1
|
Golestannejad Z, Dehghan P, Najafizade N, Kheirkhah M, Bafrani ME, Tabesh A, Nadian F, Khozeimeh F. Antifungal effect of atorvastatin in comparison with fluconazole on Candida species isolated from patients undergoing head-and-neck radiotherapy. Dent Res J (Isfahan) 2024; 21:68. [PMID: 39802811 PMCID: PMC11722742 DOI: 10.4103/drj.drj_550_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2025] Open
Abstract
Background Head-and-neck radiotherapy can change oral Candida species and lead to the development of refractory oral candidiasis resistant to the commonly prescribed antifungal medications such as fluconazole. Atorvastatin exerts an antifungal effect by inhibiting the synthesis of fungal wall ergosterol and impairing mitochondrial function. This study aimed to compare the antifungal effects of fluconazole and atorvastatin on Candida species isolated from patients undergoing head-and-neck radiotherapy. Materials and Methods In this clinical in vitro study, swab samples were collected from 33 patients admitted to Isfahan Seyed-O-Shohada Hospital before the onset and 2 weeks after the initiation of radiotherapy. The antifungal effects of fluconazole and atorvastatin were evaluated by the microdilution test according to the Clinical and Laboratory Standards Institute standards, and measuring their minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). Data were analyzed by the Mann-Whitney U-test and the statistical significance level was considered P < 0.05. Results The results showed that the MIC24, MIC48, and MFC of fluconazole were significantly lower than those of atorvastatin for Candida albicans, Candida tropicalis, and Candida glabrata both before (P < 0.001 for all) and during (P < 0.001 to P = 0.003) radiotherapy. Conclusion According to the results, fluconazole has antifungal effects comparable to those of atorvastatin, but in much lower doses. Atorvastatin showed optimal antifungal effects but in doses beyond the clinically applicable threshold.
Collapse
Affiliation(s)
- Zahra Golestannejad
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Dehghan
- Department of Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nadia Najafizade
- Department of Radiation Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Kheirkhah
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Emami Bafrani
- Dental Students’ Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Tabesh
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshad Nadian
- Department of Prosthodontics, School of Dentistry, Shahre Kord University of Medical Sciences, Shahre Kord, Iran
| | - Faezeh Khozeimeh
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Soll DR. White-opaque switching in Candida albicans: cell biology, regulation, and function. Microbiol Mol Biol Rev 2024; 88:e0004322. [PMID: 38546228 PMCID: PMC11332339 DOI: 10.1128/mmbr.00043-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYCandida albicans remains a major fungal pathogen colonizing humans and opportunistically invading tissue when conditions are predisposing. Part of the success of C. albicans was attributed to its capacity to form hyphae that facilitate tissue invasion. However, in 1987, a second developmental program was discovered, the "white-opaque transition," a high-frequency reversible switching system that impacted most aspects of the physiology, cell architecture, virulence, and gene expression of C. albicans. For the 15 years following the discovery of white-opaque switching, its role in the biology of C. albicans remained elusive. Then in 2002, it was discovered that in order to mate, C. albicans had to switch from white to opaque, a unique step in a yeast mating program. In 2006, three laboratories simultaneously identified a putative master switch gene, which led to a major quest to elucidate the underlying mechanisms that regulate white-opaque switching. Here, the evolving discoveries related to this complicated phenotypic transition are reviewed in a quasi-chronological order not only to provide a historical perspective but also to highlight several unique characteristics of white-opaque switching, which are fascinating and may be important to the life history and virulence of this persistent pathogen. Many of these characteristics have not been fully investigated, in many cases, leaving intriguing questions unresolved. Some of these include the function of unique channeled pimples on the opaque cell wall, the capacity to form opaque cells in the absence of the master switch gene WOR1, the formation of separate "pathogenic" and "sexual" biofilms, and the possibility that a significant portion of natural strains colonizing the lower gastrointestinal tract may be in the opaque phase. This review addresses many of these characteristics with the intent of engendering interest in resolving questions that remain unanswered.
