1
|
Shimoyama M, Nakada-Tsukui K, Nozaki T. EhRacM differentially regulates macropinocytosis and motility in the enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2024; 20:e1012364. [PMID: 39536056 PMCID: PMC11560011 DOI: 10.1371/journal.ppat.1012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Macropinocytosis is an evolutionarily conserved endocytic process that plays a vital role in internalizing extracellular fluids and particles in cells. This non-selective endocytic pathway is crucial for various physiological functions such as nutrient uptake, sensing, signaling, antigen presentation, and cell migration. While macropinocytosis has been extensively studied in macrophages and cancer cells, the molecular mechanisms of macropinocytosis in pathogens are less understood. It has been known that Entamoeba histolytica, the causative agent of amebiasis, exploits macropinocytosis for survival and pathogenesis. Since macropinocytosis is initiated by actin polymerization, leading to the formation of membrane ruffles and the subsequent trapping of solutes in macropinosomes, actin cytoskeleton regulation is crucial. Thus, this study focuses on unraveling the role of well-conserved actin cytoskeleton regulators, Rho small GTPase family proteins, in macropinocytosis in E. histolytica. Through gene silencing of highly transcribed Ehrho/Ehrac genes and following flow cytometry analysis, we identified that silencing EhracM enhances dextran macropinocytosis and affects cellular migration persistence. Live imaging and interactome analysis unveiled the cytosolic and vesicular localization of EhRacM, along with its interaction with signaling and membrane traffic-related proteins, shedding light on EhRacM's multiple roles. Our findings provide insights into the specific regulatory mechanisms of macropinocytosis among endocytic pathways in E. histolytica, highlighting the significance of EhRacM in both macropinocytosis and cellular migration.
Collapse
Affiliation(s)
- Misato Shimoyama
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Watanabe N, Saito-Nakano Y, Kurisawa N, Otomo K, Suenaga K, Nakano K, Nozaki T. Fumagillin inhibits growth of the enteric protozoan parasite Entamoeba histolytica by covalently binding to and selectively inhibiting methionine aminopeptidase 2. Antimicrob Agents Chemother 2023; 67:e0056023. [PMID: 37874291 PMCID: PMC10648944 DOI: 10.1128/aac.00560-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology and Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Keisuke Otomo
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Kentaro Nakano
- Degree Programs in Biology, Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Zanditenas E, Trebicz-Geffen M, Kolli D, Domínguez-García L, Farhi E, Linde L, Romero D, Chapman M, Kolodkin-Gal I, Ankri S. Digestive exophagy of biofilms by intestinal amoeba and its impact on stress tolerance and cytotoxicity. NPJ Biofilms Microbiomes 2023; 9:77. [PMID: 37813896 PMCID: PMC10562373 DOI: 10.1038/s41522-023-00444-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The human protozoan parasite Entamoeba histolytica is responsible for amebiasis, a disease endemic to developing countries. E. histolytica trophozoites colonize the large intestine, primarily feeding on bacteria. However, in the gastrointestinal tract, bacterial cells form aggregates or structured communities called biofilms too large for phagocytosis. Remarkably, trophozoites are still able to invade and degrade established biofilms, utilizing a mechanism that mimics digestive exophagy. Digestive exophagy refers to the secretion of digestive enzymes that promote the digestion of objects too large for direct phagocytosis by phagocytes. E. histolytica cysteine proteinases (CPs) play a crucial role in the degradation process of Bacillus subtilis biofilm. These proteinases target TasA, a major component of the B. subtilis biofilm matrix, also contributing to the adhesion of the parasite to the biofilm. In addition, they are also involved in the degradation of biofilms formed by Gram-negative and Gram-positive enteric pathogens. Furthermore, biofilms also play an important role in protecting trophozoites against oxidative stress. This specific mechanism suggests that the amoeba has adapted to prey on biofilms, potentially serving as an untapped reservoir for novel therapeutic approaches to treat biofilms. Consistently, products derived from the amoeba have been shown to restore antibiotic sensitivity to biofilm cells. In addition, our findings reveal that probiotic biofilms can act as a protective shield for mammalian cells, hindering the progression of the parasite towards them.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Divya Kolli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Laura Domínguez-García
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Einan Farhi
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Liat Linde
- Technion Genomics Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Diego Romero
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Matthew Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, the Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- Scojen Institute for Synthetic Biology, Reichman University, Herzliya, Israel.
