1
|
Rohrbach S, Gkoutselis G, Mauel A, Telli N, Senker J, Ho A, Rambold G, Horn MA. Setting new standards: Multiphasic analysis of microplastic mineralization by fungi. CHEMOSPHERE 2024; 349:141025. [PMID: 38142885 DOI: 10.1016/j.chemosphere.2023.141025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Plastic materials provide numerous benefits. However, properties such as durability and resistance to degradation that make plastic attractive for variable applications likewise foster accumulation in the environment. Fragmentation of plastics leads to the formation of potentially hazardous microplastic, of which a considerable amount derives from polystyrene. Here, we investigated the biodegradation of polystyrene by the tropical sooty mold fungus Capnodium coffeae in different experimental setups. Growth of C. coffeae was stimulated significantly when cultured in presence of plastic polymers rather than in its absence. Stable isotope tracing using 13C-enriched polystyrene particles combined with cavity ring-down spectroscopy showed that the fungus mineralized polystyrene traces. However, phospholipid fatty acid stable isotope probing indicated only marginal assimilation of polystyrene-13C by C. coffeae in liquid cultures. NMR spectroscopic analysis of residual styrene contents prior to and after incubation revealed negligible changes in concentration. Thus, this study suggests a plastiphilic life style of C. coffeae despite minor usage of plastic as a carbon source and the general capability of sooty mold fungi to stimulate polystyrene mineralization, and proposes new standards to identify and unambiguously demonstrate plastic degrading capabilities of microbes.
Collapse
Affiliation(s)
- Stephan Rohrbach
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | | | - Anika Mauel
- Inorganic Chemistry III and Northern Bavarian NMR Centre University of Bayreuth, 95440 Bayreuth, Germany
| | - Nihal Telli
- Department of Mycology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre University of Bayreuth, 95440 Bayreuth, Germany
| | - Adrian Ho
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany.
| |
Collapse
|
2
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
3
|
Gonçales RA, Portis IG, dos Reis TF, Basso Júnior LR, Martinez R, Zhu H, Pereira M, Soares CMDA, Coelho PSR. Identification and immunogenic potential of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides brasiliensis. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1243475. [PMID: 37746134 PMCID: PMC10512324 DOI: 10.3389/ffunb.2023.1243475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023]
Abstract
In fungal pathogens the cell wall plays an important role in host-pathogen interactions because its molecular components (e.g., polysaccharides and proteins) may trigger immune responses during infection. GPI-anchored proteins represent the main protein class in the fungal cell wall where they can perform several functions, such as cell wall remodeling and adhesion to host tissues. Genomic analysis has identified the complement of GPI-anchored proteins in many fungal pathogens, but the function has remained unknown for most of them. Here, we conducted an RNA expression analysis of GPI-anchored proteins of Paracoccidioides brasiliensis which causes paracoccidioidomycosis (PCM), an important human systemic mycosis endemic in Latin America. The expression of the GPI-anchored proteins was analyzed by quantitative PCR in both the mycelium and yeast forms. qPCR analysis revealed that the transcript levels of 22 of them were increased in hyphae and 10 in yeasts, respectively, while 14 did not show any significant difference in either form. Furthermore, we cloned 46 open reading frames and purified their corresponding GPI-anchored proteins in the budding yeast. Immunoblot and ELISA analysis of four purified GPI-anchored proteins revealed immune reactivity of these proteins against sera obtained from PCM patients. The information obtained in this study provides valuable information about the expression of many GPI-anchored proteins of unknown function. In addition, based on our immune analysis, some GPI-anchored proteins are expressed during infection and therefore, they might serve as good candidates for the development of new diagnostic methods.
Collapse
Affiliation(s)
- Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Igor Godinho Portis
- Laboratorio de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz Roberto Basso Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, Universidade de São Paulo (FMRP/USP), Ribeirão Preto, SP, Brazil
| | - Roberto Martinez
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maristela Pereira
- Laboratorio de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratorio de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Paulo Sergio Rodrigues Coelho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, Universidade de São Paulo (FMRP/USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Hu Y, Gong H, Lu Z, Zhang P, Zheng S, Wang J, Tian B, Fang A, Yang Y, Bi C, Cheng J, Yu Y. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0098623. [PMID: 37140432 PMCID: PMC10269696 DOI: 10.1128/spectrum.00986-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.