Collapse
Affiliation(s)
- David R. Soll
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Chadwick BJ, Lin X. Effects of CO 2 in fungi. Curr Opin Microbiol 2024; 79:102488. [PMID: 38759247 PMCID: PMC11162916 DOI: 10.1016/j.mib.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO2 is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO2. Different organisms can tolerate different CO2 levels to various degrees, and experiencing higher CO2 is toxic and can lead to death. The fungal kingdom shows great variations in response to CO2 that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO2, and emphasize the effects of CO2 on fungal metabolism and morphogenesis.
Collapse
Affiliation(s)
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Yang SZ, Peng LT. Significance of the plasma membrane H +-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:31-53. [PMID: 37597947 DOI: 10.1016/bs.aambs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
Collapse
Affiliation(s)
- S Z Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.
| | - L T Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
6
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Le Bars P, Kouadio AA, Bandiaky ON, Le Guéhennec L, de La Cochetière MF. Host's Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms 2022; 10:microorganisms10071437. [PMID: 35889156 PMCID: PMC9323190 DOI: 10.3390/microorganisms10071437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Denture-related Candida stomatitis, which has been described clinically in the literature, is either localized or generalized inflammation of the oral mucosa in connection with a removable prosthesis. During this inflammatory process, the mycobacterial biofilm and the host’s immune response play an essential role. Among microorganisms of this mixed biofilm, the Candida species proliferates easily and changes from a commensal to an opportunistic pathogen. In this situation, the relationship between the Candida spp. and the host is influenced by the presence of the denture and conditioned both by the immune response and the oral microbiota. Specifically, this fungus is able to hijack the innate immune system of its host to cause infection. Additionally, older edentulous wearers of dentures may experience an imbalanced and decreased oral microbiome diversity. Under these conditions, the immune deficiency of these aging patients often promotes the spread of commensals and pathogens. The present narrative review aimed to analyze the innate and adaptive immune responses of patients with denture stomatitis and more particularly the involvement of Candida albicans sp. associated with this pathology.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Correspondence: authors:
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Octave Nadile Bandiaky
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Marie-France de La Cochetière
- EA 3826 Thérapeutiques Cliniques Et expérimentales des Infections, Faculté de Médecine, CHU Hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France;
| |
Collapse
|
8
|
Costa ACBP, Omran RP, Law C, Dumeaux V, Whiteway M. Signal-mediated localization of Candida albicans pheromone response pathway components. G3-GENES GENOMES GENETICS 2021; 11:6033596. [PMID: 33793759 PMCID: PMC8022970 DOI: 10.1093/g3journal/jkaa033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
A MAPK cascade consists of three kinases, (MEKK, MEK and MAPK), that are sequentially activated in response to a stimulus and serve to transmit signals. In C. albicans and in yeast, an MAPK cascade is linked to the pheromone pathway through a scaffold protein (Cst5 and Ste5, respectively). Cst5 is much shorter and lacks key domains compared to Ste5, so in C. albicans, other elements, in particular the MEKK Ste11, play key roles in controlling the associations and localizations of network components. Abstract Candida albicans opaque cells release pheromones to stimulate cells of opposite mating type to activate their pheromone response pathway. Although this fungal pathogen shares orthologous proteins involved in the process with Saccharomyces cerevisiae, the pathway in each organism has unique characteristics. We have used GFP-tagged fusion proteins to investigate the localization of the scaffold protein Cst5, as well as the MAP kinases Cek1 and Cek2, during pheromone response in C. albicans. In wild-type cells, pheromone treatment directed Cst5-GFP to surface puncta concentrated at the tips of mating projections. These puncta failed to form in cells defective in either the Gα or β subunits. However, they still formed in response to pheromone in cells missing Ste11, but with the puncta distributed around the cell periphery in the absence of mating projections. These puncta were absent from hst7Δ/Δ cells, but could be detected in the ste11Δ/Δ hst7Δ/Δ double mutant. Cek2-GFP showed a strong nuclear localization late in the response, consistent with a role in adaptation, while Cek1-GFP showed a weaker, but early increase in nuclear localization after pheromone treatment. Activation loop phosphorylation of both Cek1 and Cek2 required the presence of Ste11. In contrast to Cek2-GFP, which showed no localization signal in ste11Δ/Δ cells, Cek1-GFP showed enhanced nuclear localization that was pheromone independent in the ste11Δ/Δ mutant. The results are consistent with CaSte11 facilitating Hst7-mediated MAP kinase phosphorylation and also playing a potentially critical role in both MAP kinase and Cst5 scaffold localization.
