1
|
Passarini MRZ, Ottoni JR, Costa PEDS, Hissa DC, Falcão RM, Melo VMM, Balbino VQ, Mendonça LAR, Lima MGDS, Coutinho HDM, Verde LCL. Fungal community diversity of heavy metal contaminated soils revealed by metagenomics. Arch Microbiol 2022; 204:255. [PMID: 35412096 DOI: 10.1007/s00203-022-02860-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
The inappropriate disposal of toxic compounds generated by industrial activity has been impacting the environment considerably. Microbial communities inhabiting contaminated sites may represent interesting ecological alternatives for the decontamination of environments. The present work aimed to investigate the fungal diversity and its functionality contained in stream sediments with industrial waste contaminated with heavy metals by using metagenomic approach. A total of 12 fungal orders were retrieved from datasets and, at phylum level, Ascomycota was the most abundant, followed by Basidiomycota, Chytridiomycota and Blastocladiomycota. Higher abundance of sequences was encountered within the less contaminated site, while the lower abundance was found in the sample with the higher contamination with lead. Gene sequences related to DNA repair and heavy metals biosorption processes were found in the four samples analyzed. The genera Aspergillus and Chaetomium, and Saccharomycetales order were highly present within all samples, showing their potential to be used for bioremediation studies. The present work demonstrated the importance of using the metagenomic approach to understand the dynamics and the possible metabolic pathways associated with fungal communities related to environmental samples containing heavy metals, as well as evidenced the importance of improving culturomics techniques for isolating strains with potential application in bioremediation processes of environments contaminated with heavy metals.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- UNILA-Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin Dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil.
| | - Júlia Ronzella Ottoni
- UNILA-Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin Dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | | | | | - Raul Maia Falcão
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | |
Collapse
|
2
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
3
|
Cross-Kingdom Comparative Transcriptomics Reveals Conserved Genetic Modules in Response to Cadmium Stress. mSystems 2021; 6:e0118921. [PMID: 34874779 PMCID: PMC8651089 DOI: 10.1128/msystems.01189-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is known that organisms have developed various mechanisms to cope with cadmium (Cd) stress, while we still lack a system-level understanding of the functional isomorphy among them. In the present study, a cross-kingdom comparison was conducted among Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii, through toxicological tests, comparative transcriptomics, as well as conventional functional genomics. An equivalent level of Cd stress was determined via inhibition tests. Through transcriptome comparison, the three organisms exhibited differential gene expression under the same Cd stress relative to the corresponding no-treatment control. Results from functional enrichment analysis of differentially expressed genes (DEGs) showed that four metabolic pathways responsible for combating Cd stress were commonly regulated in the three organisms, including antioxidant reactions, sulfur metabolism, cell wall remodeling, and metal transport. In vivo expression patterns of 43 DEGs from the four pathways were further examined using quantitative PCR and resulted in a relatively comparable dynamic of gene expression patterns with transcriptome sequencing (RNA-seq). Cross-kingdom comparison of typical Cd stress-responding proteins resulted in the detection of 12 groups of homologous proteins in the three species. A class of potential metal transporters were subjected to cross-transformation to test their functional complementation. An ABC transporter gene in E. coli, possibly homologous to the yeast ycf1, was heterologously expressed in S. cerevisiae, resulting in enhanced Cd tolerance. Overall, our findings indicated that conserved genetic modules against Cd toxicity were commonly regulated among distantly related microbial species, which will be helpful for utilizing them in modifying microbial traits for bioremediation. IMPORTANCE Research is establishing a systems biology view of biological response to Cd stress. It is meaningful to explore whether there is regulatory isomorphy among distantly related organisms. A transcriptomic comparison was done among model microbes, leading to the identification of a conserved cellular model pinpointing the generic strategies utilized by microbes for combating Cd stress. A novel E. coli transporter gene substantially increased yeast’s Cd tolerance. Knowledge on systems understanding of the cellular response to metals provides the basis for developing bioengineering remediation technology.
