1
|
Hu G, Qu X, Bhalla K, Xue P, Bakkeren E, Lee CWJ, Kronstad JW. Loss of the putative Rab GTPase, Ypt7, impairs the virulence of Cryptococcus neoformans. Front Microbiol 2024; 15:1437579. [PMID: 39119141 PMCID: PMC11306161 DOI: 10.3389/fmicb.2024.1437579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Small GTPases of the Rab family coordinate multiple membrane fusion and trafficking events in eukaryotes. In fungi, the Rab GTPase, Ypt7, plays a critical role in late endosomal trafficking, and is required for homotypic fusion events in vacuole biogenesis and inheritance. In this study, we identified a putative YPT7 homologue in Cryptococcus neoformans, a fungal pathogen causing life threatening meningoencephalitis in immunocompromised individuals. As part of an ongoing effort to understand mechanisms of iron acquisition in C. neoformans, we established a role for Ypt7 in growth on heme as the sole iron source. Deletion of YPT7 also caused abnormal vacuolar morphology, defective endocytic trafficking and autophagy, and mislocalization of Aph1, a secreted vacuolar acid phosphatase. Ypt7 localized to the vacuolar membrane and membrane contact sites between the vacuole and mitochondria (vCLAMPs), and loss of the protein impaired growth on inhibitors of the electron transport chain. Additionally, Ypt7 was required for robust growth at 39°C, a phenotype likely involving the calcineurin signaling pathway because ypt7 mutants displayed increased susceptibility to the calcineurin-specific inhibitors, FK506 and cyclosporin A; the mutants also had impaired growth in either limiting or high levels of calcium. Finally, Ypt7 was required for survival during interactions with macrophages, and ypt7 mutants were attenuated for virulence in a mouse inhalation model thus demonstrating the importance of membrane trafficking functions in cryptococcosis.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Xianya Qu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Peng Xue
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erik Bakkeren
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christopher W. J. Lee
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Upadhya R, Probst C, Alspaugh JA, Lodge JK. Measuring Stress Phenotypes in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:277-303. [PMID: 38758325 PMCID: PMC11521573 DOI: 10.1007/978-1-0716-3722-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen capable of surviving in a wide range of environments and hosts. It has been developed as a model organism to study fungal pathogenesis due to its fully sequenced haploid genome and optimized gene deletion and mutagenesis protocols. These methods have greatly aided in determining the relationship between Cryptococcus genotype and phenotype. Furthermore, the presence of congenic mata and matα strains associated with a defined sexual cycle has helped further understand cryptococcal biology. Several in vitro stress conditions have been optimized to closely mimic the stress that yeast encounter in the environment or within the infected host. These conditions have proven to be extremely useful in elucidating the role of several genes in allowing yeast to adapt and survive in hostile external environments. This chapter describes various in vitro stress conditions that could be used to test the sensitivity of different mutant strains, as well as the protocol for preparing them. We have also included a list of mutants that could be used as a positive control strain when testing the sensitivity of the desired strain to a specific stress.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Corinna Probst
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - J Andrew Alspaugh
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer K Lodge
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
3
|
Pijuan J, Moreno DF, Yahya G, Moisa M, Ul Haq I, Krukiewicz K, Mosbah R, Metwally K, Cavalu S. Regulatory and pathogenic mechanisms in response to iron deficiency and excess in fungi. Microb Biotechnol 2023; 16:2053-2071. [PMID: 37804207 PMCID: PMC10616654 DOI: 10.1111/1751-7915.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular MedicineInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIIIMadridSpain
| | - David F. Moreno
- Department of Molecular Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
- Systems Biology InstituteYale UniversityWest HavenConnecticutUSA
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of PharmacyZagazig UniversityAl SharqiaEgypt
