1
|
Liu P, Liu Y, Zhou J. Ciliary mechanosensation - roles of polycystins and mastigonemes. J Cell Sci 2023; 136:286945. [PMID: 36752106 DOI: 10.1242/jcs.260565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cilia are surface-exposed organelles that provide motility and sensory functions for cells, and it is widely believed that mechanosensation can be mediated through cilia. Polycystin-1 and -2 (PC-1 and PC-2, respectively) are transmembrane proteins that can localize to cilia; however, the molecular mechanisms by which polycystins contribute to mechanosensation are still controversial. Studies detail two prevailing models for the molecular roles of polycystins on cilia; one stresses the mechanosensation capabilities and the other unveils their ligand-receptor nature. The discovery that polycystins interact with mastigonemes, the 'hair-like' protrusions of flagella, is a novel finding in identifying the interactors of polycystins in cilia. While the functions of polycystins proposed by both models may coexist in cilia, it is hoped that a precise understanding of the mechanism of action of polycystins can be achieved by uncovering their distribution and interacting factors inside cilia. This will hopefully provide a satisfying answer to the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in PC-1 and PC-2. In this Review, we discuss the characteristics of polycystins in the context of cilia and summarize the functions of mastigonemes in unicellular ciliates. Finally, we compare flagella and molecular features of PC-2 between unicellular and multicellular organisms, with the aim of providing new insights into the ciliary roles of polycystins in general.
Collapse
Affiliation(s)
- Peiwei Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology , College of Life Sciences in Shandong Normal University, Jinan 250358, China.,College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 2023; 8:533-547. [PMID: 36804636 PMCID: PMC9981465 DOI: 10.1038/s41564-022-01295-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/21/2022] [Indexed: 02/22/2023]
Abstract
Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.
Collapse
|
3
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
4
|
Dóró É, Jacobs SH, Hammond FR, Schipper H, Pieters RP, Carrington M, Wiegertjes GF, Forlenza M. Visualizing trypanosomes in a vertebrate host reveals novel swimming behaviours, adaptations and attachment mechanisms. eLife 2019; 8:48388. [PMID: 31547905 PMCID: PMC6759355 DOI: 10.7554/elife.48388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are important disease agents of humans, livestock and cold-blooded species, including fish. The cellular morphology of trypanosomes is central to their motility, adaptation to the host’s environments and pathogenesis. However, visualizing the behaviour of trypanosomes resident in a live vertebrate host has remained unexplored. In this study, we describe an infection model of zebrafish (Danio rerio) with Trypanosoma carassii. By combining high spatio-temporal resolution microscopy with the transparency of live zebrafish, we describe in detail the swimming behaviour of trypanosomes in blood and tissues of a vertebrate host. Besides the conventional tumbling and directional swimming, T. carassii can change direction through a ‘whip-like’ motion or by swimming backward. Further, the posterior end can act as an anchoring site in vivo. To our knowledge, this is the first report of a vertebrate infection model that allows detailed imaging of trypanosome swimming behaviour in vivo in a natural host environment. Trypanosomes are one-celled parasites that cause the disease trypanosomiasis, which is also known as sleeping sickness. Trypanosomiasis is transmitted to humans and animals by a type of fly, known as tse-tse, which is commonly found in sub-Saharan Africa. A bite from the tse-tse fly transfers the trypanosome cells into the host’s bloodstream, where they spread from the blood to the internal organs and brain. This leads to a long-term illness, which can sometimes result in a coma and eventually death. Once in the blood trypanosomes move around using a structure similar to an underwater propeller called the flagellum. How the trypanosomes move and behave in the blood determines how the infection will progress. Until now it has only been possible to observe trypanosomes in plastic dishes or in blood drawn from infected patients. However, neither of these settings mimic the conditions of the bloodstream, and it is currently impossible to look inside human hosts to watch how trypanosomes move. To overcome this hurdle, Doro et al. infected zebrafish with Trypanosoma carassii, a close relative of the sub-Saharan trypanosomes that specifically infects fish. Zebrafish are transparent when young, making it possible to observe the parasite in the blood and tissues of live fish using a microscope. Doro et al. noticed that Trypanosoma carassii cells adapt to different environments in the host by using different swimming techniques. For example, in small capillaries trypanosomes were dragged along with the blood flow, whilst in larger vessels, when blood flow was slow or there were fewer red blood cells, trypanosomes actively swam against the current. The parasites were also able to change direction by using their flagella in a ‘whip-like’ motion. Lastly, it was discovered that Trypanosoma carassii could rapidly attach to blood vessel walls using one end of its cell body, even when blood flow was strong. This behaviour may help the parasites escape from the bloodstream into the surrounding tissues, making the infection more dangerous. Studying how trypanosomes infect zebrafish at this high level of detail provides new insights into how these parasites move and behave inside a host. An important question that remains to be answered, is how exactly the trypanosomes leave the bloodstream. A better understanding of the whole infection process may hint at new ways of fighting these deadly infections in future.