Collapse
|
4
|
Poosapati S, Ravulapalli PD, Viswanathaswamy DK, Kannan M. Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress. J Fungi (Basel) 2021; 7:1002. [PMID: 34946985 PMCID: PMC8704589 DOI: 10.3390/jof7121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today's agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. Studies have indicated that a high atmospheric temperature coupled with low humidity is a major factor in the inconsistent performance of Trichoderma under field conditions. Understanding the molecular modulations associated with Trichoderma that persist and deliver under abiotic stress conditions will aid in exploiting the value of these organisms for such uses. In this study, a comparative proteomic analysis, using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption/time-of-flight (MALDI-TOF-TOF) mass spectrometry, was used to identify proteins associated with thermotolerance in two thermotolerant isolates of Trichoderma: T. longibrachiatum 673, TaDOR673 and T. asperellum 7316, TaDOR7316; with 32 differentially expressed proteins being identified. Sequence homology and conserved domains were used to identify these proteins and to assign a probable function to them. The thermotolerant isolate, TaDOR673, seemed to employ the stress signaling MAPK pathways and heat shock response pathways to combat the stress condition, whereas the moderately tolerant isolate, TaDOR7316, seemed to adapt to high-temperature conditions by reducing the accumulation of misfolded proteins through an unfolded protein response pathway and autophagy. In addition, there were unique, as well as common, proteins that were differentially expressed in the two isolates studied.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Prasad Durga Ravulapalli
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
| | | | - Monica Kannan
- Proteomics Facility, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India;
| |
Collapse
|
5
|
Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance. PLoS One 2020; 15:e0239617. [PMID: 32991614 PMCID: PMC7523953 DOI: 10.1371/journal.pone.0239617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.
Collapse
|
6
|
Maresca V, Lettieri G, Sorbo S, Piscopo M, Basile A. Biological Responses to Cadmium Stress in Liverwort Conocephalum conicum (Marchantiales). Int J Mol Sci 2020; 21:ijms21186485. [PMID: 32899890 PMCID: PMC7555243 DOI: 10.3390/ijms21186485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
Abstract
Oxidative damage (production and localization of reactive oxygen species) and related response mechanisms (activity of antioxidant enzymes), and induction of Heat Shock Protein 70 expression, have been studied in the toxi-tolerant liverwort Conocephalum conicum (Marchantiales) in response to cadmium stress using two concentrations (36 and 360 µM CdCl2). Cadmium dose-dependent production of reactive oxygen species (ROS) and related activity of antioxidant enzymes was observed. The expression level of heat shock protein (Hsp)70, instead, was higher at 36 µM CdCl2 in comparison with the value obtained after exposure to 360 µM CdCl2, suggesting a possible inhibition of the expression of this stress gene at higher cadmium exposure doses. Biological responses were related to cadmium bioaccumulation. Since C. conicum was able to respond to cadmium stress by modifying biological parameters, we discuss the data considering the possibility of using these biological changes as biomarkers of cadmium pollution.
Collapse
Affiliation(s)
- Viviana Maresca
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
| | - Gennaro Lettieri
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
| | - Sergio Sorbo
- Centro di Servizi Metrologici Avanzati (CeSMA), Microscopy Section, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
- Correspondence: (M.P.); (A.B.); Tel.: +39-081-679-081 (M.P.); +39-081-253-8508 (A.B.)
| | - Adriana Basile
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy; (V.M.); (G.L.)
