6), including strains and reference sequences of species belonging
to C. glabrata complex. In addition, recombination and linkage
disequilibrium were estimated (DnaSP version 5.0) for C. glabrata sensu
stricto isolate s . Eighty-eight isolates
generated a 397-bp fragment and only in one isolate a 223-bp amplicon was
observed. In the phylogenetic tree, the sequences of 397-bp were grouped with
C. glabrata reference sequences , and the
sequence of 223-bp was grouped with C. bracarensis reference
sequences, corroborating the PCR identification. The number of recombination
events for the isolates of C. glabrata sensu stricto was zero,
suggesting a clonal population structure. Three isolates that did not amplify
any of the expected fragments were identified as Saccharomyces
cerevisiae through the sequencing of the D1/D2 domain region within
the 28S rDNA gene. The multiplex PCR is a fast, cost-effective and reliable tool
that can be used in clinical laboratories to identify C.
glabrata complex species.
Collapse
Affiliation(s)
- María Del Rocío Reyes-Montes
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Ciudad de México, México
| | | | - Esperanza Duarte-Escalante
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Microbiología y Parasitología, Ciudad de México, México
| | - Eduardo García Salazar
- Hospital Regional de Alta Especialidad de Ixtapaluca, Unidad de Investigación, Ixtapaluca, México
| | - Erick Martínez-Herrera
- Hospital Regional de Alta Especialidad de Ixtapaluca, Unidad de Investigación, Ixtapaluca, México
| | - Roberto Arenas
- Hospital General "Dr. Manuel Gea González, Sección de Micología, Ciudad de México, México
| | - Gloria González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, México
| | | |
Collapse
|
13
|
A Novel, Drug Resistance-Independent, Fluorescence-Based Approach To Measure Mutation Rates in Microbial Pathogens. mBio 2019; 10:mBio.00120-19. [PMID: 30808701 PMCID: PMC6391916 DOI: 10.1128/mbio.00120-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Measurements of mutation rates—i.e., how often proliferating cells acquire mutations in their DNA—are essential for understanding cellular processes that maintain genome stability. Many traditional mutation rate measurement assays are based on detecting mutations that cause resistance to a particular drug. Such assays typically work well for laboratory strains but have significant limitations when comparing clinical or environmental isolates that have various intrinsic levels of drug tolerance, which confounds the interpretation of results. Here we report the development and validation of a novel method of measuring mutation rates, which detects mutations that cause loss of fluorescence rather than acquisition of drug resistance. Using this method, we measured the mutation rates of clinical isolates of fungal pathogen Candida glabrata. This assay can be adapted to other organisms and used to compare mutation rates in contexts where unequal drug sensitivity is anticipated. All evolutionary processes are underpinned by a cellular capacity to mutate DNA. To identify factors affecting mutagenesis, it is necessary to compare mutation rates between different strains and conditions. Drug resistance-based mutation reporters are used extensively to measure mutation rates, but they are suitable only when the compared strains have identical drug tolerance levels—a condition that is not satisfied under many “real-world” circumstances, e.g., when comparing mutation rates among a series of environmental or clinical isolates. Candida glabrata is a fungal pathogen that shows a high degree of genetic diversity and fast emergence of antifungal drug resistance. To enable meaningful comparisons of mutation rates among C. glabrata clinical isolates, we developed a novel fluorescence-activated cell sorting-based approach to measure the mutation rate of a chromosomally integrated GFP gene. We found that in Saccharomyces cerevisiae this approach recapitulated the reported mutation rate of a wild-type strain and the mutator phenotype of a shu1Δ mutant. In C. glabrata, the GFP reporter captured the mutation rate increases caused either by a genotoxic agent or by deletion of DNA mismatch repair gene MSH2, as well as the specific mutational signature associated with msh2Δ. Finally, the reporter was used to measure the mutation rates of C. glabrata clinical isolates carrying different alleles of MSH2. Together, these results show that fluorescence-based mutation reporters can be used to measure mutation rates in microbes under conditions of unequal drug susceptibility to reveal new insights about drivers of mutagenesis.
Collapse
|
14
|
Biswas C, Marcelino VR, Van Hal S, Halliday C, Martinez E, Wang Q, Kidd S, Kennedy K, Marriott D, Morrissey CO, Arthur I, Weeks K, Slavin MA, Sorrell TC, Sintchenko V, Meyer W, Chen SCA. Whole Genome Sequencing of Australian Candida glabrata Isolates Reveals Genetic Diversity and Novel Sequence Types. Front Microbiol 2018; 9:2946. [PMID: 30559734 PMCID: PMC6287553 DOI: 10.3389/fmicb.2018.02946] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Candida glabrata is a pathogen with reduced susceptibility to azoles and echinocandins. Analysis by traditional multilocus sequence typing (MLST) has recognized an increasing number of sequence types (STs), which vary with geography. Little is known about STs of C. glabrata in Australia. Here, we utilized whole genome sequencing (WGS) to study the genetic diversity of 51 Australian C. glabrata isolates and sought associations between STs over two time periods (2002-2004, 2010-2017), and with susceptibility to fluconazole by principal component analysis (PCA). Antifungal susceptibility was determined using Sensititre YeastOneTM Y010 methodology and WGS performed on the NextSeq 500 platform (Illumina) with in silico MLST STs inferred by WGS data. Single nucleotide polymorphisms (SNPs) in genes linked to echinocandin, azole and 5-fluorocytosine resistance were analyzed. Of 51 isolates, WGS identified 18 distinct STs including four novel STs (ST123, ST124, ST126, and ST127). Four STs accounted for 49% of isolates (ST3, 15.7%; ST83, 13.7%; ST7, 9.8%; ST26, 9.8%). Split-tree network analysis resolved isolates to terminal branches; many of these comprised multiple isolates from disparate geographic settings but four branches contained Australian isolates only. ST3 isolates were common in Europe, United States and now Australia, whilst ST8 and ST19, relatively frequent in the United States, were rare/absent amongst our isolates. There was no association between ST distribution (genomic similarity) and the two time periods or with fluconazole susceptibility. WGS identified mutations in the FKS1 (S629P) and FKS2 (S663P) genes in three, and one, echinocandin-resistant isolate(s), respectively. Both mutations confer phenotypic drug resistance. Twenty-five percent (13/51) of isolates were fluconazole-resistant (MIC ≥ 64 μg/ml) of which 9 (18%) had non wild-type MICs to voriconazole and posaconazole. Multiple SNPs were present in genes linked to azole resistance such as CgPDR1 and CgCDR1, as well as several in MSH2; however, SNPs occurred in both azole-susceptible and azole-resistant isolates. Although no particular SNP in these genes was definitively associated with resistance, azole-resistant/non-wild type isolates had a propensity to harbor SNPs resulting in amino acid substitutions in Pdr1 beyond the first 250 amino acid positions. The presence of SNPs may be markers of STs. Our study shows the value of WGS for high-resolution sequence typing of C. glabrata, discovery of novel STs and potential to monitor trends in genetic diversity. WGS assessment for echinocandin resistance augments phenotypic susceptibility testing.