Collapse
Affiliation(s)
- Éva Dóró
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sem H Jacobs
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Henk Schipper
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Remco Pm Pieters
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Geert F Wiegertjes
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Department of Animal Sciences, Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Abstract
Trypanosoma brucei is a highly invasive pathogen capable of penetrating deeply into host tissues. To understand how flagellar motility facilitates cell penetration, we used cryo-electron tomography (cryo-ET) to visualize two genetically anucleate mutants with different flagellar motility behaviors. We found that the T. brucei cell body is highly deformable as defined by changes in cytoskeletal twist and spacing, in response to flagellar beating and environmental conditions. Based on the cryo-ET models, we proposed a mechanism of how flagellum motility is coupled to cell shape changes, which may facilitate penetration through size-limiting barriers. In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.
Collapse
|
6
|
Rojas F, Koszela J, Búa J, Llorente B, Burchmore R, Auer M, Mottram JC, Téllez-Iñón MT. The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei. PLoS Negl Trop Dis 2017; 11:e0005626. [PMID: 28609481 PMCID: PMC5507466 DOI: 10.1371/journal.pntd.0005626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/11/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is a post-translational regulatory pathway for controlling protein stability and activity that underlies many fundamental cellular processes, including cell cycle progression. Target proteins are tagged with ubiquitin molecules through the action of an enzymatic cascade composed of E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. One of the E3 ligases known to be responsible for the ubiquitination of cell cycle regulators in eukaryotes is the SKP1-CUL1-F-box complex (SCFC). In this work, we identified and studied the function of homologue proteins of the SCFC in the life cycle of Trypanosoma brucei, the causal agent of the African sleeping sickness. Depletion of trypanosomal SCFC components TbRBX1, TbSKP1, and TbCDC34 by RNAi resulted in decreased growth rate and contrasting cell cycle abnormalities for both procyclic (PCF) and bloodstream (BSF) forms. Depletion of TbRBX1 in PCF cells interfered with kinetoplast replication, whilst depletion of TbSKP1 arrested PCF and BSF cells in the G1/S transition. Silencing of TbCDC34 in BSF cells resulted in a block in cytokinesis and caused rapid clearance of parasites from infected mice. We also show that TbCDC34 is able to conjugate ubiquitin in vitro and in vivo, and that its activity is necessary for T. brucei infection progression in mice. This study reveals that different components of a putative SCFC have contrasting phenotypes once depleted from the cells, and that TbCDC34 is essential for trypanosome replication, making it a potential target for therapeutic intervention. African sleeping sickness is a neglected tropical disease caused by infection with the protozoan parasite Trypanosoma brucei, which is transmitted to humans by tsetse flies (Glossina genus). Treatment of the disease is complex and relies on limited pharmaceutical options. Understanding how T. brucei regulates cell cycle progression at a molecular level when alternating between the mammalian host and the insect vector could lead to better therapies. In this study, we examined different T. brucei proteins with homology to components of the SKP1-CUL1-F-box ubiquitin ligase complex (SCFC), previously characterized in other eukaryotes as a regulator of cell cycle progression. We found that depletion of the homologues of a putative SCFC cause T. brucei to develop abnormally, generating different phenotypes of the mammalian and insect stages. Interestingly, depletion of the ubiquitin conjugating enzyme TbCDC34 arrest cells in a pre-cytokinesis stage, indicating that this protein is essential for cytokinesis. In addition to improving our fundamental understanding of the molecular regulation underlying the sophisticated life cycle of T. brucei, this work pinpoints a potential target for drug development against trypanosomiasis.