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
4
|
Santos HJ, Nozaki T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: A peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol 2022; 69:e12923. [PMID: 35588086 PMCID: PMC9796589 DOI: 10.1111/jeu.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simplest class of mitochondrion-related organelles (MROs) is the mitosome, an organelle present in a few anaerobic protozoan parasites such as Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium parvum. E. histolytica causes amoebiasis in humans, deemed as one of the important, yet neglected tropical infections in the world. Much of the enigma of the E. histolytica mitosome circles around the obvious lack of a majority of known mitochondrial components and functions exhibited in other organisms. The identification of enzymes responsible for sulfate activation (AS, IPP, and APSK) and a number of lineage-specific proteins such as the outer membrane beta-barrel protein (MBOMP30), and transmembrane domain-containing proteins that bind to various organellar proteins (ETMP1, ETMP30, EHI_170120, and EHI_099350) showcased the remarkable divergence of this organelle compared to the other MROs of anaerobic protozoa. Here, we summarize the findings regarding the biology of the mitosomes in E. histolytica, from their discovery up to the present understanding of its roles and interactions. We also include current advances and future perspectives on the biology, biochemistry, and evolution of the mitosomes of E. histolytica.
Collapse
Affiliation(s)
- Herbert J. Santos
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Nakada-Tsukui K, Watanabe N, Shibata K, Wahyuni R, Miyamoto E, Nozaki T. Proteomic analysis of Atg8-dependent recruitment of phagosomal proteins in the enteric protozoan parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:961645. [PMID: 36262186 PMCID: PMC9575557 DOI: 10.3389/fcimb.2022.961645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is one of the bulk degradation systems and is conserved throughout eukaryotes. In the enteric protozoan parasite Entamoeba histolytica, the causative agent of human amebiasis, Atg8 is not exclusively involved in autophagy per se but also in other membrane traffic-related pathways such as phagosome biogenesis. We previously reported that repression of atg8 gene expression by antisense small RNA-mediated transcriptional gene silencing (gs) resulted in growth retardation, delayed endocytosis, and reduced acidification of endosomes and phagosomes. In this study, to better understand the role of Atg8 in phagocytosis and trogocytosis, we conducted a comparative proteomic analysis of phagosomes isolated from wild type and atg8-gs strains. We found that 127 and 107 proteins were detected >1.5-fold less or more abundantly, respectively, in phagosomes isolated from the atg8-gs strain, compared to the control strain. Among 127 proteins whose abundance was reduced in phagosomes from atg8-gs, a panel of proteins related to fatty acid metabolism, phagocytosis, and endoplasmic reticulum (ER) homeostasis was identified. Various lysosomal hydrolases and their receptors also tend to be excluded from phagosomes by atg8-gs, reinforcing the notion that Atg8 is involved in phagosomal acidification and digestion. On the contrary, among 107 proteins whose abundance increased in phagosomes from atg8-gs strain, ribosome-related proteins and metabolite interconversion enzymes are enriched. We further investigated the localization of several representative proteins, including adenylyl cyclase-associated protein and plasma membrane calcium pump, both of which were demonstrated to be recruited to phagosomes and trogosomes via an Atg8-dependent mechanism. Taken together, our study has provided the basis of the phagosome proteome to further elucidate molecular events in the Atg8-dependent regulatory network of phagosome/trogosome biogenesis in E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Kumiko Nakada-Tsukui, ; Tomoyoshi Nozaki,
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Shibata
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ratna Wahyuni
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kumiko Nakada-Tsukui, ; Tomoyoshi Nozaki,
| |
Collapse
|
6
|
Abstract
Interorganellar cross talk is often mediated by membrane contact sites (MCSs), which are zones where participating membranes come within 30 nm of one another. MCSs have been found in organelles, including the endoplasmic reticulum, Golgi bodies, endosomes, and mitochondria. Despite its seeming ubiquity, reports of MCS involving mitochondrion-related organelles (MROs) present in a few anaerobic parasitic protozoa remain lacking. Entamoeba histolytica, the etiological agent of amoebiasis, possesses an MRO called the mitosome. We previously discovered several Entamoeba-specific transmembrane mitosomal proteins (ETMPs) from in silico and cell-biological analyses. One of them, ETMP1 (EHI_175060), was predicted to have one transmembrane domain and two coiled-coil regions and was demonstrated to be mitosome membrane integrated based on carbonate fractionation and immunoelectron microscopy (IEM) data. Immunoprecipitation analysis detected a candidate interacting partner, EH domain-containing protein (EHD1; EHI_105270). We expressed hemagglutinin (HA)-tagged EHD1 in E. histolytica, and subsequent immunofluorescence and IEM data indicated an unprecedented MCS between the mitosome and the endosome. Live imaging of a green fluorescent protein (GFP)-EHD1-expressing strain demonstrated that EHD1 is involved in early endosome formation and is observed in MCS between endosomes of various sizes. In vitro assays using recombinant His-EHD1 demonstrated ATPase activity. MCSs are involved in lipid transfer, ion homeostasis, and organelle dynamics. The serendipitous discovery of the ETMP1-interacting partner EHD1 led to the observation of the mitosome-endosome contact site in E. histolytica. It opened a new view of how the relic mitochondria of Entamoeba may likewise be involved in organelle cross talk, a conserved feature of mitochondria and other organelles in general.