Collapse
Affiliation(s)
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Vanessa Dumeaux
- PERFORM Centre, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
9
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
10
|
Li B, Chen Y, Tian S. Function of pH-dependent transcription factor PacC in regulating development, pathogenicity, and mycotoxin biosynthesis of phytopathogenic fungi. FEBS J 2021; 289:1723-1730. [PMID: 33751796 DOI: 10.1111/febs.15808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
pH, as one of the most important environmental factors, affects various biological processes in pathogenic fungi. Sensing and responding to fluctuations in ambient pH are essential for these fungi to complete their life cycle. Fungi have evolved a complicated and conserved system, the so-called Pal-pH pathway, to regulate genes and adapt to alterations in ambient pH. PacC is the dominant transcription factor in the Pal-pH pathway and regulates various biological processes. The regulatory mode of PacC has been extensively studied in Aspergillus nidulans and is generally conserved in other fungal species, including numerous phytopathogenic fungi. However, species-specific alterations have been reported. This review summarizes recent advances in the regulatory mechanisms of PacC and its role in controlling development, pathogenicity, and mycotoxin biosynthesis in phytopathogenic fungi. Potential applications of these findings and some unresolved questions are also discussed.
Collapse
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Zheng Q, Guan G, Cao C, Li Q, Huang G. The PHO pathway regulates white-opaque switching and sexual mating in the human fungal pathogen Candida albicans. Curr Genet 2020; 66:1155-1162. [PMID: 32761264 DOI: 10.1007/s00294-020-01100-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is able to switch among several morphological phenotypes in response to environmental changes. White-opaque transition is a typical phenotypic switching system involved in the regulation of pathogenesis and sexual reproduction in C. albicans. Under regular laboratory culture conditions, to undergo white-to-opaque switching, cells must first undergo homozygosis at the mating-type locus (MTLa/a or α/α) since the a1/α2 heterodimer represses the expression of the Wor1 master regulator of switching in MTLa/α heterozygous strains. In this study, we report the roles of the PHO pathway of phosphate metabolism in the regulation of white-opaque switching and sexual mating in C. albicans. We find that deletion of the PHO pathway genes PHO81, PHO80, PHO2, and PHO4 induces the opaque phenotype in MTLa/α heterozygous cells. Low concentrations of external phosphate are conducive for the opaque phenotype in both MTL homozygous and heterozygous strains. Moreover, phosphate starvation can also increase the mating efficiency in C. albicans. Consistently, the pho80/pho80 mutant mimics an artificial phosphate starvation state and mates efficiently at both lower and higher phosphate concentrations. Our study establishes a link between the PHO pathway and white-opaque epigenetic switching in C. albicans.
Collapse
Affiliation(s)
- Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjun Cao
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
12
|
A Set of Diverse Genes Influence the Frequency of White-Opaque Switching in Candida albicans. G3-GENES GENOMES GENETICS 2020; 10:2593-2600. [PMID: 32487674 PMCID: PMC7407467 DOI: 10.1534/g3.120.401249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fungal species Candida albicans is both a member of the human microbiome and a fungal pathogen. C. albicans undergoes several different morphological transitions, including one called white-opaque switching. Here, cells reversibly switch between two states, “white” and “opaque,” and each state is heritable through many cell generations. Each cell type has a distinct cellular and colony morphology and they differ in many other properties including mating, nutritional specialization, and interactions with the innate immune system. Previous genetic screens to gain insight into white-opaque switching have focused on certain classes of genes (for example transcriptional regulators or chromatin modifying enzymes). In this paper, we examined 172 deletion mutants covering a broad range of cell functions. We identified 28 deletion mutants with at least a fivefold effect on switching frequencies; these cover a wide variety of functions ranging from membrane sensors to kinases to proteins of unknown function. In agreement with previous reports, we found that components of the pheromone signaling cascade affect white-to-opaque switching; however, our results suggest that the major effect of Cek1 on white-opaque switching occurs through the cell wall damage response pathway. Most of the genes we identified have not been previously implicated in white-opaque switching and serve as entry points to understand new aspects of this morphological transition.