- Correspondence: (M.P.); (A.B.); Tel.: +39-081-679-081 (M.P.); +39-081-253-8508 (A.B.)
| |
Collapse
|
7
|
Pang KL, Chiang MWL, Guo SY, Shih CY, Dahms HU, Hwang JS, Cha HJ. Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. PLoS One 2020; 15:e0233621. [PMID: 32453769 PMCID: PMC7250430 DOI: 10.1371/journal.pone.0233621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/08/2020] [Indexed: 12/03/2022] Open
Abstract
A high diversity of fungi was discovered on various substrates collected at the marine shallow-water Kueishan Island Hydrothermal Vent Field, Taiwan, using culture and metabarcoding methods but whether these fungi can grow and play an active role in such an extreme environment is unknown. We investigated the combined effects of different salinity, temperature and pH on growth of ten fungi (in the genera Aspergillus, Penicillium, Fodinomyces, Microascus, Trichoderma, Verticillium) isolated from the sediment and the vent crab Xenograpsus testudinatus. The growth responses of the tested fungi could be referred to three groups: (1) wide pH, salinity and temperature ranges, (2) salinity-dependent and temperature-sensitive, and (3) temperature-tolerant. Aspergillus terreus NTOU4989 was the only fungus which showed growth at 45 °C, pH 3 and 30 ‰ salinity, and might be active near the vents. We also carried out a transcriptome analysis to understand the molecular adaptations of A. terreus NTOU4989 under these extreme conditions. Data revealed that stress-related genes were differentially expressed at high temperature (45 °C); for instance, mannitol biosynthetic genes were up-regulated while glutathione S-transferase and amino acid oxidase genes down-regulated in response to high temperature. On the other hand, hydrogen ion transmembrane transport genes and phenylalanine ammonia lyase were up-regulated while pH-response transcription factor was down-regulated at pH 3, a relative acidic environment. However, genes related to salt tolerance, such as glycerol lipid metabolism and mitogen-activated protein kinase, were up-regulated in both conditions, possibly related to maintaining water homeostasis. The results of this study revealed the genetic evidence of adaptation in A. terreus NTOU4989 to changes of environmental conditions.
Collapse
Affiliation(s)
- Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Sheng-Yu Guo
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yu Shih
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hans U Dahms
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hyo-Jung Cha
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
8
|
Oshiquiri LH, Gomes SL, Georg RC. Blastocladiella emersonii spliceosome is regulated in response to the splicing inhibition caused by the metals cadmium, cobalt and manganese. Fungal Biol 2020; 124:468-474. [PMID: 32389309 DOI: 10.1016/j.funbio.2020.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
Abstract
Blastocladiella emersonii is an aquatic fungus of the phylum Blastocladiomycota, localized near the base of the fungal tree. Previous studies have shown that B. emersonii responds to heat shock and cadmium exposure inducing the transcription of a high number of genes. EST sequencing from heat shocked and cadmium exposed B. emersonii cells has shown that exposure to cadmium causes strong splicing inhibition. Despite the knowledge about splicing inhibition by cadmium, it is still unclear if other metal contaminants can cause the same response. In the present study, we have demonstrated that the effect of cadmium exposure on splicing inhibition is much stronger than that of other divalent metals such as cobalt and manganese. Data presented here also indicate that intron retention occurs randomly among the fungal transcripts, as verified by analyzing differently affected transcripts. In addition, we identified in the genome of B. emersonii the genes encoding the snRNA splicing components U1, U2, U4, U5 and U6 and observed that spliceosome snRNAs are upregulated in the presence of metals, in particular snRNA U1 in cells under cadmium exposure. This observation suggests that snRNA upregulation might be a defense of the fungal cell against the metal stress condition.