Collapse
Affiliation(s)
- Yawen Hu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Hang Gong
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Ziyang Lu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Pengpeng Zhang
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Sinian Zheng
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
5
|
Tang CY, Wang J, Liu X, Chen JB, Liang J, Wang T, Simpson WR, Li YL, Li XZ. Medium optimization for high mycelial soluble protein content of Ophiocordyceps sinensis using response surface methodology. Front Microbiol 2022; 13:1055055. [PMID: 36569047 PMCID: PMC9780674 DOI: 10.3389/fmicb.2022.1055055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is widely utilized due to its pharmaceutical value. Mycelial protein forms a key active component of O. sinensis and determines the medicinal potential of fungus. Here, we describe the development of an optimized fermentation medium to obtain more mycelial soluble protein from O. sinensis using response surface methodology (RSM) and investigate the increased mycelial protein content using transcriptomics. The maximum mycelial protein content of 2.11% was obtained using a medium consisting of 20% beef broth, 0.10% peptone, 2% glucose, 0.15% yeast extract, 0.20% KH2PO4, and 0.02% MgSO4. Transcriptome analysis identified 790 differentially expressed genes (DEGs), including 592 up-regulated genes and 198 down-regulated genes, optimisation resulted in more up-regulated genes. The main DEGs were enriched in metabolic pathways, ABC transporters, starch and sucrose metabolism, tyrosine metabolism, and glutathione metabolism. In addition, some DEGs associated with mycelial protein enhancement such as tyrosinase (TYR), glutathione S-transferase (GST), glutamine synthetase (glnA), and β-glucosidase may contribute to increased mycelial protein content. Real-time quantitative PCR (RT-qPCR) was used to confirm gene expression and the results support the accuracy of RNA-Seq and DEG analysis. This study provides an optimized fermentation method for enhancing the mycelial protein content of O. sinensis and a reference for the effective development of O. sinensis protein.
Collapse
Affiliation(s)
- Chu-Yu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Jie Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Xin Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Jian-Bo Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Jing Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | | | - Yu-Ling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China,*Correspondence: Yu-Ling Li,
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China,Xiu-Zhang Li,
| |
Collapse
|
6
|
Zhang MX, Li J, Zhang XN, Li HH, Xu XF. Comparative transcriptome profiling of Termitomyces sp. between monocultures in vitro and link-stipe of fungus-combs in situ. Lett Appl Microbiol 2021; 74:429-443. [PMID: 34890484 DOI: 10.1111/lam.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The edible mushroom Termitomyces is an agaric-type basidiomycete fungus that has a symbiotic relationship with fungus-growing termites. An understanding of the detailed development mechanisms underlying the adaptive responses of Termitomyces sp. to their growing environment is lacking. Here, we compared the transcriptome sequences of different Termitomyces sp. samples and link-stipe grown on fungus combs in situ and monocultured in vitro. The assembled reads generated 8052 unigenes. The expression profiles were highly different for 2556 differentially expressed genes (DEGs) of the treated samples, where the expression of 1312 and 1244 DEGs was upregulated in the Mycelium and link-stipe groups respectively. Functional classification of the DEGs based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed an expected shift in fungal gene expression, where stress response genes whose expression was upregulated in link-stipe may adaptively be involved in cell wall hydrolysis and fusion, pathogenesis, oxidation-reduction, transporter efflux, transposon efflux and self/non-self-recognition. Urease has implications in the expression of genes involved in the nitrogen metabolism pathway, and its expression could be controlled by low-level nitrogen fixation of fungus combs. In addition, the expression patterns of eleven select genes on the basis of qRT-PCR were consistent with their changes in transcript abundance, as revealed by RNA sequencing. Taken together, these findings may be useful for enriching the knowledge concerning the Termitomyces adaptive response to in situ fungus combs compared with the response of monocultures in vitro.
Collapse
Affiliation(s)
- M-X Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - J Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-N Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - H-H Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-F Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Mart Nez-Cruz JS, Romero D, Hierrezuelo JS, Thon M, de Vicente A, P Rez-Garc A A. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. THE PLANT CELL 2021; 33:1319-1340. [PMID: 33793825 DOI: 10.1093/plcell/koab011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 05/23/2023]
Abstract
In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.
Collapse
Affiliation(s)
- Jes S Mart Nez-Cruz
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Diego Romero
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Jes S Hierrezuelo
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Michael Thon
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca 37185, Spain
| | - Antonio de Vicente
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| | - Alejandro P Rez-Garc A
- Departamento de Microbiolog�a, Facultad de Ciencias, Universidad de M�laga, M�laga 29071, Spain
- Instituto de Hortofruticultura Subtropical y Mediterr�nea "La Mayora", Universidad de M�laga, Consejo Superior de Investigaciones Cient�ficas (IHSM‒UMA‒CSIC), M�laga 29071, Spain
| |
Collapse
|
8
|
Gonçales RA, Salamanca AL, Júnior LR, E Silva KS, de Vasconcelos EJ, Dos Reis TF, Castro RC, C Ruy PD, Romagnoli B, Ruiz J, Pereira M, de A Soares CM, Coelho PS. In silico identification of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides spp. Future Microbiol 2021; 16:589-606. [PMID: 33998266 DOI: 10.2217/fmb-2020-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.