Collapse
Affiliation(s)
- Chayanika Biswas
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Vanessa R Marcelino
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Sebastiaan Van Hal
- Department of Infectious Diseases and Microbiology, New South Wales Health Pathology, Royal Prince Alfred Hospital, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, SA, Australia
| | - Karina Kennedy
- Department of Microbiology and Infectious Diseases, Canberra Hospital & Health Services, Australian National University Medical School, Canberra, ACT, Australia
| | - Deborah Marriott
- Department of Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, NSW, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Ian Arthur
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, WA, Australia
| | - Kerry Weeks
- Department of Microbiology and Infectious Diseases, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Tania C Sorrell
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Wieland Meyer
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
15
|
Fungal Resistance to Echinocandins and the MDR Phenomenon in Candida glabrata. JOURNAL OF FUNGI (BASEL, SWITZERLAND) 2018; 4:jof4030105. [PMID: 30200517 PMCID: PMC6162769 DOI: 10.3390/jof4030105] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022]
Abstract
Candida glabrata has thoroughly adapted to successfully colonize human mucosal membranes and survive in vivo pressures. prior to and during antifungal treatment. Out of all the medically relevant Candida species, C. glabrata has emerged as a leading cause of azole, echinocandin, and multidrug (MDR: azole + echinocandin) adaptive resistance. Neither mechanism of resistance is intrinsic to C. glabrata, since stable genetic resistance depends on mutation of drug target genes, FKS1 and FKS2 (echinocandin resistance), and a transcription factor, PDR1, which controls expression of major drug transporters, such as CDR1 (azole resistance). However, another hallmark of C. glabrata is the ability to withstand drug pressure both in vitro and in vivo prior to stable "genetic escape". Additionally, these resistance events can arise within individual patients, which underscores the importance of understanding how this fungus is adapting to its environment and to drug exposure in vivo. Here, we explore the evolution of echinocandin resistance as a multistep model that includes general cell stress, drug adaptation (tolerance), and genetic escape. The extensive genetic diversity reported in C. glabrata is highlighted.
Collapse
|
16
|
Byun SA, Won EJ, Kim MN, Lee WG, Lee K, Lee HS, Uh Y, Healey KR, Perlin DS, Choi MJ, Kim SH, Shin JH. Multilocus Sequence Typing (MLST) Genotypes of Candida glabrata Bloodstream Isolates in Korea: Association With Antifungal Resistance, Mutations in Mismatch Repair Gene (Msh2), and Clinical Outcomes. Front Microbiol 2018; 9:1523. [PMID: 30057573 PMCID: PMC6053515 DOI: 10.3389/fmicb.2018.01523] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Candida glabrata bloodstream infection (BSI) isolates from a particular geographic area have been reported to comprise a relatively small number of the major sequence types (STs) by multilocus sequence typing (MLST) analysis. Yet little is known about the characteristics of major ST strains of C. glabrata. To address this question in Korea, we investigated antifungal resistance and non-synonymous mutations of the mismatch repair gene (msh2 mutations) in C. glabrata BSI isolates, as well as associated clinical characteristics, and compared the results according to MLST genotype. We assessed a total of 209 C. glabrata BSI isolates from seven hospitals in Korea for 2 years (2009 and 2014). Clinical features of candidemia and their outcomes were analyzed for 185 available cases. According to MLST, ST7 (47.8%) was the most common type, followed by ST3 (22.5%); the remainder represented 28 types of minor STs (29.7%). Fluconazole-resistance (FR) rates for ST7, ST3, and other strains were 9.0% (9/100), 8.5% (4/47), and 4.8% (3/62), respectively, and all were susceptible to amphotericin B and micafungin. All ST7 isolates harbored the V239L mutation in msh2, known to confer hypermutability, while 91.5% of ST3 isolates did not harbor the msh2 mutation. Overall, isolates of the same ST had identical msh2 mutations, with the exception of nine isolates. The msh2 mutations were identified in 68.8% (11/16) of the FR isolates and 67.4% (130/193) of the fluconazole susceptible-dose dependent isolates. There was no significant difference in all clinical characteristics between ST3 and ST7. However, the 30-day mortality of C. glabrata candidemia due to the two major ST (ST3 or ST7) strains was significantly higher than that of candidemia due to other minor ST strains (45.1 vs. 25.0%, p < 0.05). Multivariate logistic regression analysis also showed that two major STs (ST3 and ST7) were independent predictors of 30-day mortality. This study showed for the first time that two STs (ST7 and ST3) were predominant among BSI isolates in Korea, and that C. glabrata BSI isolates belonging to two major MLST genotypes are characterized by higher mortality. In addition, most msh2 mutations align with MLST genotype, irrespective of FR.