Collapse
Affiliation(s)
- Letícia Harumi Oshiquiri
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Suely Lopes Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raphaela Castro Georg
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Small heat shock protein genes are developmentally regulated during stress and non-stress conditions in Blastocladiella emersonii. Fungal Biol 2020; 124:482-489. [PMID: 32389311 DOI: 10.1016/j.funbio.2020.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones of low molecular weight involved in an early association with misfolded proteins. In response to heat shock, B. emersonii induces the synthesis of a number of proteins. As sHsps are still poorly studied in B. emersonii and in fungi overall, the aim of this work was to carry out a in-depth characterization of sHsps during B. emersonni life cycle, as well as in response to thermal stress. We verified a strong induction of the hsp17 gene in cells exposed to heat shock both in germination and sporulation stages, and that Hsp17 protein levels show the same pattern of variation of its mRNA. Unlike hsp17 and hsp30, hsp16 gene is not significantly induced during heat shock, in germination or sporulation cells. However, at normal temperatures, the hsp16 gene presents high mRNA levels in sporulation cells, whereas the hsp30 gene presents high mRNA levels in germination cells. Interestingly, heat shock mRNA levels for hsp17 and hsp30 genes are 10 times higher in germination cells than in sporulation cells. Thus, our data show that the expression of these sHsp genes is quite distinct, both under normal temperature as during heat shock.
Collapse
|
10
|
Oshiquiri LH, Dos Santos KRA, Ferreira Junior SA, Steindorff AS, Barbosa Filho JR, Mota TM, Ulhoa CJ, Georg RC. Trichoderma harzianum transcriptome in response to cadmium exposure. Fungal Genet Biol 2019; 134:103281. [PMID: 31626987 DOI: 10.1016/j.fgb.2019.103281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a heavy metal present in the environment mainly as a result of industrial contamination that can cause toxic effects to life. Some microorganisms, as Trichoderma harzianum, a fungus used in biocontrol, are able to survive in polluted environments and act as bioremediators. Aspects about the tolerance to the metal have been widely studied in other fungi although there are a few reports about the response of T. harzianum. In this study, we determined the effects of cadmium over growth of T. harzianum and used RNA-Seq to identify significant genes and processes regulated in the metal presence. Cadmium inhibited the fungus growth proportionally to its concentration although the fungus exhibited tolerance as it continued to grow, even in the highest concentrations used. A total of 3767 (1993 up and 1774 down) and 2986 (1606 up and 1380 down) differentially expressed genes were detected in the mycelium of T. harzianum cultivated in the presence of 1.0 mg mL-1 or 2.0 mg mL-1 of CdCl2, respectively, compared to the absence of the metal. Of these, 2562 were common to both treatments. Biological processes related to cellular homeostasis, transcription initiation, sulfur compound biosynthetic and metabolic processes, RNA processing, protein modification and vesicle-mediated transport were up-regulated. Carbohydrate metabolic processes were down-regulated. Pathway enrichment analysis indicated induction of glutathione and its precursor's metabolism. Interestingly, it also indicated an intense transcriptional induction, especially by up-regulation of spliceosome components. Carbohydrate metabolism was repressed, especially the mycoparasitism-related genes, suggesting that the mycoparasitic ability of T. harzianum could be affected during cadmium exposure. These results contribute to the advance of the current knowledge about the response of T. harzianum to cadmium exposure and provide significant targets for biotechnological improvement of this fungus as a bioremediator and a biocontrol agent.
Collapse
Affiliation(s)
- Letícia Harumi Oshiquiri
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás CEP:74690-900, Brazil
| | | | | | - Andrei Stecca Steindorff
- U.S. Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | - Thuana Marcolino Mota
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás CEP:74690-900, Brazil
| | - Cirano José Ulhoa
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás CEP:74690-900, Brazil
| | - Raphaela Castro Georg
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás CEP:74690-900, Brazil.