Collapse
Affiliation(s)
- Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ayda Lm Salamanca
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Luiz Rb Júnior
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Kleber Sf E Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Elton Jr de Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Ricardo C Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Patrícia de C Ruy
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Bárbara Romagnoli
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Jerônimo Ruiz
- Fundação Oswaldo Cruz, Instituto Rene Rachaou (IRR), Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maristela Pereira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Célia M de A Soares
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Paulo Sr Coelho
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
9
|
Lozančić M, Žunar B, Hrestak D, Lopandić K, Teparić R, Mrša V. Systematic Comparison of Cell Wall-Related Proteins of Different Yeasts. J Fungi (Basel) 2021; 7:jof7020128. [PMID: 33572482 PMCID: PMC7916363 DOI: 10.3390/jof7020128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Yeast cell walls have two major roles, to preserve physical integrity of the cell, and to ensure communication with surrounding molecules and cells. While the first function requires evolutionary conserved polysaccharide network synthesis, the second needs to be flexible and provide adaptability to different habitats and lifestyles. In this study, the comparative in silico analysis of proteins required for cell wall biosynthesis and functions containing 187 proteins of 92 different yeasts was performed in order to assess which proteins were broadly conserved among yeasts and which were more species specific. Proteins were divided into several groups according to their role and localization. As expected, many Saccharomyces cerevisiae proteins involved in protein glycosylation, glycosylphosphatidylinositol (GPI) synthesis and the synthesis of wall polysaccharides had orthologues in most other yeasts. Similarly, a group of GPI anchored proteins involved in cell wall biosynthesis (Gas proteins and Dfg5p/Dcw1p) and other non-GPI anchored cell wall proteins involved in the wall synthesis and remodeling were highly conserved. However, GPI anchored proteins involved in flocculation, aggregation, cell separation, and those of still unknown functions were not highly conserved. The proteins localized in the cell walls of various yeast species were also analyzed by protein biotinylation and blotting. Pronounced differences were found both in the patterns, as well as in the overall amounts of different groups of proteins. The amount of GPI-anchored proteins correlated with the mannan to glucan ratio of the wall. Changes of the wall proteome upon temperature shift to 42 °C were detected.
Collapse
Affiliation(s)
- Mateja Lozančić
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Bojan Žunar
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Dora Hrestak
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Ksenija Lopandić
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, 1180 Vienna, Austria;
| | - Renata Teparić
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Vladimir Mrša
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
- Correspondence:
| |
Collapse
|
10
|
Wanke A, Malisic M, Wawra S, Zuccaro A. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:15-35. [PMID: 32929496 PMCID: PMC7816849 DOI: 10.1093/jxb/eraa414] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 05/14/2023]
Abstract
To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant-microbe interactions.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Milena Malisic
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Stephan Wawra
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| |
Collapse
|
11
|
Evolutionary Overview of Molecular Interactions and Enzymatic Activities in the Yeast Cell Walls. Int J Mol Sci 2020; 21:ijms21238996. [PMID: 33256216 PMCID: PMC7730094 DOI: 10.3390/ijms21238996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Fungal cell walls are composed of a polysaccharide network that serves as a scaffold in which different glycoproteins are embedded. Investigation of fungal cell walls, besides simple identification and characterization of the main cell wall building blocks, covers the pathways and regulations of synthesis of each individual component of the wall and biochemical reactions by which they are cross-linked and remodeled in response to different growth phase and environmental signals. In this review, a survey of composition and organization of so far identified and characterized cell wall components of different yeast genera including Saccharomyces, Candida, Kluyveromyces, Yarrowia, and Schizosaccharomyces are presented with the focus on their cell wall proteomes.
Collapse
|
12
|
Xiao G, Tang G, Wang C. Congruence Amidst Discordance between Sequence and Protein-Content Based Phylogenies of Fungi. J Fungi (Basel) 2020; 6:jof6030134. [PMID: 32823730 PMCID: PMC7559059 DOI: 10.3390/jof6030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Amid the genomic data explosion, phylogenomic analysis has resolved the tree of life of different organisms, including fungi. Genome-wide clustering has also been conducted based on gene content data that can lighten the issue of the unequal evolutionary rate of genes. In this study, using different fungal species as models, we performed phylogenomic and protein-content (PC)-based clustering analysis. The obtained sequence tree reflects the phylogenetic trajectory of examined fungal species. However, 15 PC-based trees constructed from the Pfam matrices of the whole genomes, four protein families, and ten subcellular locations largely failed to resolve the speciation relationship of cross-phylum fungal species. However, lifestyle and taxonomic associations were more or less evident between closely related fungal species from PC-based trees. Pairwise congruence tests indicated that a varied level of congruent or discordant relationships were observed between sequence- and PC-based trees, and among PC-based trees. It was intriguing to find that a few protein family and subcellular PC-based trees were more topologically similar to the phylogenomic tree than was the whole genome PC-based phylogeny. In particular, a most significant level of congruence was observed between sequence- and cell wall PC-based trees. Cophylogenetic analysis conducted in this study may benefit the prediction of the magnitude of evolutionary conservation, interactive associations, or networking between different family or subcellular proteins.