Collapse
|
13
|
Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. Candida and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020; 8:microorganisms8060857. [PMID: 32517179 PMCID: PMC7355540 DOI: 10.3390/microorganisms8060857] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most important questions in microbiology nowadays, is how apparently harmless, commensal yeasts like Candida spp. can cause a rising number of infections. The occurrence of the disease requires firstly the attachment to the host cells, followed by the invasion of the tissue. The adaptability translates into a rapid ability to respond to stress factors, to take up nutrients or to multiply under different conditions. By forming complex intracellular networks such as biofilms, Candida spp. become not only more refractive to antifungal therapies but also more prone to cause disease. The inter-microbial interactions can enhance the virulence of a strain. In vivo, the fungal cells face a multitude of challenges and, as a result, they develop complex strategies serving one ultimate goal: survival. This review presents the virulence factors of the most important Candida spp., contributing to a better understanding of the onset of candidiasis and raising awareness of the highly complex interspecies interactions that can change the outcome of the disease.
Collapse
Affiliation(s)
- Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Correspondence:
| | - Irina-Bianca Kosovski
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Physiopathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| | - Ionela Anca Pintea-Simon
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| |
Collapse
|
14
|
Mba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39:1797-1819. [PMID: 32372128 DOI: 10.1007/s10096-020-03912-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.
Collapse
|
15
|
Cottier F, Hall RA. Face/Off: The Interchangeable Side of Candida Albicans. Front Cell Infect Microbiol 2020; 9:471. [PMID: 32047726 PMCID: PMC6997470 DOI: 10.3389/fcimb.2019.00471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Due to limited mobility, fungi, like most unicellular organisms, have evolved mechanisms to adapt to sudden chemical and/or physical variation in their environment. Candida albicans is recognized as a model organism to study eukaryotic responses to environmental changes, as this human commensal yeast but also opportunistic pathogen responds to numerous environmental cues through switching morphologies from yeast to hyphae growth. This mechanism is largely controlled by two major pathways: cAMP-PKA and MAPK, but each environmental signal is sensed by specific sensors. However, morphological switching is not the only response C. albicans exerts in response to environmental cues. Recently, fungal cell wall remodeling in response to host-derived environmental cues has been identified as a way for C. albicans to manipulate the innate immune system. The fungal cell wall is composed of a chitin skeleton linked to a network of β-glucan, which anchors proteins and mannans to the fungal cell surface. As localized on the cell surface, these molecules drive interactions with the environment and other cells, particularly with host immune cells. C. albicans is recognized by immune cells such as neutrophils and macrophages via pathogen recognition receptors (PRRs) that bind different components of the cell wall. While β-glucan and mannan are proinflammatory molecules, chitin can induce anti-inflammatory responses. Interestingly, C. albicans is able to regulate the exposure of these pathogen-associated molecular patterns (PAMPs) according to environmental cues resulting in a modulation of the host immune response. This review describes the mechanisms involved in C. albicans response to environmental changes and their effect on immune recognition.
Collapse
Affiliation(s)
- Fabien Cottier
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
16
|
Abstract