| | - Mihaela Moisa
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Programa de Pós‐graduação em Inovação TecnológicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Polymers TechnologySilesian University of TechnologyGliwicePoland
- Centre for Organic and Nanohybrid ElectronicsSilesian University of TechnologyGliwicePoland
| | - Rasha Mosbah
- Infection Control UnitHospitals of Zagazig UniversityZagazigEgypt
| | - Kamel Metwally
- Department of Medicinal Chemistry, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
- Department of Pharmaceutical Medicinal Chemistry, Faculty of PharmacyZagazig UniversityZagazigEgypt
| | - Simona Cavalu
- Faculty of Medicine and PharmacyUniversity of OradeaOradeaRomania
| |
Collapse
|
4
|
Ahmed MMA, Tripathi SK, Boudreau PD. Comparative metabolomic profiling of Cupriavidus necator B-4383 revealed production of cupriachelin siderophores, one with activity against Cryptococcus neoformans. Front Chem 2023; 11:1256962. [PMID: 37693169 PMCID: PMC10484230 DOI: 10.3389/fchem.2023.1256962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Cupriavidus necator H16 is known to be a rich source of linear lipopeptide siderophores when grown under iron-depleted conditions; prior literature termed these compounds cupriachelins. These small molecules bear β-hydroxyaspartate moieties that contribute to a photoreduction of iron when bound as ferric cupriachelin. Here, we present structural assignment of cupriachelins from C. necator B-4383 grown under iron limitation. The characterization of B-4383 cupriachelins is based on MS/MS fragmentation analysis, which was confirmed by 1D- and 2D-NMR for the most abundant analog (1). The cupriachelin congeners distinguish these two strains with differences in the preferred lipid tail; however, our rigorous metabolomic investigation also revealed minor analogs with changes in the peptide core, hinting at a potential mechanism by which these siderophores may reduce biologically unavailable ferric iron (4-6). Antifungal screening of the C. necator B-4383 supernatant extract and the isolated cupriachelin analog (1) revealed inhibitory activity against Cryptococcus neoformans, with IC50 values of 16.6 and 3.2 μg/mL, respectively. This antifungal activity could be explained by the critical role of the iron acquisition pathway in the growth and pathogenesis of the C. neoformans fungal pathogen.
Collapse
Affiliation(s)
- Mohammed M. A. Ahmed
- Boudreau Lab, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
- Department of Pharmacognosy, Al-Azhar University, Cairo, Egypt
| | - Siddarth K. Tripathi
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Paul D. Boudreau
- Boudreau Lab, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
5
|
Bailão AM, Silva KLPD, Moraes D, Lechner B, Lindner H, Haas H, Soares CMA, Silva-Bailão MG. Iron Starvation Induces Ferricrocin Production and the Reductive Iron Acquisition System in the Chromoblastomycosis Agent Cladophialophora carrionii. J Fungi (Basel) 2023; 9:727. [PMID: 37504717 PMCID: PMC10382037 DOI: 10.3390/jof9070727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Iron is a micronutrient required by almost all living organisms. Despite being essential, the availability of this metal is low in aerobic environments. Additionally, mammalian hosts evolved strategies to restrict iron from invading microorganisms. In this scenario, the survival of pathogenic fungi depends on high-affinity iron uptake mechanisms. Here, we show that the production of siderophores and the reductive iron acquisition system (RIA) are employed by Cladophialophora carrionii under iron restriction. This black fungus is one of the causative agents of chromoblastomycosis, a neglected subcutaneous tropical disease. Siderophore biosynthesis genes are arranged in clusters and, interestingly, two RIA systems are present in the genome. Orthologs of putative siderophore transporters were identified as well. Iron starvation regulates the expression of genes related to both siderophore production and RIA systems, as well as of two transcription factors that regulate iron homeostasis in fungi. A chrome azurol S assay demonstrated the secretion of hydroxamate-type siderophores, which were further identified via RP-HPLC and mass spectrometry as ferricrocin. An analysis of cell extracts also revealed ferricrocin as an intracellular siderophore. The presence of active high-affinity iron acquisition systems may surely contribute to fungal survival during infection.