Collapse
Affiliation(s)
- Guohua Xiao
- School of Computer Science, Fudan University, Shanghai 200433, China;
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
- CAS Center for Excellence in Biotic interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
13
|
Pham TA, Kyriacou BA, Schwerdt JG, Shirley NJ, Xing X, Bulone V, Little A. Composition and biosynthetic machinery of the Blumeria graminis f. sp. hordei conidia cell wall. ACTA ACUST UNITED AC 2020; 5:100029. [PMID: 32743145 PMCID: PMC7388969 DOI: 10.1016/j.tcsw.2019.100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
Infection of barley with the powdery mildew causal agent, Blumeria graminis f. sp. hordei (Bgh), can lead to devastating damage to barley crops. The recent emergence of fungicide resistance imposes a need to develop new antifungal strategies. The enzymes involved in cell wall biosynthesis are ideal targets for the development of fungicides. However, in order to narrow down any target proteins involved in cell wall formation, a greater understanding of the cell wall structure and composition is required. Here, we present a detailed carbohydrate analysis of the Bgh conidial cell wall, a full annotation of Carbohydrate Active enZymes (CAZy) in the Bgh genome, and a comprehensive expression profile of the genes involved in cell wall metabolism. Glycosidic linkage analysis has revealed that the cell wall polysaccharide fraction of Bgh conidia predominantly consists of glucosyl residues (63.1%) and has a greater proportion of galactopyranosyl residues compared to other species (8.5%). Trace amounts of xylosyl residues were also detected, which is unusual in ascomycetes. Transcripts of the genes involved in cell wall metabolism show high expression of chitin deacetylases, which assist fungi in evading the host defence system by deacetylating chitin to chitosan. The data presented suggest that the cell wall components of the conidia and the corresponding obligate biotrophic CAZy gene profile play a key role in the infection process.
Collapse
Affiliation(s)
- Trang A.T. Pham
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Bianca A. Kyriacou
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Neil J. Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Xiaohui Xing
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Corresponding author.
| |
Collapse
|
14
|
Identification of Antifungal Targets Based on Computer Modeling. J Fungi (Basel) 2018; 4:jof4030081. [PMID: 29973534 PMCID: PMC6162656 DOI: 10.3390/jof4030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host⁻pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.
Collapse
|
15
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
16
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
|
17
|
Hernández-Chávez MJ, Pérez-García LA, Niño-Vega GA, Mora-Montes HM. Fungal Strategies to Evade the Host Immune Recognition. J Fungi (Basel) 2017; 3:jof3040051. [PMID: 29371567 PMCID: PMC5753153 DOI: 10.3390/jof3040051] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022] Open
Abstract
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Luis A Pérez-García
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, C.P., Cd. Valle SLP. 79060, México.
| | - Gustavo A Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| |
Collapse
|
18
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
19
|
Transcriptome analysis of genes involved in defence response in Polyporus umbellatus with Armillaria mellea infection. Sci Rep 2015; 5:16075. [PMID: 26526032 PMCID: PMC4630638 DOI: 10.1038/srep16075] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022] Open
Abstract
Polyporus umbellatus, a species symbiotic with Armillaria mellea and it also exhibits substantial defence response to Armillaria mellea infection. There are no genomics resources databases for understanding the molecular mechanism underlying the infection stress of P. umbellatus. Therefore, we performed a large-scale transcriptome sequencing of this fungus with A. mellea infection using Illumina sequencing technology. The assembly of the clean reads resulted in 120,576 transcripts, including 38,444 unigenes. Additionally, we performed a gene expression profiling analysis upon infection treatment. The results indicated significant differences in the gene expression profiles between the control and the infection group. In total, 10933 genes were identified between the two groups. Based on the differentially expressed genes, a Gene Ontology annotation analysis showed many defence-relevant categories. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes pathway analysis uncovered some important pathways. Furthermore, the expression patterns of 13 putative genes that are involved in defence response resulting from quantitative real-time PCR were consistent with their transcript abundance changes as identified by RNA-seq. The sequenced genes covered a considerable proportion of the P. umbellatus transcriptome, and the expression results may be useful to strengthen the knowledge on the defence response of this fungus defend against Armillaria mellea invasion.
Collapse
|
20
|
Ortiz-Castellanos L, Ruiz-Herrera J. Phylogenetic relationships of the wall-synthesizing enzymes of Basidiomycota confirm the phylogeny of their subphyla. Folia Microbiol (Praha) 2014; 60:143-50. [PMID: 25300354 DOI: 10.1007/s12223-014-0354-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/24/2014] [Indexed: 11/28/2022]
Abstract
Basidiomycota is one of the phyla of kingdom Fungi. This phylum contains besides non-pathogenic species and mushrooms, the important plant pathogens, smuts and rusts, and has been recently divided into three subphyla: Ustilaginomycotina, Pucciniomycotina, and Agaricomycotina (James et al. Nature 443:818-822, 2006; Hibbert et al. Mycological Research 111:509-547, 2007). Although the monophyletic origin of Basidiomycota appears practically undisputed, the phylogenetic relationships of the three subphyla have been considered somewhat uncertain (James et al. Nature 443:818-822, 2006). Previously, we described a hypothetical evolutionary scheme of the fungal cell wall (Ruiz-Herrera and Ortiz-Castellanos FEMS Yeast Research 10:225-243, 2010) that coincided with the accepted evolution tree of kingdom fungi (Cavalier-Smith Proceedings of the Royal Society of London B 271:1251-1262, 2004; James et al. Nature 443:818-822, 2006; Hibbert et al. Mycological Research 111:509-547, 2007). Based on the results of that study, we have now made an analysis of the phylogenetic relationships of the enzymes involved in the synthesis of the cell wall polysaccharides in Basidiomycota. According to our data, there is a close relationship of the wall-synthesizing enzymes with the accepted taxonomy of the group, with a few exceptions, noticeably the absence of chitin synthase IIb subclass in Pucciniomycotina, the duplication of chitin synthase class III in the same group, and the duplication of the gene encoding β-1,3-glucan synthase (Gls) in Agaricomycotina. These results give some clues on the evolution of the cell wall in Basidiomycota.