Candida albicans is a commensal as well as a pathogen of humans. C. albicans is able to mount a cellular response to a diverse range of external stimuli in the host and switch reversibly between the yeast and hyphal growth forms. Hyphal development is a key virulence determinant. Here, we studied how C. albicans senses different environmental signals to control its growth forms. Our study results suggest that robust hyphal development requires downregulation of two transcriptional repressors, Nrg1 and Sfl1. Acidic pH or cationic stress inhibits hyphal formation via stress-responsive kinases and Sfl1. Candida albicans is an important human pathogen responsible for causing both superficial and systemic infections. Its ability to switch from the yeast form to the hyphal growth form is required for its pathogenicity. Acidic pH inhibits hyphal initiation, but the nature of the mechanism for this inhibition is not completely clear. We show that acidic pH represses hyphal initiation independently of the temperature- and farnesol-mediated Nrg1 downregulation. Using a collection of transcription factor deletion mutants, we observed that the sfl1 mutant induced hyphae in acidic pH but not in farnesol at 37°C. Furthermore, transcription of hyphal regulators BRG1 and UME6 was not induced in wild-type (WT) cells but was induced in the sfl1 mutant during hyphal induction in acidic pH. Using the same screening conditions with the collection of kinase mutants, we found that deletions of the core stress response mitogen-activated protein (MAP) kinase HOG1 and its kinase PBS2, the cell wall stress MAP kinase MKC1, and the calcium/calmodulin-dependent kinase CMK1 allowed hyphal initiation in acidic pH. Furthermore, Hog1 phosphorylation induced by high osmotic stress also retarded hyphal initiation, and the effect was abolished in the sfl1 and three kinase mutants but was enhanced in the phosphatase mutant ptp2 ptp3. We also found functional associations among Cmk1, Hog1, and Sfl1 for cation stress. Our study results suggest that robust hyphal initiation requires downregulation of both Nrg1 and Sfl1 transcriptional repressors as well as timely BRG1 expression. Acidic pH and cationic stress retard hyphal initiation via the stress-responsive kinases and Sfl1. IMPORTANCECandida albicans is a commensal as well as a pathogen of humans. C. albicans is able to mount a cellular response to a diverse range of external stimuli in the host and switch reversibly between the yeast and hyphal growth forms. Hyphal development is a key virulence determinant. Here, we studied how C. albicans senses different environmental signals to control its growth forms. Our study results suggest that robust hyphal development requires downregulation of two transcriptional repressors, Nrg1 and Sfl1. Acidic pH or cationic stress inhibits hyphal formation via stress-responsive kinases and Sfl1.
Collapse
|
17
|
Min K, Naseem S, Konopka JB. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J Fungi (Basel) 2019; 6:jof6010008. [PMID: 31878148 PMCID: PMC7151181 DOI: 10.3390/jof6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is being increasingly recognized for its ability to stimulate cell signaling. This amino sugar is best known as a component of cell wall peptidoglycan in bacteria, cell wall chitin in fungi and parasites, exoskeletons of arthropods, and the extracellular matrix of animal cells. In addition to these structural roles, GlcNAc is now known to stimulate morphological and stress responses in a wide range of organisms. In fungi, the model organisms Saccharomyces cerevisiae and Schizosaccharomyces pombe lack the ability to respond to GlcNAc or catabolize it, so studies with the human pathogen Candida albicans have been providing new insights into the ability of GlcNAc to stimulate cellular responses. GlcNAc potently induces C. albicans to transition from budding to filamentous hyphal growth. It also promotes an epigenetic switch from White to Opaque cells, which differ in morphology, metabolism, and virulence properties. These studies have led to new discoveries, such as the identification of the first eukaryotic GlcNAc transporter. Other results have shown that GlcNAc can induce signaling in C. albicans in two ways. One is to act as a signaling molecule independent of its catabolism, and the other is that its catabolism can cause the alkalinization of the extracellular environment, which provides an additional stimulus to form hyphae. GlcNAc also induces the expression of virulence genes in the C. albicans, indicating it can influence pathogenesis. Therefore, this review will describe the recent advances in understanding the role of GlcNAc signaling pathways in regulating C. albicans morphogenesis and virulence.
Collapse
|
18
|
Gong J, Huang Q, Liang W, Wei Y, Huang G. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:463-470. [PMID: 30968937 DOI: 10.1093/abbs/gmz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/29/2022] Open
Abstract