Collapse
Affiliation(s)
- Seung A Byun
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Wee Gyo Lee
- Department of Laboratory Medicine, Ajou University School of Medicine, Suwon, South Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Soo Lee
- Department of Laboratory Medicine, Chonbuk National University Hospital, Jeonju, South Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kelley R Healey
- Public Health Research Institute, New Jersey Medical School-Rutgers, The State University of New Jersey, Newark, NY, United States
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School-Rutgers, The State University of New Jersey, Newark, NY, United States
| | - Min Ji Choi
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
17
|
Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie van Leeuwenhoek 2018; 111:2233-2247. [PMID: 29934695 DOI: 10.1007/s10482-018-1116-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/14/2018] [Indexed: 01/26/2023]
Abstract
One of the most important zoonotic pathogens worldwide, Streptococcus suis is a swine pathogen that is responsible for meningitis, toxic shock and even death in humans. S. suis infection develops rapidly with nonspecific clinical symptoms in the early stages and a high fatality rate. Recently, much attention has been paid to the high prevalence of S. suis as well as the increasing incidence and its epidemic characteristics. As laboratory-acquired infections of S. suis can occur and it is dangerous to public health security, timely and early diagnosis has become key to controlling S. suis prevalence. Here, the techniques that have been used for the detection, typing and characterization of S. suis are reviewed and the prospects for future detection methods for this bacterium are also discussed.
Collapse
|
18
|
Sasso M, Normand AC, Pantel A, Bourgeois N, Lachaud L. Evaluation of the DiversiLab® automated repetitive sequence-based PCR system for the characterization of Candida albicans and Candida glabrata isolates. J Mycol Med 2018; 28:320-326. [DOI: 10.1016/j.mycmed.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
19
|
Profiling of PDR1 and MSH2 in Candida glabrata Bloodstream Isolates from a Multicenter Study in China. Antimicrob Agents Chemother 2018; 62:AAC.00153-18. [PMID: 29581110 DOI: 10.1128/aac.00153-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
Among 158 Candida glabrata bloodstream isolates collected from numerous centers in China, a resistance to fluconazole was seen in 8.9%. Three isolates (1.9%) were resistant to all echinocandins. Multilocus sequence typing (MLST) revealed that sequence type 7 ([ST7] 65.8%) was the most common type, followed by ST3 (7.6%). PDR1 polymorphisms were associated with the acquisition of fluconazole resistance in C. glabrata isolates, while MSH2 polymorphisms were associated with the STs and microsatellite genotypes, irrespective of fluconazole resistance.
Collapse
|
20
|
Cortés-Acosta E, Ibarra JA, Ramírez-Saad H, Vargas-Mendoza CF, Villa-Tanaca L, Hernández-Rodríguez C. Polymorphism in the regulatory regions of genes CgYPS1 and CgYPS7 encoding yapsins in Candida glabrata is associated with changes in expression levels. FEMS Yeast Res 2017; 17:4562591. [PMID: 29069395 DOI: 10.1093/femsyr/fox077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022] Open
Abstract
Candida glabrata is an opportunistic fungus infecting mainly immunocompromised people. Its adherence capacity and exoenzymes contribute to damaging host cells. In particular, the yapsins are a family of aspartyl proteases involved in maturation of proteins and cell wall function, and yapsins 1 and 7, respectively encoded by genes CgYPS1 and CgYPS7, are potential virulence factors. In this study, the polymorphism of regulatory regions and the expression profiles of both genes were compared in C. glabrata clinical strains. The sequence analysis of regulatory regions revealed that the distribution of transcription factor binding sites (TFBSs) was similar, although some TFBSs were not universally distributed. The quantita-tive expression of CgYPS1 and CgYPS7 genes of different C. glabrata strains in rich and poor media was estimated by RT-qPCR. The primary sequences of genes CgYPS1 and CgYPS7 of C. glabrata strains were highly conserved among different strains, but the regulatory regions were polymorphic, harboring different TFBS arrays, and showing differential expression profiles.
Collapse
Affiliation(s)
- Elías Cortés-Acosta
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - José Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - Hugo Ramírez-Saad
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, 04960 Ciudad de México
| | - Carlos Fabián Vargas-Mendoza
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México
| |
Collapse
|
21
|
Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How? Clin Microbiol Rev 2017; 30:671-707. [PMID: 28490578 DOI: 10.1128/cmr.00043-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genotyping studies of medically important fungi have addressed elucidation of outbreaks, nosocomial transmissions, infection routes, and genotype-phenotype correlations, of which secondary resistance has been most intensively investigated. Two methods have emerged because of their high discriminatory power and reproducibility: multilocus sequence typing (MLST) and microsatellite length polymorphism (MLP) using short tandem repeat (STR) markers. MLST relies on single-nucleotide polymorphisms within the coding regions of housekeeping genes. STR polymorphisms are based on the number of repeats of short DNA fragments, mostly outside coding regions, and thus are expected to be more polymorphic and more rapidly evolving than MLST markers. There is no consensus on a universal typing system. Either one or both of these approaches are now available for Candida spp., Aspergillus spp., Fusarium spp., Scedosporium spp., Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The choice of the method and the number of loci to be tested depend on the clinical question being addressed. Next-generation sequencing is becoming the most appropriate method for fungi with no MLP or MLST typing available. Whatever the molecular tool used, collection of clinical data (e.g., time of hospitalization and sharing of similar rooms) is mandatory for investigating outbreaks and nosocomial transmission.