Collapse
Affiliation(s)
- Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 629, 36821, Irapuato, Gto, Mexico
| | | |
Collapse
|
21
|
Guerriero G, Silvestrini L, Obersriebnig M, Salerno M, Pum D, Strauss J. Sensitivity of Aspergillus nidulans to the cellulose synthase inhibitor dichlobenil: insights from wall-related genes' expression and ultrastructural hyphal morphologies. PLoS One 2013; 8:e80038. [PMID: 24312197 PMCID: PMC3843659 DOI: 10.1371/journal.pone.0080038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Abstract
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- * E-mail: (GG); (JS)
| | - Lucia Silvestrini
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Michael Obersriebnig
- Institute of Wood Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Marco Salerno
- Nanophysics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dietmar Pum
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
- * E-mail: (GG); (JS)
| |
Collapse
|
22
|
Liang L, Wu H, Liu Z, Shen R, Gao H, Yang J, Zhang K. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl Microbiol Biotechnol 2013; 97:8683-92. [PMID: 23948728 DOI: 10.1007/s00253-013-5178-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The nematode-trapping fungus Arthrobotrys oligospora is the best-studied fungus for understanding the interaction between fungi and nematodes. The fungus uses three-dimensional adhesive networks to capture nematodes and then penetrates into the worms through their cuticle. Here we examine the effects of fungal cell wall related proteins on morphogenesis and virulence of the fungi. We focused on the changes in its proteomic and transcriptional profiles during its transition from saprophytic to predatory phase. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics using the liquid chromatography/mass spectrometry (LC/MS) method revealed an extended set of virulence related proteins, such as adhesins and serine proteases, on the cell wall of A. oligospora. Transcription analyses of their coding genes revealed an important set of candidate virulence factors. Our analyses also show that glycosyl hydrolases likely play important roles in trap formation of A. oligospora. The adhesins on the three-dimensional adhesive networks may have two functions: to enable the mycelia to stick to nematodes and to serve as important constituents of the extracellular matrix that harbors many secreted virulence related proteins. This study is the first to systematically identify cell wall related proteins that are important in the trap formation and infection of the fungus against nematode hosts.
Collapse
Affiliation(s)
- Lianming Liang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Munro CA. Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. ADVANCES IN APPLIED MICROBIOLOGY 2013; 83:145-72. [PMID: 23651596 DOI: 10.1016/b978-0-12-407678-5.00004-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The structural carbohydrate polymers glucan and chitin compliment and reinforce each other in a dynamic process to maintain the integrity and physical strength of the fungal cell wall. The assembly of chitin and glucan in the cell wall of the budding yeast Saccharomyces cerevisiae and the polymorphic human pathogen Candida albicans are essential processes that involve a range of fungal-specific enzymes and regulatory networks. The fungal cell wall is, therefore, an attractive target for novel therapies as host cells lack many cell wall-related proteins. The most recent class of antifungal drug approved for clinical use, the echinocandins, targets the synthesis of cell wall β(1-3)glucan. The echinocandins are effective at treating invasive and bloodstream Candida infections and are now widely used in the clinic. However, there have been sporadic reports of breakthrough infections in patients undergoing echinocandin therapy. The acquisition of point mutations in the FKS genes that encode the catalytic β(1-3)glucan synthase subunits, the target of the echinocandins, has emerged as a dominant resistance mechanism. Cells with elevated chitin levels are also less susceptible to echinocandins and in addition, treatment with sub-MIC echinocandin activates cell wall salvage pathways that increase chitin synthesis to compensate for reduced glucan production. The development of drugs targeting the cell wall has already proven to be beneficial in providing an alternative class of drug for use in the clinic. Other cell wall targets such as chitin synthesis still hold great potential for drug development but careful consideration should be given to the capacity of fungi to manipulate their walls in a dynamic response to cell wall perturbations.
Collapse
Affiliation(s)
- Carol A Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK, E-mail:
| |
Collapse
|
24
|
Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr Genet 2012; 58:165-77. [PMID: 22481122 DOI: 10.1007/s00294-012-0374-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.
Collapse
|
25
|
Creasey RG, Voelcker NH, Schultz CJ. Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:711-22. [PMID: 22425601 DOI: 10.1016/j.bbapap.2012.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/26/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
Abstract
Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae. Here we show that recombinant AGL1 (rAGL1) and recombinant AGL3 (rAGL3) are extended proteins based upon secondary structural characteristics determined by electronic circular dichroism (CD) spectroscopy and can self-assemble into fibers and microtubes as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). CD spectroscopy results of synthetic peptides based on repeat regions in AGL1, AGL2 and AGL3 suggest that the synthetic peptides contain significant amounts of extended PPII helices and that these structures are influenced by ionic strength and, at least in one case, by concentration. Point mutations of a single residue of the repeat region of AGL3 resulted in altered secondary structures. Self-assembly of these repeats was observed by means of AFM and optical microscopy. Peptide (APADGK)(6) forms structures with similar morphology to rAGL1 suggesting that these repeats are crucial for the morphology of rAGL1 fibers. These novel self-assembling sequences may find applications as precursors for bioinspired nanomaterials.