Collapse
Affiliation(s)
- Federico Rojas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Joanna Koszela
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jacqueline Búa
- Instituto Nacional de Parasitología ‘Dr. M. Fatala Chabén’, A.N.L.I.S., ‘Dr. Carlos G. Malbrán’, Buenos Aires, Argentina
| | - Briardo Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Manfred Auer
- Institute of Quantitative Biology Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | - Jeremy C. Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - María Teresa Téllez-Iñón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol 2017; 13:e1005353. [PMID: 28141804 PMCID: PMC5308837 DOI: 10.1371/journal.pcbi.1005353] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/14/2017] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion. Swimming cells often follow a helical swimming path, however the advantage of helical paths over a simple straight line path is not clear. To analyse this phenomenon, I analysed the swimming of the human parasites Trypanosoma brucei (which causes sleeping sickness/trypanosomiasis) and Leishmania mexicana (which causes leishmaniasis). Using new computational methods to determine the three dimensional shape of swimming cells I showed that T. brucei have a helical shape which causes rotation as the cell swims, and the geometry of the resulting swimming path makes the cell movement highly directional. In contrast, L. mexicana are symmetrical, do not rotate, and their swimming paths are curved and have low directionality. Using a T. brucei mutant I showed that the cell structure responsible for the helical shape while swimming is the flagellum attachment zone. This explains a key function of this structure. Finally, simulations showed the phenomenon of rotation while swimming is a way cells can ensure highly directional swimming along a controlled helical path, overcoming random variation in cell shape or propulsion. This provides a general explanation for why swimming cells are often asymmetric and tend to follow helical paths.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
8
|
Cheung JLY, Wand NV, Ooi CP, Ridewood S, Wheeler RJ, Rudenko G. Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies. PLoS Pathog 2016; 12:e1006023. [PMID: 27893860 PMCID: PMC5125712 DOI: 10.1371/journal.ppat.1006023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection.
Collapse
Affiliation(s)
- Jackie L. Y. Cheung
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Nadina V. Wand
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Cher-Pheng Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Sophie Ridewood
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Richard J. Wheeler
- Department of Pathology, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gloria Rudenko
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
TcI Isolates of Trypanosoma cruzi Exploit the Antioxidant Network for Enhanced Intracellular Survival in Macrophages and Virulence in Mice. Infect Immun 2016; 84:1842-1856. [PMID: 27068090 DOI: 10.1128/iai.00193-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/03/2016] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization-time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO(-)]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi.
Collapse
|
10
|
Bargul JL, Jung J, McOdimba FA, Omogo CO, Adung’a VO, Krüger T, Masiga DK, Engstler M. Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host. PLoS Pathog 2016; 12:e1005448. [PMID: 26871910 PMCID: PMC4752354 DOI: 10.1371/journal.ppat.1005448] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/20/2016] [Indexed: 11/24/2022] Open
Abstract
African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate's incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the 'cellular waveform'. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites.
Collapse
Affiliation(s)
- Joel L. Bargul
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and technology, Nairobi, Kenya
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Jamin Jung
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Francis A. McOdimba
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Collins O. Omogo
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Vincent O. Adung’a
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Timothy Krüger
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Daniel K. Masiga
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Markus Engstler
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
11
|
Generation of a nanobody targeting the paraflagellar rod protein of trypanosomes. PLoS One 2014; 9:e115893. [PMID: 25551637 PMCID: PMC4281110 DOI: 10.1371/journal.pone.0115893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022] Open
Abstract
Trypanosomes are protozoan parasites that cause diseases in humans and livestock for which no vaccines are available. Disease eradication requires sensitive diagnostic tools and efficient treatment strategies. Immunodiagnostics based on antigen detection are preferable to antibody detection because the latter cannot differentiate between active infection and cure. Classical monoclonal antibodies are inaccessible to cryptic epitopes (based on their size-150 kDa), costly to produce and require cold chain maintenance, a condition that is difficult to achieve in trypanosomiasis endemic regions, which are mostly rural. Nanobodies are recombinant, heat-stable, small-sized (15 kDa), antigen-specific, single-domain, variable fragments derived from heavy chain-only antibodies in camelids. Because of numerous advantages over classical antibodies, we investigated the use of nanobodies for the targeting of trypanosome-specific antigens and diagnostic potential. An alpaca was immunized using lysates of Trypanosoma evansi. Using phage display and bio-panning techniques, a cross-reactive nanobody (Nb392) targeting all trypanosome species and isolates tested was selected. Imunoblotting, immunofluorescence microscopy, immunoprecipitation and mass spectrometry assays were combined to identify the target recognized. Nb392 targets paraflagellar rod protein (PFR1) of T. evansi, T. brucei, T. congolense and T. vivax. Two different RNAi mutants with defective PFR assembly (PFR2RNAi and KIF9BRNAi) were used to confirm its specificity. In conclusion, using a complex protein mixture for alpaca immunization, we generated a highly specific nanobody (Nb392) that targets a conserved trypanosome protein, i.e., PFR1 in the flagella of trypanosomes. Nb392 is an excellent marker for the PFR and can be useful in the diagnosis of trypanosomiasis. In addition, as demonstrated, Nb392 can be a useful research or PFR protein isolation tool.