Collapse
|
22
|
Dellière S, Healey K, Gits-Muselli M, Carrara B, Barbaro A, Guigue N, Lecefel C, Touratier S, Desnos-Ollivier M, Perlin DS, Bretagne S, Alanio A. Fluconazole and Echinocandin Resistance of Candida glabrata Correlates Better with Antifungal Drug Exposure Rather than with MSH2 Mutator Genotype in a French Cohort of Patients Harboring Low Rates of Resistance. Front Microbiol 2016; 7:2038. [PMID: 28066361 PMCID: PMC5179511 DOI: 10.3389/fmicb.2016.02038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/05/2016] [Indexed: 11/21/2022] Open
Abstract
Candida glabrata is a major pathogenic yeast in humans that is known to rapidly acquire resistance to triazole and echinocandin antifungal drugs. A mutator genotype (MSH2 polymorphism) inducing a mismatch repair defect has been recently proposed to be responsible for resistance acquisition in C. glabrata clinical isolates. Our objectives were to evaluate the prevalence of antifungal resistance in a large cohort of patients in Saint-Louis hospital, Paris, France, some of whom were pre-exposed to antifungal drugs, as well as to determine whether MSH2 polymorphisms are associated with an increased rate of fluconazole or echinocandin resistance. We collected 268 isolates from 147 patients along with clinical data and previous antifungal exposure. Fluconazole and micafungin minimal inhibition concentrations (MICs) were tested, short tandem repeat genotyping was performed, and the MSH2 gene was sequenced. According to the European Committee on Antimicrobial Susceptibility breakpoints, 15.7% of isolates were resistant to fluconazole (MIC > 32 mg/L) and 0.7% were resistant to micafungin (MIC > 0.03 mg/L). A non-synonymous mutation within MSH2 occurred in 44% of the isolates, and 17% were fluconazole resistant. In comparison, fluconazole resistant isolates with no MSH2 mutation represented 15% (P = 0.65). MSH2 polymorphisms were associated with the short tandem repeat genotype. The rate of echinocandin resistance is low and correlates with prior exposure to echinocandin. The mutator genotype was not associated with enrichment in fluconazole resistance but instead corresponded to rare and specific genotypes.
Collapse
Affiliation(s)
- Sarah Dellière
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal Paris, France
| | - Kelley Healey
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers Newark, NJ, USA
| | - Maud Gits-Muselli
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-WidalParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Bastien Carrara
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal Paris, France
| | - Alessandro Barbaro
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal Paris, France
| | - Nicolas Guigue
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal Paris, France
| | - Christophe Lecefel
- Service de Pharmacie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal Paris, France
| | - Sophie Touratier
- Service de Pharmacie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal Paris, France
| | - Marie Desnos-Ollivier
- Unité de Mycologie Moléculaire, Institut Pasteur, Centre National de la Recherche Scientifique, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012 Paris, France
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers Newark, NJ, USA
| | - Stéphane Bretagne
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-WidalParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France; Unité de Mycologie Moléculaire, Institut Pasteur, Centre National de la Recherche Scientifique, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012Paris, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-WidalParis, France; Université Paris Diderot, Sorbonne Paris CitéParis, France; Unité de Mycologie Moléculaire, Institut Pasteur, Centre National de la Recherche Scientifique, Centre National de Référence Mycoses Invasives et Antifongiques, URA3012Paris, France
| |
Collapse
|
23
|
Healey KR, Jimenez Ortigosa C, Shor E, Perlin DS. Genetic Drivers of Multidrug Resistance in Candida glabrata. Front Microbiol 2016; 7:1995. [PMID: 28018323 PMCID: PMC5156712 DOI: 10.3389/fmicb.2016.01995] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Both the incidence of invasive fungal infections and rates of multidrug resistance associated with fungal pathogen Candida glabrata have increased in recent years. In this perspective, we will discuss the mechanisms underlying the capacity of C. glabrata to rapidly develop resistance to multiple drug classes, including triazoles and echinocandins. We will focus on the extensive genetic diversity among clinical isolates of C. glabrata, which likely enables this yeast to survive multiple stressors, such as immune pressure and antifungal exposure. In particular, over half of C. glabrata clinical strains collected from U.S. and non-U.S. sites have mutations in the DNA mismatch repair gene MSH2, leading to a mutator phenotype and increased frequencies of drug-resistant mutants in vitro. Furthermore, recent studies and data presented here document extensive chromosomal rearrangements among C. glabrata strains, resulting in a large number of distinct karyotypes within a single species. By analyzing clonal, serial isolates derived from individual patients treated with antifungal drugs, we were able to document chromosomal changes occurring in C. glabrata in vivo during the course of antifungal treatment. Interestingly, we also show that both MSH2 genotypes and chromosomal patterns cluster consistently into specific strain types, indicating that C. glabrata has a complex population structure where genomic variants arise, perhaps during the process of adaptation to environmental changes, and persist over time.
Collapse
Affiliation(s)
- Kelley R Healey
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| | - Cristina Jimenez Ortigosa
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| | - Erika Shor
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| | - David S Perlin
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School Newark, NJ, USA
| |
Collapse
|
24
|
Fathi N, Mohammadi R, Tabatabaiefar MA, Ghahri M, Sadrossadati SZ. Sequence-identification of Candida species isolated from candidemia. Adv Biomed Res 2016; 5:150. [PMID: 27713871 PMCID: PMC5046752 DOI: 10.4103/2277-9175.188485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022] Open
Abstract
Background: Candida species are the most prevalent cause of invasive fungal infections such as candidemia. Candidemia is a lethal fungal infection among immunocompromised patients worldwide. Main pathogen is Candida albicans but a global shift in epidemiology toward non-albicans species have reported. Species identification is imperative for good management of candidemia as a fatal infection. The aim of the study is to identify Candida spp. obtained from candidemia and determination of mortality rate among this population. Materials and Methods: The study was performed during February 2014 to March 2015 in Tehran, Iran. Two-hundred and four blood cultures were evaluated for fungal bloodstream infection. Identification of isolates was carried out using phenotypic tests and polymerase chain reaction sequencing technique. Results: Twenty-two out of 204 patients (10.8%) had candidemia. Candida parapsilosis was the most prevalent species (45.4%), followed by C. albicans (31.8%) and Candida glabrata (22.7%). Male to female sex ratio was 8/14. Conclusions: The emergence of resistant strains of Candida species should be considered by physicians to decrease the mortality of this fatal fungal infection by appropriate treatment.