Collapse
Affiliation(s)
- Rhiannon G Creasey
- School of Chemical and Physical Sciences, Flinders University of South Australia, Australia.
| | | | | |
Collapse
|
26
|
ProFASTA: A pipeline web server for fungal protein scanning with integration of cell surface prediction software. Fungal Genet Biol 2012; 49:173-9. [DOI: 10.1016/j.fgb.2011.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022]
|
27
|
Blank CE. An expansion of age constraints for microbial clades that lack a conventional fossil record using phylogenomic dating. J Mol Evol 2011; 73:188-208. [PMID: 22105429 DOI: 10.1007/s00239-011-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
Most microbial taxa lack a conventional microfossil or biomarker record, and so we currently have little information regarding how old most microbial clades and their associated traits are. Building on the previously published oxygen age constraint, two new age constraints are proposed based on the ability of microbial clades to metabolize chitin and aromatic compounds derived from lignin. Using the archaeal domain of life as a test case, phylogenetic analyses, along with published metabolic and genetic data, showed that members of the Halobacteriales and Thermococcales are able to metabolize chitin. Ancestral state reconstruction combined with phylogenetic analysis of the genes underlying chitin degradation predicted that the ancestors of these two groups were also likely able to metabolize chitin or chitin-related compounds. These two clades were therefore assigned a maximum age of 1.0 Ga (when chitin likely first appeared). Similar analyses also predicted that the ancestor to the Sulfolobus solfataricus-Sulfolobus islandicus clade was able to metabolize phenol using catechol dioxygenase, so this clade was assigned a maximum age of 475 Ma. Inferred ages of archaeal clades using relaxed molecular clocks with the new age constraints were consistent with those inferred with the oxygen age constraints. This work expands our current toolkit to include Paleoproterozoic, Neoproterozoic, and Paleozoic age constraints, and should aid in our ability to phylogenetically reconstruct the antiquity of a wide array of microbial clades and their associated morphological and biogeochemical traits, spanning deep geologic time. Such hypotheses-although built upon evolutionary inferences-are fundamentally testable.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, MT 59812-1296, USA.
| |
Collapse
|
28
|
Xie X, Qiu WG, Lipke PN. Accelerated and adaptive evolution of yeast sexual adhesins. Mol Biol Evol 2011; 28:3127-37. [PMID: 21633112 DOI: 10.1093/molbev/msr145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a recent emergence of interest in the genes involved in gametic recognition as drivers of reproductive isolation. The recent population genomic sequencing of two species of sexually primitive yeasts (Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V et al. [23 co-authors]. 2009. Population genomics of domestic and wild yeasts. Nature 458:337-341.) has provided data for systematic study of the roles these genes play in the early evolution of sex and speciation. Here, we discovered that among genes encoding cell surface proteins, the sexual adhesin genes have evolved significantly more rapidly than others, both within and between Saccharomyces cerevisiae and its closest relative S. paradoxus. This result was supported by analyses using the PAML pairwise model, a modified McDonald-Kreitman test, and the PAML branch model. Moreover, using a combination of a new statistic of neutrality, an information theory-based measure of evolutionary variability, and functional characterization of amino acid changes, we found that a higher proportion of amino acid changes are fixed in the sexual adhesins than in other proteins and a greater proportion of the fixed amino acid changes either between the two species or the two subgroups of S. paradoxus are functionally dissimilar or radically different. These results suggest that the accelerated evolution of sexual adhesin genes may facilitate speciation, or incipient speciation, and promote sexual selection in general.
Collapse
Affiliation(s)
- Xianfa Xie
- Department of Biology, Brooklyn College, City University of New York, NY, USA.
| | | | | |
Collapse
|
29
|
Carreto L, Eiriz MF, Domingues I, Schuller D, Moura GR, Santos MAS. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics 2011; 12:201. [PMID: 21507216 PMCID: PMC3094312 DOI: 10.1186/1471-2164-12-201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/20/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae (Baker's yeast) is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. RESULTS Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. CONCLUSIONS Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.
Collapse
Affiliation(s)
- Laura Carreto
- RNA Biology Laboratory, CESAM & Department of Biology, Universidade de Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Recent developments in genomics and proteomics provide evidence that yeast and other fungal cell walls share a common origin. The fibrous component of yeast cell walls usually consists of beta-glucan and/or chitin. N-glycosylated proteins form an amorphous, cross-linking matrix as well as fibres on the outer surfaces of the walls. While the enzymes responsible for cross-linking walls into covalent complexes are conserved, the wall-resident proteins have diversified rapidly. These cell wall proteins are usually members of multi-gene families, and paralogues are often subject to gene silencing through epigenetic mechanisms and environmentally induced expression regulation. Comparative studies of protein sequences reveal that there has been fast sequence divergence of the Saccharomyces sexual agglutinins, potentially serving as a driver for yeast speciation. In addition, cell wall proteins show an unusually high content of tandem and non-tandem repeats, and a high frequency of changes in the number of repeats both among paralogues and among orthologues from conspecific strains. The rapid diversification and regulated expression of yeast cell wall proteins help yeast cells to respond to different stimuli and adapt them to diverse biotic and abiotic environments.