Collapse
|
12
|
Rotureau B, Ooi CP, Huet D, Perrot S, Bastin P. Forward motility is essential for trypanosome infection in the tsetse fly. Cell Microbiol 2013; 16:425-33. [PMID: 24134537 DOI: 10.1111/cmi.12230] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
African trypanosomes are flagellated protozoan parasites transmitted by the bite of tsetse flies and responsible for sleeping sickness in humans. Their complex development in the tsetse digestive tract requires several differentiation and migration steps that are thought to rely on trypanosome motility. We used a functional approach in vivo to demonstrate that motility impairment prevents trypanosomes from developing in their vector. Deletion of the outer dynein arm component DNAI1 results in strong motility defects but cells remain viable in culture. However, although these mutant trypanosomes could infect the tsetse fly midgut, they were neither able to reach the foregut nor able to differentiate into the next stage, thus failing to complete their parasite cycle. This is the first in vivo demonstration that trypanosome motility is essential for the accomplishment of the parasite cycle.
Collapse
Affiliation(s)
- Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur & CNRS, URA 2581, 25, rue du Docteur Roux, 75015, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Lott K, Li J, Fisk JC, Wang H, Aletta JM, Qu J, Read LK. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. J Proteomics 2013; 91:210-25. [PMID: 23872088 PMCID: PMC3935770 DOI: 10.1016/j.jprot.2013.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022]
Abstract
Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of Trypanosoma brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. BIOLOGICAL SIGNIFICANCE T. brucei is a protozoan parasite that causes lethal African sleeping sickness in humans and nagana in livestock, thereby imposing a significant medical and economic burden on sub-Saharan Africa. The parasite encounters very different environments as it cycles between mammalian and insect hosts, and must exert cellular responses to these varying milieus. One mechanism by which all cells respond to changing environments is through posttranslational modification of proteins. Arginine methylation is one such modification that can dramatically impact protein-protein and protein-nucleic acid interactions and subcellular localization of proteins. To define the breadth of arginine methylation in trypanosomes and identify target proteins, we performed a global proteomic analysis of arginine methylated proteins in insect stage T. brucei. We identified 1332 methylarginines in 676 proteins, generating the largest compilation of methylarginine containing proteins in any organism to date. Numerous arginine methylated proteins function in RNA and DNA related processes, suggesting this modification can impact T. brucei genome integrity and gene regulation at numerous points. Other processes that appear to be strongly influenced by arginine methylation are intracellular protein trafficking, signaling, protein folding and degradation, and flagellar function. The widespread nature of arginine methylation in trypanosomes highlights its potential to greatly affect parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hao Wang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - John M. Aletta
- CH3 BioSystems, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States of America
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
14
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
15
|
Ginger ML, Collingridge PW, Brown RWB, Sproat R, Shaw MK, Gull K. Calmodulin is required for paraflagellar rod assembly and flagellum-cell body attachment in trypanosomes. Protist 2013; 164:528-40. [PMID: 23787017 DOI: 10.1016/j.protis.2013.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023]
Abstract
In the flagellum of the African sleeping sickness parasite Trypanosoma brucei calmodulin (CaM) is found within the paraflagellar rod (PFR), an elaborate extra-axonemal structure, and the axoneme. In dissecting mechanisms of motility regulation we analysed CaM function using RNAi. Unexpectedly CaM depletion resulted in total and catastrophic failure in PFR assembly; even connections linking axoneme to PFR failed to form following CaM depletion. This provides an intriguing parallel with the role in the green alga Chlamydomonas of a CaM-related protein in docking outer-dynein arms to axoneme outer-doublet microtubules. Absence of CaM had no discernible effect on axoneme assembly, but the failure in PFR assembly was further compounded by loss of the normal linkage between PFR and axoneme to the flagellum attachment zone of the cell body. Thus, flagellum detachment was a secondary, time-dependent consequence of CaM RNAi, and coincided with the loss of normal trypomastigote morphology, thereby linking the presence of PFR architecture with maintenance of cell form, as well as cell motility. Finally, wider comparison between the flagellum detachment phenotypes of RNAi mutants for CaM and the FLA1 glycoprotein potentially provides new perspective into the function of the latter into establishing and maintaining flagellum-cell body attachment.