| |
Collapse
|
11
|
Hsp genes are differentially expressed during Trichoderma asperellum self-recognition, mycoparasitism and thermal stress. Microbiol Res 2019; 227:126296. [DOI: 10.1016/j.micres.2019.126296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
12
|
Luévano-Martínez LA, Caldeira da Silva CC, Nicastro GG, Schumacher RI, Kowaltowski AJ, Gomes SL. Mitochondrial alternative oxidase is determinant for growth and sporulation in the early diverging fungus Blastocladiella emersonii. Fungal Biol 2018; 123:59-65. [PMID: 30654958 DOI: 10.1016/j.funbio.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Blastocladiella emersonii is an early diverging fungus of the phylum Blastocladiomycota. During the life cycle of the fungus, mitochondrial morphology changes significantly, from a fragmented form in sessile vegetative cells to a fused network in motile zoospores. In this study, we visualize these morphological changes using a mitochondrial fluorescent probe and show that the respiratory capacity in zoospores is much higher than in vegetative cells, suggesting that mitochondrial morphology could be related to the differences in oxygen consumption. While studying the respiratory chain of the fungus, we observed an antimycin A and cyanide-insensitive, salicylhydroxamic (SHAM)-sensitive respiratory activity, indicative of a mitochondrial alternative oxidase (AOX) activity. The presence of AOX was confirmed by the finding of a B. emersonii cDNA encoding a putative AOX, and by detection of AOX protein in immunoblots. Inhibition of AOX activity by SHAM was found to significantly alter the capacity of the fungus to grow and sporulate, indicating that AOX participates in life cycle control in B. emersonii.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil; Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gianlucca G Nicastro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Robert I Schumacher
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Suely L Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Transcriptomic analysis of temperature responses of Aspergillus kawachii during barley koji production. Appl Environ Microbiol 2016; 81:1353-63. [PMID: 25501485 DOI: 10.1128/aem.03483-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The koji mold Aspergillus kawachii is used for making the Japanese distilled spirit shochu. During shochu production, A. kawachii is grown in solid-state culture (koji) on steamed grains, such as rice or barley, to convert the grain starch to glucose and produce citric acid. During this process, the cultivation temperature of A. kawachii is gradually increased to 40 °C and is then lowered to 30 °C. This temperature modulation is important for stimulating amylase activity and the accumulation of citric acid. However, the effects of temperature on A. kawachii at the gene expression level have not been elucidated. In this study, we investigated the effect of solid-state cultivation temperature on gene expression for A. kawachii grown on barley. The results of DNA microarray and gene ontology analyses showed that the expression of genes involved in the glycerol, trehalose, and pentose phosphate metabolic pathways, which function downstream of glycolysis, was downregulated by shifting the cultivation temperature from 40 to 30 °C. In addition, significantly reduced expression of genes related to heat shock responses and increased expression of genes related with amino acid transport were also observed. These results suggest that solid-state cultivation at 40 °C is stressful for A. kawachii and that heat adaptation leads to reduced citric acid accumulation through activation of pathways branching from glycolysis. The gene expression profile of A. kawachii elucidated in this study is expected to contribute to the understanding of gene regulation during koji production and optimization of the industrially desirable characteristics of A. kawachii.
Collapse
|
14
|
Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing. Biol Res 2015; 48:66. [PMID: 26585910 PMCID: PMC4654012 DOI: 10.1186/s40659-015-0054-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect’s ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses.
Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. Results In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect’s response to heat- and cold-stress. Conclusions These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.
Collapse
|
15
|
Ponmani T, Guo R, Ki JS. A novel cyclophilin gene from the dinoflagellate Prorocentrum minimum and its possible role in the environmental stress response. CHEMOSPHERE 2015; 139:260-7. [PMID: 26150195 DOI: 10.1016/j.chemosphere.2015.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 05/20/2023]
Abstract
Cyclophilins (CYPs) are a family of proteins that bind to cyclosporine and are thought to be involved in the stress response. In dinoflagellate algae, CYPs may function as a survival strategy in cells exposed to environmental stressors. Here, we identified a novel cyclophilin gene (referred to as PmCYP, comprising a 516-bp open reading frame, encoding a 171-aa protein with a molecular mass of 17.5kDa) from the dinoflagellate Prorocentrum minimum, and evaluated the role of dinoflagellate CYP in cells exposed to environmental pollutants copper and polychlorinated biphenyl. In addition, we assessed the cytoprotective role of nitric oxide in relation to the expression of PmCYP. These stressors strongly affected the physiology of the cells, as judged by cell counting, reactive oxygen species (ROS) imaging, and photosynthetic parameters (Fv/Fm and PIABS). PmCYP expression was significantly (P<0.05) induced upon exposure of the cells to all the test pollutants used in this study. These clearly indicate that PmCYP plays a vital role in the oxidative stress response in dinoflagellate survival, although the gene was initially known only for its housekeeping function.