Collapse
|
7
|
Záhonová K, Treitli SC, Le T, Škodová-Sveráková I, Hanousková P, Čepička I, Tachezy J, Hampl V. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol 2022; 20:56. [PMID: 35227266 PMCID: PMC8887013 DOI: 10.1186/s12915-022-01247-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/03/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mitochondria and peroxisomes are the two organelles that are most affected during adaptation to microoxic or anoxic environments. Mitochondria are known to transform into anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition stages in between, collectively called mitochondrion-related organelles (MROs), which vary in enzymatic capacity. Anaerobic peroxisomes were identified only recently, and their putatively most conserved function seems to be the metabolism of inositol. The group Archamoebae includes anaerobes bearing both anaerobic peroxisomes and MROs, specifically hydrogenosomes in free-living Mastigamoeba balamuthi and mitosomes in the human pathogen Entamoeba histolytica, while the organelles within the third lineage represented by Pelomyxa remain uncharacterized. RESULTS We generated high-quality genome and transcriptome drafts from Pelomyxa schiedti using single-cell omics. These data provided clear evidence for anaerobic derivates of mitochondria and peroxisomes in this species, and corresponding vesicles were tentatively identified in electron micrographs. In silico reconstructed MRO metabolism harbors respiratory complex II, electron-transferring flavoprotein, a partial TCA cycle running presumably in the reductive direction, pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenases, a glycine cleavage system, a sulfate activation pathway, and an expanded set of NIF enzymes for iron-sulfur cluster assembly. When expressed in the heterologous system of yeast, some of these candidates localized into mitochondria, supporting their involvement in the MRO metabolism. The putative functions of P. schiedti peroxisomes could be pyridoxal 5'-phosphate biosynthesis, amino acid and carbohydrate metabolism, and hydrolase activities. Unexpectedly, out of 67 predicted peroxisomal enzymes, only four were also reported in M. balamuthi, namely peroxisomal processing peptidase, nudix hydrolase, inositol 2-dehydrogenase, and D-lactate dehydrogenase. Localizations in yeast corroborated peroxisomal functions of the latter two. CONCLUSIONS This study revealed the presence and partially annotated the function of anaerobic derivates of mitochondria and peroxisomes in P. schiedti using single-cell genomics, localizations in yeast heterologous systems, and transmission electron microscopy. The MRO metabolism resembles that of M. balamuthi and most likely reflects the state in the common ancestor of Archamoebae. The peroxisomal metabolism is strikingly richer in P. schiedti. The presence of myo-inositol 2-dehydrogenase in the predicted peroxisomal proteome corroborates the situation in other Archamoebae, but future experimental evidence is needed to verify additional functions of this organelle.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | | | - Tien Le
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Pavla Hanousková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
8
|
Shaulov Y, Sarid L, Trebicz-Geffen M, Ankri S. Entamoeba histolytica Adaption to Auranofin: A Phenotypic and Multi-Omics Characterization. Antioxidants (Basel) 2021; 10:antiox10081240. [PMID: 34439488 PMCID: PMC8389260 DOI: 10.3390/antiox10081240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022] Open
Abstract
Auranofin (AF), an antirheumatic agent, targets mammalian thioredoxin reductase (TrxR), an important enzyme controlling redox homeostasis. AF is also highly effective against a diversity of pathogenic bacteria and protozoan parasites. Here, we report on the resistance of the parasite Entamoeba histolytica to 2 µM of AF that was acquired by gradual exposure of the parasite to an increasing amount of the drug. AF-adapted E. histolytica trophozoites (AFAT) have impaired growth and cytopathic activity, and are more sensitive to oxidative stress (OS), nitrosative stress (NS), and metronidazole (MNZ) than wild type (WT) trophozoites. Integrated transcriptomics and redoxomics analyses showed that many upregulated genes in AFAT, including genes encoding for dehydrogenase and cytoskeletal proteins, have their product oxidized in wild type trophozoites exposed to AF (acute AF trophozoites) but not in AFAT. We also showed that the level of reactive oxygen species (ROS) and oxidized proteins (OXs) in AFAT is lower than that in acute AF trophozoites. Overexpression of E. histolytica TrxR (EhTrxR) did not protect the parasite against AF, which suggests that EhTrxR is not central to the mechanism of adaptation to AF.