Collapse
Affiliation(s)
- Michael L Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Rotureau B, Blisnick T, Subota I, Julkowska D, Cayet N, Perrot S, Bastin P. Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures present in the flagellum and in the cell body. J Cell Sci 2013; 127:204-15. [DOI: 10.1242/jcs.136424] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Trypanosoma brucei flagellum is an essential organelle anchored along the surface of the cell body via a specialized structure called the flagellum attachment zone (FAZ). Adhesion relies on the interaction of the extracellular portion of two transmembrane proteins termed FLA1 and FLA1BP. Analysis of the flagellum proteome identified FLAM3, a novel large protein associated to the flagellum skeleton whose ablation inhibits flagellum attachment. FLAM3 does not contain transmembrane domains and its flagellar localization matches closely but not exactly with that of the paraflagellar rod, an extra-axonemal structure present in the flagellum. Knockdown of FLA1 or FLAM3 triggers similar motility and morphogenesis defects, characterized by the assembly of a drastically reduced FAZ filament. FLAM3 remains associated to the flagellum skeleton even in the absence of adhesion or of a normal paraflagellar rod. However, the protein is dispersed in the cytoplasm when flagellum formation is inhibited. By contrast, FLA1 remains tightly associated to the FAZ filament even in the absence of a flagellum. In these conditions, the extracellular domain of FLA1 points to the cell surface. FLAM3 turns out to be essential for proper distribution of FLA1BP that is restricted to the very proximal portion of the flagellum upon FLAM3 knockdown. We propose that FLAM3 is a key component of the FAZ connectors that appear to link the axoneme to the adhesion zone, hence acting in an equivalent manner to the FAZ filament complex, but on the flagellum side.
Collapse
|
17
|
Heddergott N, Krüger T, Babu SB, Wei A, Stellamanns E, Uppaluri S, Pfohl T, Stark H, Engstler M. Trypanosome motion represents an adaptation to the crowded environment of the vertebrate bloodstream. PLoS Pathog 2012; 8:e1003023. [PMID: 23166495 PMCID: PMC3499580 DOI: 10.1371/journal.ppat.1003023] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy.
Collapse
Affiliation(s)
- Niko Heddergott
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sujin B. Babu
- Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany
- Physics Department, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, Rajasthan, India
| | - Ai Wei
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erik Stellamanns
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Sravanti Uppaluri
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Thomas Pfohl
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Abstract
The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with most nutrient uptake occurring in the privileged location of the flagellar pocket. In addition, trypanosomes show extremely high rates of recycling of a protective VSG (variant surface glycoprotein) coat, whereby host antibodies are stripped off of the VSG before it is re-used. VSG recycling therefore functions as a mechanism for cleaning the VSG coat, allowing trypanosomes to survive in low titres of anti-VSG antibodies. Lastly, T. brucei has developed an extremely sophisticated strategy of antigenic variation of its VSG coat allowing it to evade host antibodies. A single trypanosome has more than 1500 VSG genes, most of which are located in extensive silent arrays. Strikingly, most of these silent VSGs are pseudogenes, and we are still in the process of trying to understand how non-intact VSGs are recombined to produce genes encoding functional coats. Only one VSG is expressed at a time from one of approximately 15 telomeric VSG ES (expression site) transcription units. It is becoming increasingly clear that chromatin remodelling must play a critical role in ES control. Hopefully, a better understanding of these unique trypanosome adaptations will eventually allow us to disrupt their ability to multiply in the mammalian bloodstream.
Collapse
|
19
|
Höög JL, Bouchet-Marquis C, McIntosh JR, Hoenger A, Gull K. Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol 2012; 178:189-98. [PMID: 22285651 PMCID: PMC3355306 DOI: 10.1016/j.jsb.2012.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/19/2022]
Abstract
Trypanosoma brucei is a uni-cellular protist that causes African sleeping sickness. These parasites have a flagellum that is attached to the cell body and is indispensible for its motility. The flagellum consists of a canonical 9+2 axoneme and a paraflagellar rod (PFR), an intricate tripartite, fibrous structure that is connected to the axoneme. In this paper we describe results from cryo-electron tomography of unperturbed flagella. This method revealed novel structures that are likely involved in attaching the flagellum to the cell. We also show the first cryo-electron tomographic images of a basal body in situ, revealing electron dense structures inside its triplet microtubules. Sub-tomogram averaging of the PFR revealed that its distal region is organized as an orthorhombic crystal.