Collapse
Affiliation(s)
- Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Dayane Moraes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Beatrix Lechner
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | - Herbert Lindner
- Institute of Medical Biochemistry/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, 795J+RF Innsbruck, Austria
| | | | | |
Collapse
|
6
|
XUE P, SÁNCHEZ-LEÓN E, DAMOO D, HU G, JUNG WH, KRONSTAD JW. Heme sensing and trafficking in fungi. FUNGAL BIOL REV 2023; 43:100286. [PMID: 37781717 PMCID: PMC10540271 DOI: 10.1016/j.fbr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fungal pathogens cause life-threatening diseases in humans, and the increasing prevalence of these diseases emphasizes the need for new targets for therapeutic intervention. Nutrient acquisition during infection is a promising target, and recent studies highlight the contributions of endomembrane trafficking, mitochondria, and vacuoles in the sensing and acquisition of heme by fungi. These studies have been facilitated by genetically encoded biosensors and other tools to quantitate heme in subcellular compartments and to investigate the dynamics of trafficking in living cells. In particular, the applications of biosensors in fungi have been extended beyond the detection of metabolites, cofactors, pH, and redox status to include the detection of heme. Here, we focus on studies that make use of biosensors to examine mechanisms of heme uptake and degradation, with guidance from the model fungus Saccharomyces cerevisiae and an emphasis on the pathogenic fungi Candida albicans and Cryptococcus neoformans that threaten human health. These studies emphasize a role for endocytosis in heme uptake, and highlight membrane contact sites involving mitochondria, the endoplasmic reticulum and vacuoles as mediators of intracellular iron and heme trafficking.
Collapse
Affiliation(s)
- Peng XUE
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy SÁNCHEZ-LEÓN
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Djihane DAMOO
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan HU
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee JUNG
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - James W. KRONSTAD
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Song M, Thak EJ, Kang HA, Kronstad JW, Jung WH. Cryptococcus neoformans can utilize ferritin as an iron source. Med Mycol 2022; 60:myac056. [PMID: 35943215 PMCID: PMC9387142 DOI: 10.1093/mmy/myac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/11/2022] [Accepted: 08/06/2022] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Ferritin, a major iron storage protein in vertebrates, supplies iron upon iron deficiency. Ferritin is also found extracellularly, and acts as an iron carrier and a contributor to the immune response to invading microbes. Some microbial pathogens take advantage of ferritin as an iron source upon infection. However, no information is currently available on whether the human fungal pathogen Cryptococcus neoformans can acquire iron from ferritin. Here, we found that C. neoformans grew well in the presence of ferritin as a sole iron source. We showed that the binding of ferritin to the surface of C. neoformans is necessary and that acidification may contribute to ferritin-iron utilization by the fungus. Our data also revealed that the high-affinity reductive iron uptake system in C. neoformans is required for ferritin-iron acquisition. Furthermore, phagocytosis of C. neoformans by macrophages led to increased intracellular ferritin levels, suggesting that iron is sequestered by ferritin in infected macrophages. The increase in intracellular ferritin levels was reversed upon infection with a C. neoformans mutant deficient in the high-affinity reductive iron uptake system, indicating that this system plays a major role in iron acquisition in the phagocytosed C. neoformans in macrophages. LAY SUMMARY Cryptococcus neoformans is an opportunistic fungal pathogen causing life-threatening pulmonary disease and cryptococcal meningitis, mainly in immunocompromised patients. In this study, we found that C. neoformans can use ferritin, a major iron storage protein in vertebrates, as a sole iron source.