Collapse
|
9
|
Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences. Microorganisms 2020; 8:microorganisms8081229. [PMID: 32806678 PMCID: PMC7465240 DOI: 10.3390/microorganisms8081229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.
Collapse
|
10
|
Saeed S, Tremp AZ, Sharma V, Lasonder E, Dessens JT. NAD(P) transhydrogenase has vital non-mitochondrial functions in malaria parasite transmission. EMBO Rep 2020; 21:e47832. [PMID: 31951090 PMCID: PMC7054674 DOI: 10.15252/embr.201947832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form (NADP) are vital for cell function in all organisms and form cofactors to a host of enzymes in catabolic and anabolic processes. NAD(P) transhydrogenases (NTHs) catalyse hydride ion transfer between NAD(H) and NADP(H). Membrane‐bound NTH isoforms reside in the cytoplasmic membrane of bacteria, and the inner membrane of mitochondria in metazoans, where they generate NADPH. Here, we show that malaria parasites encode a single membrane‐bound NTH that localises to the crystalloid, an organelle required for sporozoite transmission from mosquitos to vertebrates. We demonstrate that NTH has an essential structural role in crystalloid biogenesis, whilst its enzymatic activity is required for sporozoite development. This pinpoints an essential function in sporogony to the activity of a single crystalloid protein. Its additional presence in the apicoplast of sporozoites identifies NTH as a likely supplier of NADPH for this organelle during liver infection. Our findings reveal that Plasmodium species have co‐opted NTH to a variety of non‐mitochondrial organelles to provide a critical source of NADPH reducing power.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Annie Z Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| | - Edwin Lasonder
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
11
|
Watanabe N, Nakada-Tsukui K, Nozaki T. Two isotypes of phosphatidylinositol 3-phosphate-binding sorting nexins play distinct roles in trogocytosis in Entamoeba histolytica. Cell Microbiol 2019; 22:e13144. [PMID: 31713312 PMCID: PMC7027479 DOI: 10.1111/cmi.13144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol phosphates (PIPs) function as important second messengers in many cellular events. In the human intestinal protist Entamoeba histolytica, where phagocytosis/trogocytosis plays an indispensable role in proliferation and pathophysiology during infection, various PIPs are involved in multiple steps of phago/trogocytosis. PI3‐phosphate (PI3P) plays a pivotal role in the biogenesis of phagosome/trogosomes via recruitment of PI3P effectors. Because no known PI3P downstream effectors are conserved in E. histolytica, we exploited a unique method to identify the proteins PI3P dependently recruited to phagosomes. We rationalised that overexpression of PI3P‐binding GFP‐HrsFYVE competes for PI3P on phagosomal membranes and results in dissociation of PI3P effectors from phagosomes. EhVps26 and EhVps35, but not sorting nexins (SNXs), of the retromer complex were detected from phagosomes only without GFP‐HrsFYVE overexpression. Two potential SNXs, EhSNX1 and EhSNX2, identified in the genome, possess only phox homology domain and specifically bound to PI3P, but retromer components, EhVps26 and EhVps35, did not bind to PI3P. Live and immunofluorescence imaging showed that EhSNX1 was recruited to the trogocytic cup and tunnel‐like structures, and subsequently, EhSNX2 was recruited to trogosomes. Furthermore, EhSNX1, but not EhSNX2, specifically bound to Arp2/3 and EhVps26, which were localised to the tunnel‐like structures and the trogosomes, respectively. EhSNX2 gene silencing increased trogocytosis, suggesting that EhSNX2 plays an inhibitory role in trogocytosis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Basmaciyan L, Bon F, Paradis T, Lapaquette P, Dalle F. " Candida Albicans Interactions With The Host: Crossing The Intestinal Epithelial Barrier". Tissue Barriers 2019; 7:1612661. [PMID: 31189436 PMCID: PMC6619947 DOI: 10.1080/21688370.2019.1612661] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023] Open
Abstract
Formerly a commensal organism of the mucosal surfaces of most healthy individuals, Candida albicans is an opportunistic pathogen that causes infections ranging from superficial to the more life-threatening disseminated infections, especially in the ever-growing population of vulnerable patients in the hospital setting. In these situations, the fungus takes advantage of its host following a disturbance in the host defense system and/or the mucosal microbiota. Overwhelming evidence suggests that the gastrointestinal tract is the main source of disseminated C. albicans infections. Major risk factors for disseminated candidiasis include damage to the mucosal intestinal barrier, immune dysfunction, and dysbiosis of the resident microbiota. A better understanding of C. albicans' interaction with the intestinal epithelial barrier will be useful for designing future therapies to avoid systemic candidiasis. In this review, we provide an overview of the current knowledge regarding the mechanisms of pathogenicity that allow the fungus to reach and translocate the gut barrier.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon France