Collapse
Affiliation(s)
- Johanna L Höög
- The Boulder Laboratory for 3-D Electron Microscopy of Cells, MCD-Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Hughes LC, Ralston KS, Hill KL, Zhou ZH. Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One 2012; 7:e25700. [PMID: 22235240 PMCID: PMC3250385 DOI: 10.1371/journal.pone.0025700] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/08/2011] [Indexed: 11/30/2022] Open
Abstract
Flagellum motility is critical for normal human development and for transmission of pathogenic protozoa that cause tremendous human suffering worldwide. Biophysical principles underlying motility of eukaryotic flagella are conserved from protists to vertebrates. However, individual cells exhibit diverse waveforms that depend on cell-specific elaborations on basic flagellum architecture. Trypanosoma brucei is a uniflagellated protozoan parasite that causes African sleeping sickness. The T. brucei flagellum is comprised of a 9+2 axoneme and an extra-axonemal paraflagellar rod (PFR), but the three-dimensional (3D) arrangement of the underlying structural units is poorly defined. Here, we use dual-axis electron tomography to determine the 3D architecture of the T. brucei flagellum. We define the T. brucei axonemal repeating unit. We observe direct connections between the PFR and axonemal dyneins, suggesting a mechanism by which mechanochemical signals may be transmitted from the PFR to axonemal dyneins. We find that the PFR itself is comprised of overlapping laths organized into distinct zones that are connected through twisting elements at the zonal interfaces. The overall structure has an underlying 57nm repeating unit. Biomechanical properties inferred from PFR structure lead us to propose that the PFR functions as a biomechanical spring that may store and transmit energy derived from axonemal beating. These findings provide insight into the structural foundations that underlie the distinctive flagellar waveform that is a hallmark of T. brucei cell motility.
Collapse
Affiliation(s)
- Louise C. Hughes
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Katherine S. Ralston
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (ZZ); (KH)
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (ZZ); (KH)
| |
Collapse
|
22
|
Lacomble S, Vaughan S, Deghelt M, Moreira-Leite FF, Gull K. A Trypanosoma brucei protein required for maintenance of the flagellum attachment zone and flagellar pocket ER domains. Protist 2011; 163:602-15. [PMID: 22186015 PMCID: PMC3405529 DOI: 10.1016/j.protis.2011.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the ‘FAZ ER’. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.
Collapse
Affiliation(s)
- Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Gadelha C, Holden JM, Allison HC, Field MC. Specializations in a successful parasite: what makes the bloodstream-form African trypanosome so deadly? Mol Biochem Parasitol 2011; 179:51-8. [PMID: 21763356 DOI: 10.1016/j.molbiopara.2011.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/24/2022]
Abstract
Most trypanosomatid parasites have both arthropod and mammalian or plant hosts, and the ability to survive and complete a developmental program in each of these very different environments is essential for life cycle progression and hence being a successful pathogen. For African trypanosomes, where the mammalian stage is exclusively extracellular, this presents specific challenges and requires evasion of both the acquired and innate immune systems, together with adaptation to a specific nutritional environment and resistance to mechanical and biochemical stresses. Here we consider the basis for these adaptations, the specific features of the mammalian infective trypanosome that are required to meet these challenges, and how these processes both inform on basic parasite biology and present potential therapeutic targets.
Collapse
|
24
|
Vincensini L, Blisnick T, Bastin P. [The importance of model organisms to study cilia and flagella biology]. Biol Aujourdhui 2011; 205:5-28. [PMID: 21501571 DOI: 10.1051/jbio/2011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 12/24/2022]
Abstract
Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.
Collapse
Affiliation(s)
- Laetitia Vincensini
- Unité de Biologie Cellulaire des Trypanosomes, Institut Pasteur et CNRS URA 2581, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
25
|
Abstract
African trypanosomes are evolutionary-divergent eukaryotes responsible for sleeping sickness. They duplicate their single flagellum while maintaining the old one, providing a unique model to examine mature and elongating flagella in the same cell. Like in most eukaryotes, the trypanosome flagellum is constructed by addition of novel subunits at its distal end via the action of intraflagellar transport (IFT). Almost all genes encoding IFT proteins and motors are conserved in trypanosomes and related species, with only a few exceptions. A dozen of IFT genes have been functionally investigated in this organism, thanks to the potent reverse genetic tools available. Several alternative techniques to trigger RNAi are accessible, either transient RNAi by transfection of long double-stranded RNA or by generation of clonal cell lines able to express long double-stranded RNA under the control of tetracycline-inducible promoters. In addition, we provide a series of techniques to investigate cellular phenotypes in trypanosomes where expression of IFT genes has been silenced. In this chapter, we describe different methods for tagging and expression of IFT proteins in trypanosomes and for visualizing IFT in live cells.