Collapse
Affiliation(s)
- Naeimeh Fathi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ghahri
- Department of Biology, School of Applied Sciences, Imam Hossein University, Tehran, Iran
| | | |
Collapse
|
25
|
Nieuwenhuis BPS, Immler S. The evolution of mating-type switching for reproductive assurance. Bioessays 2016; 38:1141-1149. [DOI: 10.1002/bies.201600139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Simone Immler
- Department of Evolutionary Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
26
|
Schmalreck AF, Willinger B, Idelevich EA, Fegeler C, Lass-Flörl C, Fegeler W, Becker K. Parallel and cross-resistances of clinical yeast isolates determined by susceptibility pattern analysis. GMS INFECTIOUS DISEASES 2016; 4:Doc02. [PMID: 30671316 PMCID: PMC6301743 DOI: 10.3205/id000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For calculated initial antifungal therapy, knowledge on parallel and cross-resistances are vitally important particularly in the case of multiresistant isolates. Based on a strain collection of 1,062 yeast isolates from a German/Austrian multicentre study, susceptibility pattern analysis (SPA) was used to determine the proportion of parallel and cross-resistances to eight antifungal agents (AFAs) encompassing flucytosine, amphotericin B, azoles (fluconazole, voriconazole and posaconazole) and echinocandins (caspofungin, micafungin and anidulafungin). A total of 414 (39.0%) isolates were resistant for one or more of the AFAs. Resistance to one AFA was shown for 18.1% of all isolates. For 222 isolates (20.9%), resistance to two to seven AFAs was noted (7.7%; 7.7%; 3.6%; 1.0%; 0.7% and 0.2% to 2, 3, 4, 5, 6 and 7 antifungal compounds, respectively). Partial parallel resistances within the azole and echinocandin classes, respectively, were found for 81 (7.6%) and 70 (6.6%) isolates. Complete parallel resistances for azoles, echinocandins and combined for both classes were exhibited by 93 (8.8%), 18 (1.7%) and 6 (0.6%) isolates, respectively. Isolates displaying cross-resistances between azoles and echinocandins were infrequently found. Highly resistant isolates (resistance to ≥6 AFAs) were almost exclusively represented by Candida albicans. Highly standardized testing of AFAs in parallel and from the same inocula followed by SPA allows detailed insights in the prevalence and distribution of susceptibility patterns of microbial isolates.
Collapse
Affiliation(s)
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, University Vienna, Austria
| | | | - Christian Fegeler
- Medical Informatics, Faculty of Informatics, University Heilbronn, Germany
| | - Cornelia Lass-Flörl
- Section Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Wolfgang Fegeler
- Institute of Medical Microbiology, University Hospital Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Germany
| |
Collapse
|
27
|
Katiyar S, Shiffrin E, Shelton C, Healey K, Vermitsky JP, Edlind T. Evaluation of Polymorphic Locus Sequence Typing for Candida glabrata Epidemiology. J Clin Microbiol 2016; 54:1042-50. [PMID: 26842706 PMCID: PMC4809956 DOI: 10.1128/jcm.03106-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 11/20/2022] Open
Abstract
The opportunistic yeast Candida glabratais increasingly refractory to antifungal treatment or prophylaxis and relatedly is increasingly implicated in health care-associated infections. To elucidate the epidemiology of these infections, strain typing is required. Sequence-based typing provides multiple advantages over length-based methods, such as pulsed-field gel electrophoresis (PFGE); however, conventional multilocus sequence typing (targeting 6 conserved loci) and whole-genome sequencing are impractical for routine use. A commercial sequence-based typing service for C. glabratathat targets polymorphic tandem repeat-containing loci has recently been developed. These CgMT-J and CgMT-M services were evaluated with 56 epidemiologically unrelated isolates, 4 to 7 fluconazole-susceptible or fluconazole-resistant isolates from each of 5 center A patients, 5 matched pairs of fluconazole-susceptible/resistant isolates from center B patients, and 7 isolates from a center C patient who responded to then failed caspofungin therapy. CgMT-J and CgMT-M generated congruent results, resolving isolates into 24 and 20 alleles, respectively. Isolates from all but one of the center A patients shared the same otherwise rare alleles, suggesting nosocomial transmission. Unexpectedly, Pdr1 sequencing showed that resistance arose independently in each patient. Similarly, most isolates from center B also clustered together; however, this may reflect a dominant clone since their alleles were shared by multiple unrelated isolates. Although distinguishable by their echinocandin susceptibilities, all isolates from the center C patient shared alleles, in agreement with the previously reported relatedness of these isolates based on PFGE. Finally, we show how phylogenetic clusters can be used to provide surrogate parents to analyze the mutational basis for antifungal resistance.
Collapse
Affiliation(s)
- Santosh Katiyar
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Shiffrin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Celeste Shelton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelley Healey
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - John-Paul Vermitsky
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Tom Edlind
- MicrobiType LLC, Plymouth Meeting, Pennsylvania, USA
| |
Collapse
|
28
|
Moorhouse AJ, Rennison C, Raza M, Lilic D, Gow NAR. Clonal Strain Persistence of Candida albicans Isolates from Chronic Mucocutaneous Candidiasis Patients. PLoS One 2016; 11:e0145888. [PMID: 26849050 PMCID: PMC4743940 DOI: 10.1371/journal.pone.0145888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST). Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs) that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH) events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC.