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Fabienne Bon
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Tracy Paradis
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Pierre Lapaquette
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Frédéric Dalle
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon France
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| |
Collapse
|
13
|
Control and regulation of the pyrophosphate-dependent glucose metabolism in Entamoeba histolytica. Mol Biochem Parasitol 2019; 229:75-87. [PMID: 30772421 DOI: 10.1016/j.molbiopara.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/10/2023]
Abstract
Entamoeba histolytica has neither Krebs cycle nor oxidative phosphorylation activities; therefore, glycolysis is the main pathway for ATP supply and provision of carbon skeleton precursors for the synthesis of macromolecules. Glucose is metabolized through fermentative glycolysis, producing ethanol as its main end-product as well as some acetate. Amoebal glycolysis markedly differs from the typical Embden-Meyerhof-Parnas pathway present in human cells: (i) by the use of inorganic pyrophosphate, instead of ATP, as the high-energy phospho group donor; (ii) with one exception, the pathway enzymes can catalyze reversible reactions under physiological conditions; (iii) there is no allosteric regulation and sigmoidal kinetic behavior of key enzymes; and (iv) the presence of some glycolytic and fermentation enzymes similar to those of anaerobic bacteria. These peculiarities bring about alternative mechanisms of control and regulation of the PPi-dependent fermentative glycolysis in the parasite in comparison to the ATP-dependent and allosterically regulated glycolysis in many other eukaryotic cells. In this review, the current knowledge of the carbohydrate metabolism enzymes in E. histolytica is analyzed. Thermodynamics and stoichiometric analyses indicate 2 to 3.5 ATP yield per glucose metabolized, instead of the often presumed 5 ATP/glucose ratio. PPi derived from anabolism seems insufficient for PPi-glycolysis; hence, alternative ways of PPi supply are also discussed. Furthermore, the underlying mechanisms of control and regulation of the E. histolytica carbohydrate metabolism, analyzed by applying integral and systemic approaches such as Metabolic Control Analysis and kinetic modeling, contribute to unveiling alternative and promising drug targets.
Collapse
|
14
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A Eukaryote without a Mitochondrial Organelle. Curr Biol 2016; 26:1274-84. [PMID: 27185558 DOI: 10.1016/j.cub.2016.03.053] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/05/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic; Department of Molecular Phylogenetics and Evolution, University of Warsaw, Warsaw 00478, Poland.
| | - Vojtěch Vacek
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lukáš Novák
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Lael D Barlow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Petr Soukal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic.
| |
Collapse
|
16
|
Ligand heterogeneity of the cysteine protease binding protein family in the parasitic protist Entamoeba histolytica. Int J Parasitol 2014; 44:625-35. [DOI: 10.1016/j.ijpara.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 01/08/2023]
|
17
|
Jeelani G, Nozaki T. Metabolomic analysis of Entamoeba: applications and implications. Curr Opin Microbiol 2014; 20:118-24. [PMID: 24950028 DOI: 10.1016/j.mib.2014.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/18/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022]
Abstract
Entamoeba histolytica is an enteric protozoan parasite that causes hemorrhagic dysentery and extraintestinal abscesses in millions of inhabitants of endemic areas. The genome of E. histolytica has already been sequenced and used to predict the metabolic potential of the organism. Since nearly 56% of the E. histolytica genes remain unannotated, correlative 'omics' analyses of genomics, transcriptomics, proteomics, and biochemical metabolic profiling are essential in uncovering new, or poorly understood metabolic pathways. Metabolomics aims at understanding biology by comprehensive metabolite profiling. In this review, we discuss recent metabolomics approaches to elucidate unidentified metabolic systems of this pathogen and also discuss future applications of metabolomics to understand the biology and pathogenesis of E. histolytica.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
18
|