Filamentous development is associated with the ability to cause infections and colonize the host in pathogenic Candida species. Candida tropicalis is one of the major fungal pathogens of humans. The conserved transcriptional repressor Tup1 plays a critical role in the regulation of transcription and filamentation in yeast species. Despite its central role, the full coding sequence of TUP1 has not been found in the reported genome sequence of C. tropicalis to date. In this study, we report the identification of Tup1 and characterize its role in filamentous growth in C. tropicalis. As expected, C. tropicalis Tup1 exhibits general conserved features to the orthologs of other fungi in terms of its structure and function. Deletion of TUP1 in C. tropicalis leads to increased filamentation under several culture conditions. However, Tup1 indeed exhibits species-specific roles in the regulation of filamentous development in C. tropicalis. For example, unlike the tup1/tup1 mutant of Candida albicans, the tup1/tup1 mutant of C. tropicalis is able to exist in the yeast form at low temperatures or in the presence of N-acetylglucosamine (GlcNAc). Acidic pH conditions also favor the yeast form of the tup1/tup1 mutant of C. tropicalis. Quantitative real-time PCR (qRT-PCR) assays indicate that Tup1 may regulate filamentous development through the transcriptional control of key filamentation regulators in C. tropicalis, such as Ume6, Brg1, Wor1, Sfl2, Ahr1, and Zcf3. Taken together, our findings demonstrate both conserved and species-specific roles of Tup1 in the regulation of filamentation and provide novel insights into the biology of C. tropicalis.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Huang
- Dermatology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Weihong Liang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yujia Wei
- Dermatology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Da W, Shao J, Li Q, Shi G, Wang T, Wu D, Wang C. Physical Interaction of Sodium Houttuyfonate With β-1,3-Glucan Evokes Candida albicans Cell Wall Remodeling. Front Microbiol 2019; 10:34. [PMID: 30740095 PMCID: PMC6357593 DOI: 10.3389/fmicb.2019.00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a commonly isolated opportunistic yeast and can endanger immune-compromised human health. As increasingly isolated strains present resistance to currently used antifungals, it is necessary to develop novel antimycotics. In a previous study, sodium houttuyfonate (SH) alone or in combination with fluconazole revealed relatively strong antifungal potential against C. albicans, and the underlying mechanism might be likely to be associated with β-glucan synthesis and transportation (Shao et al., 2017). In the present experiment, we used a standard C. albicans isolate and a phr1 mutant (phr1−/−) to investigate the interaction of SH with β-glucan, one of the critical components in cell wall and biofilm matrix. We showed that lyticase was the most effective enzyme that could significantly increase the antifungal inhibition of SH at 64 μg/mL in C. albicans SC5314 but became futile in phr1−/−. Although the minimum inhibitory concentrations (MICs) of SH were comparable in the two Candida strains used, phr1−/− appeared to be more susceptible to SH compared with C. albicans SC5314 in biofilms (64 versus 512 μg/mL). The peak areas of SH decreased markedly by 71.6, 38.2, and 62.6% in C. albicans SC5314 and by 70% and 53.2% in phr1−/− by ultra-performance liquid chromatography (UPLC) analysis after co-incubation of SH with laminarin, extracellular matrix (EM) and cell wall. The chitin appeared to not interact with SH. We further demonstrated that sub-MIC SH (8 μg/mL) was able to induce cell wall remodeling by unmasking β-1,3-glucan and chitin in both C. albicans SC5314 and phr1−/−. Based on these findings, we propose that β-1,3-glucan can block the entrance of SH through non-specific absorption, and then the fungus senses the interaction of SH with β-1,3-glucan and exposes more β-1,3-glucan that contributes to SH blocking in turn.
Collapse
Affiliation(s)
- Wenyue Da
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
20
|
Huang G, Huang Q, Wei Y, Wang Y, Du H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol 2018; 111:6-16. [PMID: 30299574 DOI: 10.1111/mmi.14148] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 01/15/2023]
Abstract
Candida albicans is a major fungal pathogen of humans, causing both superficial and life-threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast-hyphal transition, white-opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.