Collapse
Affiliation(s)
- Thangaraj Ponmani
- Institute of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea
| | - Ruoyu Guo
- Department of Life Science, Sangmyung University, Seoul 110-743, South Korea
| | - Jang-Seu Ki
- Institute of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea; Department of Life Science, Sangmyung University, Seoul 110-743, South Korea.
| |
Collapse
|
16
|
Deciphering the ability of Agaricus bisporus var. burnettii to produce mushrooms at high temperature (25°C). Fungal Genet Biol 2014; 73:1-11. [DOI: 10.1016/j.fgb.2014.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 08/31/2014] [Indexed: 01/02/2023]
|
17
|
Meijueiro ML, Santoyo F, Ramirez L, Pisabarro AG. Transcriptome characteristics of filamentous fungi deduced using high-throughput analytical technologies. Brief Funct Genomics 2014; 13:440-50. [DOI: 10.1093/bfgp/elu033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
18
|
Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 2011; 48:806-11. [DOI: 10.1016/j.fgb.2011.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 11/23/2022]
|
19
|
Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F. Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 2011; 35:620-51. [DOI: 10.1111/j.1574-6976.2011.00266.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Comparison of transcriptional and translational changes caused by long-term menadione exposure in Aspergillus nidulans. Fungal Genet Biol 2011; 48:92-103. [DOI: 10.1016/j.fgb.2010.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/08/2010] [Accepted: 08/19/2010] [Indexed: 01/14/2023]
|
21
|
Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii. EUKARYOTIC CELL 2010; 9:915-25. [PMID: 20418381 DOI: 10.1128/ec.00047-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.
Collapse
|
22
|
Global gene expression analysis during sporulation of the aquatic fungus Blastocladiella emersonii. EUKARYOTIC CELL 2009; 9:415-23. [PMID: 20038607 DOI: 10.1128/ec.00312-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca(2+), and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources.
Collapse
|
23
|
Environmental stresses inhibit splicing in the aquatic fungus Blastocladiella emersonii. BMC Microbiol 2009; 9:231. [PMID: 19874600 PMCID: PMC2773782 DOI: 10.1186/1471-2180-9-231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 10/29/2009] [Indexed: 11/30/2022] Open
Abstract
Background Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. Results During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. Conclusion In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.
Collapse
|
24
|
Vieira ALG, Linares E, Augusto O, Gomes SL. Evidence of a Ca(2+)-(*)NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 2009; 46:575-84. [PMID: 19393757 DOI: 10.1016/j.fgb.2009.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 11/25/2022]
Abstract
The sporulation stage of the aquatic fungus Blastocladiella emersonii culminates with the formation and release to the medium of a number of zoospores, which are motile cells responsible for the dispersal of the fungus. The presence in the sporulation solution of 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and selective inhibitor of nitric oxide-sensitive guanylyl cyclases, completely prevented biogenesis of the zoospores. In addition, this compound was able to significantly reduce cGMP levels, which increase drastically during late sporulation, suggesting the existence of a nitric oxide-dependent mechanism for cGMP synthesis. Furthermore, increased levels of nitric oxide-derived products were detected during sporulation by fluorescence assays using DAF-2 DA, whose signal was drastically reduced in the presence of the nitric oxide synthase inhibitor Nomega-Nitro-L-arginine methyl ester (L-NAME). These results were confirmed by quantitative chemiluminescent determination of the intracellular levels of nitric oxide-derived products. A putative nitric oxide synthase (NOS) activity was detected throughout sporulation, and this enzyme activity decreased significantly when L-NAME and 1-[2-(Trifluoromethyl)phenyl]imidazole (TRIM) were added to the assays. NOS assays carried out in the presence of EGTA showed decreased enzyme activity, suggesting the involvement of calcium ions in enzyme activation. Additionally, expressed sequence tags (ESTs) encoding putative guanylyl cyclases and a cGMP-phosphodiesterase were found in B. emersonii EST database (http://blasto.iq.usp.br), and the mRNA levels of the corresponding genes were observed to increase during sporulation. Altogether, data presented here revealed the presence and expression of guanylyl cyclase and cGMP phosphodiesterase genes in B. emersonii and provided evidence of a Ca(2+)-(*)NO-cGMP signaling pathway playing a role in zoospore biogenesis.