Collapse
|
26
|
A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One 2009; 4:e7685. [PMID: 19888464 PMCID: PMC2766642 DOI: 10.1371/journal.pone.0007685] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/12/2009] [Indexed: 11/19/2022] Open
Abstract
We have conducted a protein interaction study of components within a specific sub-compartment of a eukaryotic flagellum. The trypanosome flagellum contains a para-crystalline extra-axonemal structure termed the paraflagellar rod (PFR) with around forty identified components. We have used a Gateway cloning approach coupled with yeast two-hybrid, RNAi and 2D DiGE to define a protein-protein interaction network taking place in this structure. We define two clusters of interactions; the first being characterised by two proteins with a shared domain which is not sufficient for maintaining the interaction. The other cohort is populated by eight proteins, a number of which possess a PFR domain and sub-populations of this network exhibit dependency relationships. Finally, we provide clues as to the structural organisation of the PFR at the molecular level. This multi-strand approach shows that protein interactome data can be generated for insoluble protein complexes.
Collapse
|
27
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
28
|
Morriswood B, He CY, Sealey-Cardona M, Yelinek J, Pypaert M, Warren G. The bilobe structure of Trypanosoma brucei contains a MORN-repeat protein. Mol Biochem Parasitol 2009; 167:95-103. [PMID: 19445968 DOI: 10.1016/j.molbiopara.2009.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/16/2022]
Abstract
The Golgi of the kinetoplastid parasite Trypanosoma brucei is closely apposed to a bilobe structure containing TbCentrin2 and TbCentrin4 in procyclic cells. However, both are additionally localized to the basal bodies. Here we report the characterization of a membrane occupation and recognition nexus (MORN)-repeat protein, TbMORN1, present at the bilobe but not at the basal body. The anterior part of the TbMORN1 structure partially overlapped with the flagellar attachment zone while the posterior part overlapped with the flagellar pocket. Depletion studies using RNAi showed that there was a modest growth inhibition in procyclic cells but lethality in bloodstream cells, showing that it is an essential protein in the bloodstream form of the organism. TbMORN1 appears to be a useful marker for the bilobe in T. brucei.
Collapse
Affiliation(s)
- Brooke Morriswood
- Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Farr H, Gull K. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. ACTA ACUST UNITED AC 2009; 66:24-35. [PMID: 19009637 DOI: 10.1002/cm.20322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cilia and flagella are highly conserved structures composed of a canonical 9+2 microtubule axoneme. Several recent proteomic studies of cilia and flagella have been published, including a proteome of the flagellum of the protozoan parasite Trypanosoma brucei. Comparing proteomes reveals many novel proteins that appear to be widely conserved in evolution. Amongst these, we found a previously uncharacterised protein which localised to the axoneme in T. brucei, and therefore named it Trypanosome Axonemal protein (TAX)-2. Ablation of the protein using RNA interference in the procyclic form of the parasite has no effect on growth but causes a reduction in motility. Using transmission electron microscopy, various structural defects were seen in some axonemes, most frequently with microtubule doublets missing from the 9+2 arrangement. RNAi knockdown of TAX-2 expression in the bloodstream form of the parasite caused defects in growth and cytokinesis, a further example of the effects caused by loss of flagellar function in bloodstream form T. brucei. In procyclic cells we used a new set of vectors to ablate protein expression in cells expressing a GFP:TAX-2 fusion protein, which enabled us to easily quantify protein reduction and visualise axonemes made before and after RNAi induction. This establishes a useful generic technique but also revealed a specific observation that the new flagellum on the daughter trypanosome continues growth after cytokinesis. Our results provide evidence for TAX-2 function within the axoneme, where we suggest that it is involved in processes linking the outer doublet microtubules and the central pair.