Collapse
Affiliation(s)
- Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Huang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yujia Wei
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
21
|
Du H, Zheng Q, Bing J, Bennett RJ, Huang G. A coupled process of same- and opposite-sex mating generates polyploidy and genetic diversity in Candida tropicalis. PLoS Genet 2018; 14:e1007377. [PMID: 29734333 PMCID: PMC5957450 DOI: 10.1371/journal.pgen.1007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Sexual reproduction is a universal mechanism for generating genetic diversity in eukaryotes. Fungi exhibit diverse strategies for sexual reproduction both in nature and in the laboratory. In this study, we report the discovery of same-sex (homothallic) mating in the human fungal pathogen Candida tropicalis. We show that same-sex mating occurs between two cells carrying the same mating type (MTLa/a or α/α) and requires the presence of pheromone from the opposite mating type as well as the receptor for this pheromone. In ménage à trois mating mixes (i.e., “a x a + α helper” or “α x α + a helper” mixes), pheromone secreted by helper strains promotes diploid C. tropicalis cells to undergo same-sex mating and form tetraploid products. Surprisingly, however, the tetraploid mating products can then efficiently mate with cells of the opposite mating type to generate hexaploid products. The unstable hexaploid progeny generated from this coupled process of same- and opposite-sex mating undergo rapid chromosome loss and generate extensive genetic variation. Phenotypic analysis demonstrated that the mating progeny-derived strains exhibit diverse morphologies and phenotypes, including differences in secreted aspartic proteinase (Sap) activity and susceptibility to the antifungal drugs. Thus, the coupling of same- and opposite-sex mating represents a novel mode to generate polyploidy and genetic diversity, which may facilitate the evolution of new traits in C. tropicalis and adaptation to changing environments. The fungal pathogen Candida tropicalis not only lives as a commensal in humans but is also widely distributed in diverse environments. Until recently, C. tropicalis was thought to be an asexual diploid organism. In this study, we report the discovery of same-sex mating and reveal an unusual process in which same- and opposite-sex mating are coupled in this fungus. The coupling process represents a novel mode of mating which produces unstable polyploid products and results in a high level of genetic and phenotypic diversity. This biological process may benefit the adaptation of C. tropicalis to a variety of ecological niches and promotes survival under stressful conditions. Our study expands the repertoire of mating strategies in fungi and sheds new lights on the generation of polyploidy and genomic flexibility.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| | - Qiushi Zheng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Bing
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Sac7 and Rho1 regulate the white-to-opaque switching in Candida albicans. Sci Rep 2018; 8:875. [PMID: 29343748 PMCID: PMC5772354 DOI: 10.1038/s41598-018-19246-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
Candida albicans cells homozygous at the mating-type locus stochastically undergo the white-to-opaque switching to become mating-competent. This switching is regulated by a core circuit of transcription factors organized through interlocking feedback loops around the master regulator Wor1. Although a range of distinct environmental cues is known to induce the switching, the pathways linking the external stimuli to the central control mechanism remains largely unknown. By screening a C. albicans haploid gene-deletion library, we found that SAC7 encoding a GTPase-activating protein of Rho1 is required for the white-to-opaque switching. We demonstrate that Sac7 physically associates with Rho1-GTP and the constitutively active Rho1G18V mutant impairs the white-to-opaque switching while the inactive Rho1D124A mutant promotes it. Overexpressing WOR1 in both sac7Δ/Δ and rho1G18V cells suppresses the switching defect, indicating that the Sac7/Rho1 module acts upstream of Wor1. Furthermore, we provide evidence that Sac7/Rho1 functions in a pathway independent of the Ras/cAMP pathway which has previously been positioned upstream of Wor1. Taken together, we have discovered new regulators and a signaling pathway that regulate the white-to-opaque switching in the most prevalent human fungal pathogen C. albicans.
Collapse
|
23
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
24
|
Zheng Q, Zhang Q, Bing J, Ding X, Huang G. Environmental and genetic regulation of white-opaque switching inCandida tropicalis. Mol Microbiol 2017; 106:999-1017. [DOI: 10.1111/mmi.13862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Qiushi Zheng
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
- College of life sciences, University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qiuyu Zhang
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
- College of life sciences, University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Bing
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Xuefen Ding
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Guanghua Huang
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
- College of life sciences, University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
25
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
26
|
The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells. J Fungi (Basel) 2017; 3:jof3040059. [PMID: 29371575 PMCID: PMC5753161 DOI: 10.3390/jof3040059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3)-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.
Collapse
|
27
|
Sensitivity of White and Opaque Candida albicans Cells to Antifungal Drugs. Antimicrob Agents Chemother 2017; 61:AAC.00166-17. [PMID: 28507115 DOI: 10.1128/aac.00166-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/10/2017] [Indexed: 01/30/2023] Open
Abstract
White and opaque cells of Candida albicans have the same genome but differ in gene expression patterns, metabolic profiles, and host niche preferences. We tested whether these differences, which include the differential expression of drug transporters, resulted in different sensitivities to 27 antifungal agents. The analysis was performed in two different strain backgrounds; although there was strain-to-strain variation, only terbinafine hydrochloride and caspofungin showed consistent, 2-fold differences between white and opaque cells across both strains.
Collapse
|
28
|
Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 2017; 13:e1006403. [PMID: 28542528 PMCID: PMC5456412 DOI: 10.1371/journal.ppat.1006403] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/02/2017] [Accepted: 05/06/2017] [Indexed: 01/13/2023] Open
Abstract
Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this "unmasking" of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection.