Collapse
Affiliation(s)
- Alexander J. Moorhouse
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| | - Claire Rennison
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muhammad Raza
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Desa Lilic
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Posttreatment Antifungal Resistance among Colonizing Candida Isolates in Candidemia Patients: Results from a Systematic Multicenter Study. Antimicrob Agents Chemother 2015; 60:1500-8. [PMID: 26711776 DOI: 10.1128/aac.01763-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
The prevalence of intrinsic and acquired resistance among colonizing Candida isolates from patients after candidemia was investigated systematically in a 1-year nationwide study. Patients were treated at the discretion of the treating physician. Oral swabs were obtained after treatment. Species distributions and MIC data were investigated for blood and posttreatment oral isolates from patients exposed to either azoles or echinocandins for <7 or ≥ 7 days. Species identification was confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and internal transcribed spacer (ITS) sequencing, susceptibility was examined by EUCAST EDef 7.2 methodology, echinocandin resistance was examined by FKS sequencing, and genetic relatedness was examined by multilocus sequence typing (MLST). One hundred ninety-three episodes provided 205 blood and 220 oral isolates. MLST analysis demonstrated a genetic relationship for 90% of all paired blood and oral isolates. Patients exposed to azoles for ≥ 7 days (n = 93) had a significantly larger proportion of species intrinsically less susceptible to azoles (particularly Candida glabrata) among oral isolates than among initial blood isolates (36.6% versus 12.9%; P < 0.001). A similar shift toward species less susceptible to echinocandins among 85 patients exposed to echinocandins for ≥ 7 days was not observed (4.8% of oral isolates versus 3.2% of blood isolates; P > 0.5). Acquired resistance in Candida albicans was rare (<5%). However, acquired resistance to fluconazole (29.4%; P < 0.05) and anidulafungin (21.6%; P < 0.05) was common in C. glabrata isolates from patients exposed to either azoles or echinocandins. Our findings suggest that the colonizing mucosal microbiota may be an unrecognized reservoir of resistant Candida species, especially C. glabrata, following treatment for candidemia. The resistance rates were high, raising concern in general for patients exposed to antifungal drugs.
Collapse
|
30
|
Teixeira J, Amorim A, Araujo R. Recombination detection in Aspergillus fumigatus through single nucleotide polymorphisms typing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:881-886. [PMID: 26189756 DOI: 10.1111/1758-2229.12321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
The first evidence of sexual reproduction in Aspergillus fumigatus was reported in 2009. Nevertheless, it remains difficult to understand how A. fumigatus is able to reproduce through this mode in its natural environment and how frequently this occurs. The aim of this study was to analyse single nucleotide polymorphisms (SNPs) in a set of environmental and clinical isolates of A. fumigatus to detect signatures of recombination. A group of closely related Portuguese A. fumigatus isolates was characterized by mating type and the genetic diversity of the intergenic regions, microsatellites and multilocus sequence typing (MLST) genes. A group of 19 SNPs, organized in nine association groups and inherited in blocks, was identified and compared. Several variations on the association panel were detected on reference isolates of A. fumigatus AF293 and A1163, the sequence types available at MLST database and six clinical and environmental Portuguese isolates. About one to four haplotype disruptions were observed per isolate. Considering clinical and environmental isolates, sexual reproduction seems to occur more frequently than previously admitted in A. fumigatus. In this study, a practical SNP approach is proposed for detection of recombination events in larger collections of A. fumigatus.
Collapse
Affiliation(s)
- Joana Teixeira
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ricardo Araujo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Adjapong G, Hale M, Garrill A. Population Structure ofCandida albicansfrom Three Teaching Hospitals in Ghana. Med Mycol 2015; 54:197-206. [DOI: 10.1093/mmy/myv086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/15/2022] Open
|
32
|
Dhieb C, Normand AC, Al-Yasiri M, Chaker E, El Euch D, Vranckx K, Hendrickx M, Sadfi N, Piarroux R, Ranque S. MALDI-TOF typing highlights geographical and fluconazole resistance clusters in Candida glabrata. Med Mycol 2015; 53:462-9. [PMID: 25841053 DOI: 10.1093/mmy/myv013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Utilizing matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra for Candida glabrata typing would be a cost-effective and easy-to-use alternative to classical DNA-based typing methods. This study aimed to use MALDI-TOF for the typing of C. glabrata clinical isolates from various geographical origins and test its capacity to differentiate between fluconazole-sensitive and -resistant strains.Both microsatellite length polymorphism (MLP) and MALDI-TOF mass spectra of 58 C. glabrata isolates originating from Marseilles (France) and Tunis (Tunisia) as well as collection strains from diverse geographic origins were analyzed. The same analysis was conducted on a subset of C. glabrata isolates that were either susceptible (MIC ≤ 8 mg/l) or resistant (MIC ≥ 64 mg/l) to fluconazole.According to the seminal results, both MALDI-TOF and MLP classifications could highlight C. glabrata population structures associated with either geographical dispersal barriers (p < 10(-5)) or the selection of antifungal drug resistance traits (<10(-5)).In conclusion, MALDI-TOF geographical clustering was congruent with MPL genotyping and highlighted a significant population genetic structure according to fluconazole susceptibility in C. glabrata. Furthermore, although MALDI-TOF and MLP resulted in distinct classifications, MALDI-TOF also classified the isolates with respect to their fluconazole susceptibility profile. Further prospective studies are required to evaluate the capacity of MALDI-TOF typing to investigate C. glabrata infection outbreaks and predict the antifungal susceptibility profile of clinical laboratory isolates.