Collapse
Affiliation(s)
- Helen Farr
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | | |
Collapse
|
30
|
Portman N, Lacomble S, Thomas B, McKean PG, Gull K. Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 2009; 284:5610-9. [PMID: 19074134 PMCID: PMC2645819 DOI: 10.1074/jbc.m808859200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic flagella from organisms such as Trypanosoma brucei can be isolated and their protein components identified by mass spectrometry. Here we used a comparative approach utilizing two-dimensional difference gel electrophoresis and isobaric tags for relative and absolute quantitation to reveal protein components of flagellar structures via ablation by inducible RNA interference mutation. By this approach we identified 20 novel components of the paraflagellar rod (PFR). Using epitope tagging we validated a subset of these as being present within the PFR by immunofluorescence. Bioinformatic analysis of the PFR cohort reveals a likely calcium/calmodulin regulatory/signaling linkage between some components. We extended the RNA interference mutant/comparative proteomic analysis to individual novel components of our PFR proteome, showing that the approach has the power to reveal dependences between subgroups within the cohort.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatography, Liquid
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Flagella/genetics
- Flagella/metabolism
- Fluorescent Antibody Technique
- Proteomics
- Protozoan Proteins/antagonists & inhibitors
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Interference
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Ralston KS, Kabututu ZP, Melehani JH, Oberholzer M, Hill KL. The Trypanosoma brucei flagellum: moving parasites in new directions. Annu Rev Microbiol 2009; 63:335-62. [PMID: 19575562 PMCID: PMC3821760 DOI: 10.1146/annurev.micro.091208.073353] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
African trypanosomes are devastating human and animal pathogens. Trypanosoma brucei rhodesiense and T. b. gambiense subspecies cause the fatal human disease known as African sleeping sickness. It is estimated that several hundred thousand new infections occur annually and the disease is fatal if untreated. T. brucei is transmitted by the tsetse fly and alternates between bloodstream-form and insect-form life cycle stages that are adapted to survive in the mammalian host and the insect vector, respectively. The importance of the flagellum for parasite motility and attachment to the tsetse fly salivary gland epithelium has been appreciated for many years. Recent studies have revealed both conserved and novel features of T. brucei flagellum structure and composition, as well as surprising new functions that are outlined here. These discoveries are important from the standpoint of understanding trypanosome biology and identifying novel drug targets, as well as for advancing our understanding of fundamental aspects of eukaryotic flagellum structure and function.
Collapse
Affiliation(s)
- Katherine S. Ralston
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Zakayi P. Kabututu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Jason H. Melehani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
32
|
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
|
33
|
Ralston KS, Hill KL. The flagellum of Trypanosoma brucei: new tricks from an old dog. Int J Parasitol 2008; 38:869-84. [PMID: 18472102 DOI: 10.1016/j.ijpara.2008.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/30/2022]
Abstract
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. T. brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Therefore, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9+2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
34
|
Mansfield JM, Paulnock DM. Genetic manipulation of African trypanosomes as a tool to dissect the immunobiology of infection. Parasite Immunol 2008; 30:245-53. [PMID: 18208450 DOI: 10.1111/j.1365-3024.2007.01003.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The variant surface glycoprotein (VSG) coat of African trypanosomes exhibits immunobiological functions distinct from its prominent role as a variant surface antigen. In order to address questions regarding immune stealth effects of VSG switch-variant coats, and the innate immune system activating effects of shed VSG substituents, several groups have genetically modified the ability of trypanosomes to express or release VSG during infection of the mammalian host. The role of mosaic surface coats expressed by VSG switch-variants (VSG double-expressors) in escaping early immune detection, and the role of VSG glycosylphosphatidylinositol (GPI) anchor substituents in regulating host immunity have been revealed, respectively, by stable co-expression of an exogenous VSG gene in trypanosomes expressing an endogenous VSG gene, and by knocking out the genetic locus for GPI-phospholipase C (PLC) that releases VSG from the membrane. Both approaches to genetic modification of African trypanosomes have suggested interesting and unexpected immunobiological effects associated with surface coat molecules.
Collapse
Affiliation(s)
- J M Mansfield
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
35
|
Hammarton TC, Monnerat S, Mottram JC. Cytokinesis in trypanosomatids. Curr Opin Microbiol 2007; 10:520-7. [PMID: 18023244 DOI: 10.1016/j.mib.2007.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/15/2022]
Abstract
The process of cytokinesis, where the cytoplasm of one cell is divided to produce two daughter cells, is intricate in trypanosomatids because of the requirement to replicate and segregate a number of single copy organelles, including the nucleus, kinetoplast, Golgi apparatus, and flagellum. Identifying regulators of the three stages of cytokinesis, initiation, furrow ingression, and abscission is complicated by the fact that cell division in trypanosomatids is easily perturbed and aberrant cells are readily produced during functional characterization of gene products. In this review, we discuss direct and indirect effects on cytokinesis, using Trypanosoma brucei as a model.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| | | | | |
Collapse
|