Collapse
Affiliation(s)
- André L G Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
25
|
Global gene expression analysis during germination in the chytridiomycete Blastocladiella emersonii. EUKARYOTIC CELL 2008; 8:170-80. [PMID: 19098129 DOI: 10.1128/ec.00330-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class. During germination, the zoospore, a motile nongrowing cell, goes through a cascade of morphological changes that culminates with its differentiation into the germling cell, capable of coenocytic vegetative growth. Transcriptome analyses of B. emersonii cells were carried out during germination induced under various environmental conditions. Microarray data analyzing 3,563 distinct B. emersonii genes revealed that 26% of them are differentially expressed during germination in nutrient medium at at least one of the time points investigated. Over 500 genes are upregulated during the time course of germination under those conditions, most being related to cell growth, including genes involved in protein biosynthesis, DNA transcription, energetic metabolism, carbohydrate and oligopeptide transport, and cell cycle control. On the other hand, several transcripts stored in the zoospores are downregulated during germination in nutrient medium, such as genes involved in signal transduction, amino acid transport, and chromosome organization. In addition, germination induced in the presence of nutrients was compared with that triggered either by adenine or potassium ions in inorganic salt solution. Several genes involved in cell growth, induced during germination in nutrient medium, do not show increased expression when B. emersonii zoospores germinate in inorganic solution, suggesting that nutrients exert a positive effect on gene transcription. The transcriptome data also revealed that most genes involved in cell signaling show the same expression pattern irrespective of the initial germination stimulus.
Collapse
|
26
|
Expression of genes encoding cytosolic and endoplasmic reticulum HSP90 proteins in the aquatic fungus Blastocladiella emersonii. Gene 2008; 411:59-68. [PMID: 18281163 DOI: 10.1016/j.gene.2008.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/18/2007] [Accepted: 01/06/2008] [Indexed: 11/22/2022]
Abstract
HSP90 proteins are important molecular chaperones involved in multiple cellular processes. This work reports the characterization of cDNAs encoding two distinct HSP90 proteins (named HSP90A and HSP90B) from the chytridiomycete Blastocladiella emersonii. Deduced amino acid sequences of HSP90A and HSP90B exhibit signatures of the cytosolic and endoplasmic reticulum (ER) HSP90 proteins, respectively. A genomic clone encoding HSP90A was also characterized indicating the presence of a single intron of 184 bp interrupting the coding region, located near the amino-terminus of the protein. Expression of both HSP90A and HSP90B genes increases significantly during heat shock at 38 degrees C, with highest induction ratios observed in cells stressed during germination of the fungus. Changes in the amount of HSP90A transcript were also evaluated during B. emersonii life cycle at physiological temperature (27 degrees C), and its levels were found to increase both during germination and sporulation of the fungus. HSP90A protein levels were analyzed during B. emersonii life cycle and significant changes were observed only during sporulation. Furthermore, during heat stress a large increase in the amount of HSP90A protein was observed. Induction of HSP90A and HSP90B genes during heat stress indicates the importance of both genes in the response to high temperature in B. emersonii.
Collapse
|