Kumar B, Sharma D, Sharma P, Katoch VM, Venkatesan K, Bisht D. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J Proteomics 2013; 94:68-77. [PMID: 24036035 DOI: 10.1016/j.jprot.2013.08.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/13/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Kanamycin (KM) and amikacin (AK) are the key aminoglycoside drugs against tuberculosis (TB) and resistance to them severely affects the options for treatment. Many explanations have been proposed for drug resistance to these drugs but still some mechanisms are unknown. Proteins are the functional moiety of the cell and manifest in most of the biological processes; so, these are potential foci for the development of new therapeutics, diagnostics and vaccine. We examined the KM and AK resistant isolates of Mycobacterium tuberculosis using proteomic analysis comprising of two dimensional gel electrophoresis (2DGE), matrix assisted laser desorption ionization time-of-flight/time-of flight (MALDI-TOF/TOF) and bioinformatic tools like BLASTP, InterProScan, KEGG motif scan and molecular docking. Proteins intensities of twelve spots were found to be consistently increased in KM and AK resistant isolates and these were identified as Rv3867, Rv1932, Rv3418c, Rv1876, Rv2031c, Rv0155, Rv0643c, Rv3224, Rv0952, and Rv0440. Among these, Rv3867 and Rv3224 were identified as proteins with unknown function. All the proteins identified were cellular proteins. Molecular docking shows the proper interaction of both drugs with these molecules. Also, Rv1876 and Rv3224 were found to be probably involved in iron regulation/metabolism indicating the role of iron in imparting resistance to second line drugs. BIOLOGICAL SIGNIFICANCE The study that was carried out shows that two dimensional electrophoresis along with mass spectrometry is still the best approach for proteomic analysis. To the best of our knowledge it is the first ever report on proteomic analysis of M. tuberculosis isolates resistant to second line drugs (kanamycin and amikacin). The major finding implicates that the genes/proteins involved in iron metabolism and the two hypothetical proteins (Rv3867 and Rv3224) might be playing some crucial role in contributing resistance to second line drugs. Further exploitation in this direction may lead to the development of newer therapeutics against tuberculosis.
Collapse
Affiliation(s)
- Bhavnesh Kumar
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (Indian Council of Medical Research), Dr. Matsuki Miyazaki Road, Tajganj, PO Box No-1101, Agra, PIN-282004 India
| | | | | | | | | | | |
Collapse
|
19
|
Yang Y, Wang J, Yuan T, Bu D, Yang J, Sun P. Proteome profile of bovine ruminal epithelial tissue based on GeLC-MS/MS. Biotechnol Lett 2013; 35:1831-8. [PMID: 23974490 DOI: 10.1007/s10529-013-1291-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
The proteome of rumen epithelial tissue was analysed by SDS-PAGE coupled with LC-MS/MS. 813 non-redundant proteins were identified of which 7.4 % featured membrane-spanning domains and 15.4 % harboured a signal peptide. According to the gene ontology annotation, the most abundant proteins exhibited binding activities related to their molecular functions, were proteins of cellular components or belonged to various metabolic processes. A predominant group of canonical pathways in the rumen epithelial tissue was identified using the IPA software. The GeLC-MS/MS approach was used to characterise the entire protein expression repertoire in rumen tissue, providing a more detailed understanding of the important biological processes in the rumen.
Collapse
Affiliation(s)
- Yongxin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
20
|
Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica. Infect Immun 2013; 81:1820-9. [PMID: 23509141 DOI: 10.1128/iai.00915-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a pivotal role in nutrient acquisition and evasion from the host defense systems in Entamoeba histolytica, the intestinal protozoan parasite that causes amoebiasis. We previously reported that E. histolytica possesses a unique class of a hydrolase receptor family, designated the cysteine protease-binding protein family (CPBF), that is involved in trafficking of hydrolases to lysosomes and phagosomes, and we have also reported that CPBF1 and CPBF8 bind to cysteine proteases or β-hexosaminidase α-subunit and lysozymes, respectively. In this study, we showed by immunoprecipitation that CPBF6, one of the most highly expressed CPBF proteins, specifically binds to α-amylase and γ-amylase. We also found that CPBF6 is localized in lysosomes, based on immunofluorescence imaging. Immunoblot and proteome analyses of the isolated phagosomes showed that CPBF6 mediates transport of amylases to phagosomes. We also demonstrated that the carboxyl-terminal cytosolic region of CPBF6 is engaged in the regulation of the trafficking of CPBF6 to phagosomes. Our proteome analysis of phagosomes also revealed new potential phagosomal proteins.
Collapse
|
21
|
Zubáčová Z, Novák L, Bublíková J, Vacek V, Fousek J, Rídl J, Tachezy J, Doležal P, Vlček Č, Hampl V. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 2013; 8:e55417. [PMID: 23516392 PMCID: PMC3596361 DOI: 10.1371/journal.pone.0055417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS), which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.