Collapse
Affiliation(s)
- C Dhieb
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - A C Normand
- Parasitolgy-Mycology, APHM, CHU Timone, Marseille, France
| | - M Al-Yasiri
- Aix Marseille Université, IP-TPT UMR MD3, 13005, Marseille, France
| | - E Chaker
- Laboratoire de Parasitologie, Hôpital La Rabta, Tunis, Tunisia
| | - D El Euch
- Service de Dermatologie et de Vénéréologie, Hôpital La Rabta, Tunis, Tunisia
| | - K Vranckx
- Applied Maths NV, 9830, Sint-Martens-Latem, Belgium
| | - M Hendrickx
- BCCM/IHEM: Scientific Institute of Public Health, Mycology and Aerobiology Section, Brussels, Belgium
| | - N Sadfi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, 2092 Tunis, Tunisia
| | - R Piarroux
- Parasitolgy-Mycology, APHM, CHU Timone, Marseille, France Aix Marseille Université, IP-TPT UMR MD3, 13005, Marseille, France
| | - S Ranque
- Parasitolgy-Mycology, APHM, CHU Timone, Marseille, France Aix Marseille Université, IP-TPT UMR MD3, 13005, Marseille, France
| |
Collapse
|
33
|
Dong D, Li Z, Zhang L, Jiang C, Mao E, Wang X, Peng Y. Clinical and microbiological investigation of fungemia from four hospitals in China. Mycopathologia 2015; 179:407-14. [PMID: 25720562 DOI: 10.1007/s11046-014-9855-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022]
Abstract
In this study, fungemia cases from four tertiary hospitals located in Shanghai and Anhui province in China from March 2012 to December 2013 were enrolled to investigate clinical features, species distribution, antifungal susceptibility and strain relatedness. During the study period, 137 non-duplicate cases and their corresponding isolates were collected. Six different genera of fungi were identified, of which Candida spp. were the most common (126/137, 91.97 %), with C. albicans predominating (48/137, 35.03 %). The non-Candida fungi rate reached 8.03 % (11/137), and Pichia spp. was the most common (5/137, 3.65 %). Compared with C. albicans, non-C. albicans fungi-associated fungemia was more likely in younger (p = 0.004) and male patients (χ (2) = 6.2618, p = 0.0123) and patients from ICUs (χ (2) = 6.3783, p = 0.0116). Overall, the susceptible/WT rates of common Candida spp. to fluconazole, itraconazole, voriconazole, flucytosine, amphotericin B and caspofungin were 74.63, 92.31, 93.16, 96.58, 100 and 95.69 %, respectively. C. tropicalis and C. guilliermondii had a low susceptibility to fluconazole: 79.95 and 77.78 %, respectively. No isolates were resistant/WT to caspofungin, but C. parapsilosis and C. guilliermondii had high MIC90 values; 1 and 2 mg/L, respectively. In terms of genotyping, MLST was taken for C. glabrata and C. tropicalis, while microsatellite marker analysis was used for C. albicans and C. parapsilosis. C. glabrata was predominantly clone ST7, accounting for 75 %, while the other isolates showed genetic diversity. Considering the increased proportion of non-C. albicans fungi and the presence of endemic clones of C. glabrata, it is essential to undertake additional surveillance of fungemia.
Collapse
Affiliation(s)
- Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Time-kill assay and Etest evaluation for synergy with polymyxin B and fluconazole against Candida glabrata. Antimicrob Agents Chemother 2014; 58:5795-800. [PMID: 25049251 DOI: 10.1128/aac.03035-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluconazole-resistant Candida glabrata is an emerging pathogen that causes fungemia. Polymyxin B, a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections, has been found to possess in vitro fungicidal activity and showed synergy with fluconazole against a single strain of C. glabrata. Since both agents may be used simultaneously in intensive care unit (ICU) patients, this study was performed to test for possible synergy of this combination against 35 C. glabrata blood isolates, using 2 methods: a time-kill assay and an experimental MIC-MIC Etest method. Thirty-five genetically unique C. glabrata bloodstream isolates were collected from 2009 to 2011, identified using an API 20C system, and genotyped by repetitive sequence-based PCR (rep-PCR). MICs were determined by Etest and broth microdilution methods. Synergy testing was performed using a modified bacterial Etest synergy method and time-kill assay, with final results read at 24 h. The Etest method showed synergy against 19/35 (54%) isolates; the time-kill assay showed synergy against 21/35 (60%) isolates. Isolates not showing drug synergy had an indifferent status. Concordance between methods was 60%. In vitro synergy of polymyxin B and fluconazole against the majority of C. glabrata isolates was demonstrated by both methods. The bacterial Etest synergy method adapted well when used with C. glabrata. Etest was easier to perform than time-kill assay and may be found to be an acceptable alternative to time-kill assay with antifungals.
Collapse
|
35
|
Molecular fingerprints to identify Candida species. BIOMED RESEARCH INTERNATIONAL 2013; 2013:923742. [PMID: 23844370 PMCID: PMC3703398 DOI: 10.1155/2013/923742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022]
Abstract
A wide range of molecular techniques have been developed for genotyping Candida species. Among them, multilocus sequence typing (MLST) and microsatellite length polymorphisms (MLP) analysis have recently emerged. MLST relies on DNA sequences of internal regions of various independent housekeeping genes, while MLP identifies microsatellite instability. Both methods generate unambiguous and highly reproducible data. Here, we review the results achieved by using these two techniques and also provide a brief overview of a new method based on high-resolution DNA melting (HRM). This method identifies sequence differences by subtle deviations in sample melting profiles in the presence of saturating fluorescent DNA binding dyes.