Collapse
|
29
|
Affiliation(s)
- Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
30
|
Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol 2016; 15:96-108. [PMID: 27867199 DOI: 10.1038/nrmicro.2016.157] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida albicans is a ubiquitous commensal of the mammalian microbiome and the most prevalent fungal pathogen of humans. A cell-type transition between yeast and hyphal morphologies in C. albicans was thought to underlie much of the variation in virulence observed in different host tissues. However, novel yeast-like cell morphotypes, including opaque(a/α), grey and gastrointestinally induced transition (GUT) cell types, were recently reported that exhibit marked differences in vitro and in animal models of commensalism and disease. In this Review, we explore the characteristics of the classic cell types - yeast, hyphae, pseudohyphae and chlamydospores - as well as the newly identified yeast-like morphotypes. We highlight emerging knowledge about the associations of these different morphotypes with different host niches and virulence potential, as well as the environmental cues and signalling pathways that are involved in the morphological transitions.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine.,Infectious Diseases Division, Department of Medicine, University of California San Francisco (UCSF) School of Medicine, San Francisco, California 94143, USA
| | - Brittany A Gianetti
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine
| | - Jessica N Witchley
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine
| |
Collapse
|
31
|
Unique roles of the unfolded protein response pathway in fungal development and differentiation. Sci Rep 2016; 6:33413. [PMID: 27629591 PMCID: PMC5024300 DOI: 10.1038/srep33413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023] Open
Abstract
Cryptococcus neoformans, a global fungal meningitis pathogen, employs the unfolded protein response pathway. This pathway, which consists of an evolutionarily conserved Ire1 kinase/endoribonuclease and a unique transcription factor (Hxl1), modulates the endoplasmic reticulum stress response and pathogenicity. Here, we report that the unfolded protein response pathway governs sexual and unisexual differentiation of C. neoformans in an Ire1-dependent but Hxl1-independent manner. The ire1∆ mutants showed defects in sexual mating, with reduced cell fusion and pheromone-mediated formation of the conjugation tube. Unexpectedly, these mating defects did not result from defective pheromone production because expression of the mating pheromone gene (MFα1) was strongly induced in the ire1∆ mutant. Ire1 controls sexual differentiation by modulating the function of the molecular chaperone Kar2 and by regulating mating-induced localisation of mating pheromone transporter (Ste6) and receptor (Ste3/Cprα). Deletion of IRE1, but not HXL1, also caused significant defects in unisexual differentiation in a Kar2-independent manner. Moreover, we showed that Rim101 is a novel downstream factor of Ire1 for production of the capsule, which is a unique structural determinant of C. neoformans virulence. Therefore, Ire1 uniquely regulates fungal development and differentiation in an Hxl1-independent manner.
Collapse
|
32
|
Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch. Genetics 2016; 203:1679-92. [PMID: 27280690 DOI: 10.1534/genetics.116.190645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 02/04/2023] Open
Abstract
The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology.
Collapse
|
33
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
34
|
Du H, Huang G. Environmental pH adaption and morphological transitions in Candida albicans. Curr Genet 2015; 62:283-6. [PMID: 26581628 DOI: 10.1007/s00294-015-0540-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
Abstract
The human fungal pathogen Candida albicans encounters a wide range of pH stresses during its commensal and pathogenic lifestyles. It has been well studied that environmental pH regulates the yeast-filamentous growth transition in this fungus. White-opaque switching is another type of phenotypic transitions in C. albicans. White and opaque cells are two morphologically and functionally distinct cell types, which differ in many aspects including global gene expression profiles, virulence, mating competency, and susceptibility to antifungals. The switch between white and opaque cell types is heritable and epigenetically regulated. In a recently study, Sun et al. (Eukaryot Cell 14:1127-1134, 2015) reported that pH plays a critical role in the regulation of the white-opaque phenotypic switch and sexual mating in C. albicans via both the conserved Rim101-mediated pH sensing and cAMP signaling pathways. The effect of pH on the two biological processes may represent a balancing act between host environmental adaptation and sexual reproduction in this pathogenic fungus.
Collapse
Affiliation(s)
- Han Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|