Collapse
Affiliation(s)
- Xianfa Xie
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
31
|
Gonzalez M, Goddard N, Hicks C, Ovalle R, Rauceo JM, Jue CK, Lipke PN. A screen for deficiencies in GPI-anchorage of wall glycoproteins in yeast. Yeast 2010; 27:583-96. [PMID: 20602336 DOI: 10.1002/yea.1797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Many of the genes and enzymes critical for assembly and biogenesis of yeast cell walls remain unidentified or poorly characterized. Therefore, we designed a high throughput genomic screen for defects in anchoring of GPI-cell wall proteins (GPI-CWPs), based on quantification of a secreted GFP-Sag1p fusion protein. Saccharomyces cerevisiae diploid deletion strains were transformed with a plasmid expressing the fusion protein under a GPD promoter, then GFP fluorescence was determined in culture supernatants after mid-exponential growth. Variability in the amount of fluorescent marker secreted into the medium was reduced by growth at 18 degrees C in buffered defined medium in the presence of sorbitol. Secondary screens included immunoblotting for GFP, fluorescence emission spectra, cell surface fluorescence, and cell integrity. Of 167 mutants deleted for genes affecting cell wall biogenesis or structure, eight showed consistent hyper-secretion of GFP relative to parental strain BY4743: tdh3 (glyceraldehyde-3-phosphate dehydrogenase), gda1 (guanosine diphosphatase), gpi13 and mcd4 (both ethanolamine phosphate-GPI-transferases), kre5 and kre1 (involved in synthesis of beta1,6 glucan), dcw1(implicated in GPI-CWP cross-linking to cell wall glucan), and cwp1 (a major cell wall protein). In addition, deletion of a number of genes caused decreased secretion of GFP. These results elucidate specific roles for specific genes in cell wall biogenesis, including differentiating among paralogous genes.
Collapse
Affiliation(s)
- Marlyn Gonzalez
- Department of Biology, Brooklyn College of the City University of New York, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ruiz-Herrera J, Ortiz-Castellanos L. Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 2010; 10:225-43. [DOI: 10.1111/j.1567-1364.2009.00589.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Frank AT, Ramsook CB, Otoo HN, Tan C, Soybelman G, Rauceo JM, Gaur NK, Klotz SA, Lipke PN. Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. EUKARYOTIC CELL 2010; 9:405-14. [PMID: 19820118 PMCID: PMC2837987 DOI: 10.1128/ec.00235-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 10/02/2009] [Indexed: 01/09/2023]
Abstract
Tandem repeat (TR) regions are common in yeast adhesins, but their structures are unknown, and their activities are poorly understood. TR regions in Candida albicans Als proteins are conserved glycosylated 36-residue sequences with cell-cell aggregation activity (J. M. Rauceo, R. De Armond, H. Otoo, P. C. Kahn, S. A. Klotz, N. K. Gaur, and P. N. Lipke, Eukaryot. Cell 5:1664-1673, 2006). Ab initio modeling with either Rosetta or LINUS generated consistent structures of three-stranded antiparallel beta-sheet domains, whereas randomly shuffled sequences with the same composition generated various structures with consistently higher energies. O- and N-glycosylation patterns showed that each TR domain had exposed hydrophobic surfaces surrounded by glycosylation sites. These structures are consistent with domain dimensions and stability measurements by atomic force microscopy (D. Alsteen, V. Dupres, S. A. Klotz, N. K. Gaur, P. N. Lipke, and Y. F. Dufrene, ACS Nano 3:1677-1682, 2009) and with circular dichroism determination of secondary structure and thermal stability. Functional assays showed that the hydrophobic surfaces of TR domains supported binding to polystyrene surfaces and other TR domains, leading to nonsaturable homophilic binding. The domain structures are like "classic" subunit interaction surfaces and can explain previously observed patterns of promiscuous interactions between TR domains in any Als proteins or between TR domains and surfaces of other proteins. Together, the modeling techniques and the supporting data lead to an approach that relates structure and function in many kinds of repeat domains in fungal adhesins.
Collapse
Affiliation(s)
- Aaron T. Frank
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Caleen B. Ramsook
- Department of Biology, Brooklyn College of CUNY, Brooklyn, New York 11210
| | - Henry N. Otoo
- Department of Biology, Brooklyn College of CUNY, Brooklyn, New York 11210
| | - Cho Tan
- Department of Biology, Brooklyn College of CUNY, Brooklyn, New York 11210
| | - Gregory Soybelman
- Department of Biology, Brooklyn College of CUNY, Brooklyn, New York 11210
| | - Jason M. Rauceo
- Department of Biology, John Jay College of Criminal Justice of CUNY, New York, New York 10019; and
| | - Nand K. Gaur
- University of Arizona and Southern Arizona VA Health Care System, Tucson, Arizona 85724
| | - Stephen A. Klotz
- University of Arizona and Southern Arizona VA Health Care System, Tucson, Arizona 85724
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of CUNY, Brooklyn, New York 11210
| |
Collapse
|
34
|
Rowe JD, Harbertson JF, Osborne JP, Freitag M, Lim J, Bakalinsky AT. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2337-2346. [PMID: 20108898 DOI: 10.1021/jf903660a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.