Collapse
Affiliation(s)
- Zuzana Zubáčová
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Lukáš Novák
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Jitka Bublíková
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Vojtěch Vacek
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Jan Fousek
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jakub Rídl
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Tachezy
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Pavel Doležal
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
22
|
Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep 2013; 3:1129. [PMID: 23350036 PMCID: PMC3553487 DOI: 10.1038/srep01129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022] Open
Abstract
Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.
Collapse
|
23
|
Jeelani G, Husain A, Sato D, Soga T, Suematsu M, Nozaki T. Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica. Biochimie 2012; 95:309-19. [PMID: 23069387 DOI: 10.1016/j.biochi.2012.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6-2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Husain A, Sato D, Jeelani G, Soga T, Nozaki T. Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis 2012; 6:e1831. [PMID: 23029590 PMCID: PMC3459822 DOI: 10.1371/journal.pntd.0001831] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/10/2012] [Indexed: 12/20/2022] Open
Abstract
Entamoeba histolytica, a microaerophilic enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. Trophozoites of E. histolytica are exposed to a variety of reactive oxygen and nitrogen species during infection. Since E. histolytica lacks key components of canonical eukaryotic anti-oxidative defense systems, such as catalase and glutathione system, alternative not-yet-identified anti-oxidative defense strategies have been postulated to be operating in E. histolytica. In the present study, we investigated global metabolic responses in E. histolytica in response to H2O2- and paraquat-mediated oxidative stress by measuring charged metabolites on capillary electrophoresis and time-of-flight mass spectrometry. We found that oxidative stress caused drastic modulation of metabolites involved in glycolysis, chitin biosynthesis, and nucleotide and amino acid metabolism. Oxidative stress resulted in the inhibition of glycolysis as a result of inactivation of several key enzymes, leading to the redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway. As a result of the repression of glycolysis as evidenced by the accumulation of glycolytic intermediates upstream of pyruvate, and reduced ethanol production, the levels of nucleoside triphosphates were decreased. We also showed for the first time the presence of functional glycerol biosynthetic pathway in E. histolytica as demonstrated by the increased production of glycerol 3-phosphate and glycerol upon oxidative stress. We proposed the significance of the glycerol biosynthetic pathway as a metabolic anti-oxidative defense system in E. histolytica. During the course of infection, trophozoites of E. histolytica need to cope with the oxidative stress in order to survive under the oxidative environment of its host. As a result of the absence of the key eukaryotic anti-oxidative defense system, it needs to employ novel defense strategies. Several studies such as transcriptomic profiling of trophozoites exposed to oxidative stress, and biochemical and functional analysis of individual proteins has been done in the past. Since, oxidative stress damages several metabolic enzymes, and modulate expression of many genes, it is important to analyze the detailed metabolomic response of E. histolytica upon oxidative stress to understand the role of metabolism in combating oxidative stress. In the present study, we demonstrated that oxidative stress causes glycolytic inhibition and redirection of metabolic flux towards glycerol production, chitin biosynthesis, and the non-oxidative branch of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Afzal Husain
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
25
|
Nakada-Tsukui K, Tsuboi K, Furukawa A, Yamada Y, Nozaki T. A novel class of cysteine protease receptors that mediate lysosomal transport. Cell Microbiol 2012; 14:1299-317. [PMID: 22486861 PMCID: PMC3465781 DOI: 10.1111/j.1462-5822.2012.01800.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transport of lysosomal proteins is, in general, mediated by mannose 6-phosphate receptors via carbohydrate modifications. Here, we describe a novel class of receptors that regulate the transport of lysosomal hydrolases in the enteric protozoan Entamoeba histolytica, which is a good model organism to investigate membrane traffic. A novel 110 kDa cysteine protease (CP) receptor (CP-binding protein family 1, CPBF1) was initially discovered by affinity co-precipitation of the major CP (EhCP-A5), which plays a pivotal role in the pathogenesis of E. histolytica. We demonstrated that CPBF1 regulates EhCP-A5 transport from the endoplasmic reticulum to lysosomes and its binding to EhCP-A5 is independent of carbohydrate modifications. Repression of CPBF1 by gene silencing led to the accumulation of the unprocessed form of EhCP-A5 in the non-acidic compartment and the mis-secretion of EhCP-A5, suggesting that CPBF1 is involved in the trafficking and processing of EhCP-A5. The CPBF represents a new class of transporters that bind to lysosomal hydrolases in a carbohydrate-independent fashion and regulate their trafficking, processing and activation and, thus, regulate the physiology and pathogenesis of E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