Collapse
|
36
|
Genotypes of Candida albicans isolated from healthy individuals and their distribution in patients with oral candidiasis. J Infect Chemother 2013; 19:1072-9. [DOI: 10.1007/s10156-013-0626-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022]
|
37
|
Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004–2008. Diagn Microbiol Infect Dis 2012; 74:323-31. [DOI: 10.1016/j.diagmicrobio.2012.10.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
|
38
|
Lott TJ, Frade JP, Lyon GM, Iqbal N, Lockhart SR. Bloodstream and non-invasive isolates of Candida glabrata have similar population structures and fluconazole susceptibilities. Med Mycol 2011; 50:136-42. [PMID: 21838617 DOI: 10.3109/13693786.2011.592153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have compared multilocus sequence typing (MLST) and fluconazole susceptibility profiles of Candida glabrata bloodstream isolates obtained during active, population-based surveillance to those obtained from non-sterile sites of individuals with no evidence of fungal disease (i.e., non-invasive isolates) in the same US city during an overlapping time period. In each of the two populations, different proportions of the same six major sequence types (STs) encompassed 82% of the isolates. One ST was more prevalent in the candidemia population and two other STs were more prevalent in the non-invasive population, but the overall allelic frequencies within the groups suggested little, if any, genotypic diversity between them. Fluconazole susceptibility profiles of isolates from the patients in the two groups were not significantly different and were not associated with a particular sequence type. Our results support the hypothesis that C. glabrata strains causing bloodstream infections are genetically indistinguishable from those normally residing in/on the host, suggesting that relative pathogenicity may be closely tied to commensalism.
Collapse
Affiliation(s)
- Timothy J Lott
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333, USA
| | | | | | | | | |
Collapse
|
39
|
Multilocus microsatellite markers for molecular typing of Candida glabrata: application to analysis of genetic relationships between bloodstream and digestive system isolates. J Clin Microbiol 2010; 48:4028-34. [PMID: 20844221 DOI: 10.1128/jcm.02140-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida glabrata has emerged as the second most common etiologic agent, after Candida albicans, of superficial and invasive candidiasis in adults. Strain typing is essential for epidemiological investigation, but easy-to-use and reliable typing methods are still lacking. We report the use of a multilocus microsatellite typing method with a set of eight markers on a panel of 180 strains, including 136 blood isolates from hospitalized patients and 34 digestive tract isolates from nonhospitalized patients. A total of 44 different alleles were observed, generating 87 distinct genotypes. In addition to perfect reproducibility, typing ability, and stability, the method had a discriminatory power calculated at 0.97 when all 8 markers were associated, making it suitable for tracing strains. In addition, it is shown that digestive tract isolates differed from blood culture isolates by exhibiting a higher genotypic diversity associated with different allelic frequencies and preferentially did not group in clonal complexes (CCs). The demonstration of the occurrence of microevolution in digestive strains supports the idea that C. glabrata can be a persistent commensal of the human gut.
Collapse
|
40
|
FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother 2010; 54:5042-7. [PMID: 20837754 DOI: 10.1128/aac.00836-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Candida glabrata is the second leading cause of candidemia in the United States. Its high-level resistance to triazole antifungal drugs has led to the increased use of the echinocandin class of antifungal agents for primary therapy of these infections. We monitored C. glabrata bloodstream isolates from a population-based surveillance study for elevated echinocandin MIC values (MICs of ≥0.25 μg/ml). From the 490 C. glabrata isolates that were screened, we identified 16 isolates with an elevated MIC value (2.9% of isolates from Atlanta and 2.0% of isolates from Baltimore) for one or more of the echinocandin drugs caspofungin, anidulafungin, and micafungin. All of the isolates with elevated MIC values had a mutation in the previously identified hot spot 1 of either the glucan synthase FKS1 (n = 2) or FKS2 (n = 14) gene. No mutations were detected in hot spot 2 of either FKS1 or FKS2. The predominant mutation was mutation of FKS2-encoded serine 663 to proline (S663P), found in 10 of the isolates with elevated echinocandin MICs. Two of the mutations, R631G for FKS1 and R665G for FKS2, have not been reported previously for C. glabrata. Multilocus sequence typing indicated that the predominance of the S663P mutation was not due to the clonal spread of a single sequence type. With a rising number of echinocandin therapy failures reported, it is important to continue to monitor rates of elevated echinocandin MIC values and the associated mutations.
Collapse
|
41
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Abstract
For Candida species, a bimodal wild-type MIC distribution for echinocandins exists, but resistance to echinocandins is rare. We characterized isolates from patients with invasive candidiasis (IC) breaking through >or=3 doses of micafungin therapy during the first 28 months of its use at our center: MICs were determined and hot-spot regions within FKS genes were sequenced. Eleven of 12 breakthrough IC cases identified were in transplant recipients. The median duration of micafungin exposure prior to breakthrough was 33 days (range, 5 to 165). Seventeen breakthrough isolates were recovered: FKS hot-spot mutations were found in 5 C. glabrata and 2 C. tropicalis isolates; of these, 5 (including all C. glabrata isolates) had micafungin MICs of >2 microg/ml, but all demonstrated caspofungin MICs of >2 microg/ml. Five C. parapsilosis isolates had wild-type FKS sequences and caspofungin MICs of 0.5 to 1 microg/ml, but 4/5 had micafungin MICs of >2 microg/ml. The remaining isolates retained echinocandin MICs of <or=2 microg/ml and wild-type FKS gene sequences. Breakthrough IC on micafungin treatment occurred predominantly in severely immunosuppressed patients with heavy prior micafungin exposure. The majority of cases were due to C. glabrata with an FKS mutation or wild-type C. parapsilosis with elevated micafungin MICs. MIC testing with caspofungin identified all mutant strains. Whether the naturally occurring polymorphism within the C. parapsilosis FKS1 gene responsible for the bimodal wild-type MIC distribution is also responsible for micafungin MICs of >2 microg/ml and clinical breakthrough or an alternative mechanism contributes to the nonsusceptible echinocandin MICs in C. parapsilosis requires further study.
Collapse
|