Collapse
Affiliation(s)
- Jeffrey D Rowe
- Food Science and Technology, Oregon State University, Corvallis, Oregon 97331-6602, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gordon JL, Byrne KP, Wolfe KH. Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet 2009; 5:e1000485. [PMID: 19436716 PMCID: PMC2675101 DOI: 10.1371/journal.pgen.1000485] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022] Open
Abstract
Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Kevin P. Byrne
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | | |
Collapse
|
36
|
Conserved WCPL and CX4C domains mediate several mating adhesin interactions in Saccharomyces cerevisiae. Genetics 2009; 182:173-89. [PMID: 19299340 DOI: 10.1534/genetics.108.100073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several adhesins are induced by pheromones during mating in Saccharomyces cerevisiae, including Aga1p, Aga2p, Sag1p (Agalpha1p), and Fig2p. These four proteins all participate in or influence a well-studied agglutinin interaction mediated by Aga1p-Aga2p complexes and Sag1p; however, they also play redundant and essential roles in mating via an unknown mechanism. Aga1p and Fig2p both contain repeated, conserved WCPL and CX(4)C domains. This study was directed toward understanding the mechanism underlying the collective requirement of agglutinins and Fig2p for mating. Apart from the well-known agglutinin interaction between Aga2p and Sag1p, three more pairs of interactions in cells of opposite mating type were revealed by this study, including bilateral heterotypic interactions between Aga1p and Fig2p and a homotypic interaction between Fig2p and Fig2p. These four pairs of adhesin interactions are collectively required for maximum mating efficiency and normal zygote morphogenesis. GPI-less, epitope-tagged forms of Aga1p and Fig2p can be co-immunoprecipitated from the culture medium of mating cells in a manner dependent on the WCPL and CX(4)C domains in the R1 repeat of Aga1p. Using site-directed mutagenesis, the conserved residues in Aga1p that interact with Fig2p were identified. Aga1p is involved in two distinct adhesive functions that are independent of each other, which raises the possibility for combinatorial interactions of this protein with its different adhesion receptors, Sag1 and Fig2p, a property of many higher eukaryotic adhesins.
Collapse
|
37
|
Krijger JJ, Horbach R, Behr M, Schweizer P, Deising HB, Wirsel SGR. The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1325-1336. [PMID: 18785828 DOI: 10.1094/mpmi-21-10-1325] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The hemibiotroph Colletotrichum graminicola is the causal agent of stem rot and leaf anthracnose on Zea mays. Following penetration of epidermal cells, the fungus enters a short biotrophic phase, followed by a destructive necrotrophic phase of pathogenesis. During both phases, secreted fungal proteins are supposed to determine progress and success of the infection. To identify genes encoding such proteins, we constructed a yeast signal sequence trap (YSST) cDNA-library from RNA extracted from mycelium grown in vitro on corn cell walls and leaf extract. Of the 103 identified unigenes, 50 showed significant similarities to genes with a reported function, 25 sequences were similar to genes without a known function, and 28 sequences showed no similarity to entries in the databases. Macroarray hybridization and quantitative reverse-transcriptase polymerase chain reaction confirmed that most genes identified by the YSST screen are expressed in planta. Other than some genes that were constantly expressed, a larger set showed peaks of transcript abundances at specific phases of pathogenesis. Another set exhibited biphasic expression with peaks at the biotrophic and necrotrophic phase. Transcript analyses of in vitro-grown cultures revealed that several of the genes identified by the YSST screen were induced by the addition of corn leaf components, indicating that host-derived factors may have mimicked the host milieu.
Collapse
Affiliation(s)
- Jorrit-Jan Krijger
- Institut fur Agrar-und Ernahrungswissenschaften, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Nather K, Munro CA. Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett 2008; 285:137-45. [PMID: 18616597 DOI: 10.1111/j.1574-6968.2008.01263.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The fungal cell surface contributes to pathogenesis by mediating interactions with host cells and eliciting host immune responses. This review focuses on the cell wall proteome of the major fungal pathogen Candida albicans and discusses how diversity at the cell surface can be introduced by altering the expression and structure of cell wall proteins. Remodelling the cell wall architecture is critical to maintain cellular integrity in response to different environments and stresses including challenge with antifungal drugs. In addition, the dynamic nature of the cell surface alters the physical properties of the fungal interface with host cells and thereby influences adhesion to the host and recognition by components of the host's immune system. Examples of the role of cell surface diversity in the pathogenesis of a number of microorganisms are described.
Collapse
Affiliation(s)
- Kerstin Nather
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|