26
|
Furukawa A, Nakada-Tsukui K, Nozaki T. Novel transmembrane receptor involved in phagosome transport of lysozymes and β-hexosaminidase in the enteric protozoan Entamoeba histolytica. PLoS Pathog 2012; 8:e1002539. [PMID: 22383874 PMCID: PMC3285589 DOI: 10.1371/journal.ppat.1002539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
Abstract
Lysozymes and hexosaminidases are ubiquitous hydrolases in bacteria and eukaryotes. In phagocytic lower eukaryotes and professional phagocytes from higher eukaryotes, they are involved in the degradation of ingested bacteria in phagosomes. In Entamoeba histolytica, which is the intestinal protozoan parasite that causes amoebiasis, phagocytosis plays a pivotal role in the nutrient acquisition and the evasion from the host defense systems. While the content of phagosomes and biochemical and physiological roles of the major phagosomal proteins have been established in E. histolytica, the mechanisms of trafficking of these phagosomal proteins, in general, remain largely unknown. In this study, we identified and characterized for the first time the putative receptor/carrier involved in the transport of the above-mentioned hydrolases to phagosomes. We have shown that the receptor, designated as cysteine protease binding protein family 8 (CPBF8), is localized in lysosomes and mediates transport of lysozymes and β-hexosaminidase α-subunit to phagosomes when the amoeba ingests mammalian cells or Gram-positive bacillus Clostridium perfringens. We have also shown that the binding of CPBF8 to the cargos is mediated by the serine-rich domain, more specifically three serine residues of the domain, which likely contains trifluoroacetic acid-sensitive O-phosphodiester-linked glycan modifications, of CPBF8. We further showed that the repression of CPBF8 by gene silencing reduced the lysozyme and β-hexosaminidase activity in phagosomes and delayed the degradation of C. perfringens. Repression of CPBF8 also resulted in decrease in the cytopathy against the mammalian cells, suggesting that CPBF8 may also be involved in, besides the degradation of ingested bacteria, the pathogenesis against the mammalian hosts. This work represents the first case of the identification of a transport receptor of hydrolytic enzymes responsible for the degradation of microorganisms in phagosomes. Phagocytosis is the cellular process of engulfing solid particles to form an internal phagosome in protozoa, algae, and professional phagocytes of multicellular eukaryotic organisms. In phagocytic protozoa, phagocytosis is involved in the acquisition of nutrients, and the evasion from the host immune system and inflammation. While hydrolytic enzymes that are essential for the efficient and regulated degradation of phagocytosed particles, such as bacteria, fungi, and eukaryotic organisms, have been characterized, the mechanisms of the transport of these proteins are poorly understood. In the present study, we have demonstrated, for the first time, the molecular mechanisms of how the digestive enzymes are transported to phagosomes. Understanding of such mechanisms of the transport of phagosomal proteins at the molecular level may lead to the identification of a novel target for the development of new preventive measures against parasitic infections caused by phagocytic protozoa.
Collapse
Affiliation(s)
- Atsushi Furukawa
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Department of Parasitology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
27
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T. Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis 2011; 5:e1263. [PMID: 21829746 PMCID: PMC3149026 DOI: 10.1371/journal.pntd.0001263] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/18/2011] [Indexed: 12/02/2022] Open
Abstract
Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica. The mitochondrion and its related organelles are ubiquitous in all extant eukaryotic cells. The mitochondria are believed to have originated from the endosymbiosis of α-proteobacteria in an ancestral eukaryote, and show diverse structures, contents, and functions. Evolution and diversification of mitochondrion-related organelles remains one of the central themes in biology. Entamoeba histolytica, which causes intestinal and extraintestinal amebiasis in humans, possesses a highly divergent form of mitochondrion-related organelles, named “mitosomes.” Previously, we demonstrated that sulfate activation is the major function of mitosomes in E. histolytica. As the sulfate activation pathway was discovered only in the cytoplasm and plastids in other eukaryotic organisms, its compartmentalization to mitosomes is unprecedented. In this study, we showed that this pathway is important for sulfolipid synthesis and cell proliferation in E. histolytica. Together, we infer that E. histolytica mitosomes are not just rudimentary or residual mitochondria, but important for proliferation of E. histolytica. Thus, E. histolytica represents a useful model to understand evolutionary constraints of mitochondrion-related organelles in eukaryotes.
Collapse
Affiliation(s)
- Fumika Mi-ichi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Atsushi Furukawa
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|