Collapse
Affiliation(s)
- Moonyong Song
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Eun Jung Thak
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
8
|
Lee SR, Schalk F, Schwitalla JW, Guo H, Yu JS, Song M, Jung WH, de Beer ZW, Beemelmanns C, Kim KH. GNPS‐Guided Discovery of Madurastatin Siderophores from the Termite‐Associated
Actinomadura
sp. RB99**. Chemistry 2022; 28:e202200612. [PMID: 35404539 PMCID: PMC9325478 DOI: 10.1002/chem.202200612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/14/2022]
Abstract
In this study, we analyzed if Actinomadura sp. RB99 produces siderophores that that could be responsible for the antimicrobial activity observed in co‐cultivation studies. Dereplication of high‐resolution tandem mass spectrometry (HRMS/MS) and global natural product social molecular networking platform (GNPS) analysis of fungus‐bacterium co‐cultures resulted in the identification of five madurastatin derivatives (A1, A2, E1, F, and G1), of which were four new derivatives. Chemical structures were unambiguously confirmed by HR‐ESI‐MS, 1D and 2D NMR experiments, as well as MS/MS data and their absolute structures were elucidated based on Marfey's analysis, DP4+ probability calculation and total synthesis. Structure analysis revealed that madurastatin E1 (2) contained a rare 4‐imidazolidinone cyclic moiety and madurastatin A1 (5) was characterized as a Ga3+‐complex. The function of madurastatins as siderophores was evaluated using the fungal pathogen Cryptococcus neoformans as model organism. Based on homology models, we identified the putative NRPS‐based gene cluster region of the siderophores in Actinomadura sp. RB99.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
- Department of Chemistry Princeton University New Jersey 08544 USA
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Jan W. Schwitalla
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Jae Sik Yu
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| | - Moonyong Song
- Department of Systems Biotechnology Chung-Ang University Anseong 17546 Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology Chung-Ang University Anseong 17546 Republic of Korea
| | - Z. Wilhelm de Beer
- Department of Biochemistry Genetics and Microbiology Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Hatfield 0028 Pretoria South Africa
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Biochemistry of Microbial Metabolism Institute of Biochemistry Leipzig University Johannisallee 21–23 Leipzig 04103 Germany
| | - Ki Hyun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 (Republic of Korea
| |
Collapse
|
9
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
10
|
Hu G, Bakkeren E, Caza M, Horianopoulos L, Sánchez-León E, Sorensen M, Jung W, Kronstad JW. Vam6/Vps39/TRAP1-domain proteins influence vacuolar morphology, iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2021; 23:e13400. [PMID: 34800311 DOI: 10.1111/cmi.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans must overcome iron limitation to cause disease in mammalian hosts. Previously, we reported a screen for insertion mutants with poor growth on haem as the sole iron source. In this study, we characterised one such mutant and found that the defective gene encoded a Vam6/Vps39/TRAP1 domain-containing protein required for robust growth on haem, an important iron source in host tissue. We designated this protein Vps3 based on reciprocal best matches with the corresponding protein in Saccharomyces cerevisiae. C. neoformans encodes a second Vam6/Vps39/TRAP1 domain-containing protein designated Vam6/Vlp1, and we found that this protein is also required for robust growth on haem as well as on inorganic iron sources. This protein is predicted to be a component of the homotypic fusion and vacuole protein sorting complex involved in endocytosis. Further characterisation of the vam6Δ and vps3Δ mutants revealed perturbed trafficking of iron acquisition functions (e.g., the high affinity iron permease Cft1) and impaired processing of the transcription factor Rim101, a regulator of haem and iron acquisition. The vps3Δ and vam6Δ mutants also had pleiotropic phenotypes including loss of virulence in a mouse model of cryptococcosis, reduced virulence factor elaboration and increased susceptibility to stress, indicating pleiotropic roles for Vps3 and Vam6 beyond haem use in C. neoformans. TAKE AWAYS: Two Vam6/Vps39/TRAP1-domain proteins, Vps3 and Vam6, support the growth of Cryptococcus neoformans on haem. Loss of Vps3 and Vam6 influences the trafficking and expression of iron uptake proteins. Loss of Vps3 or Vam6 eliminates the ability of C. neoformans to cause disease in a mouse model of cryptococcosis.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik Bakkeren
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mélissa Caza
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Linda Horianopoulos
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Sorensen
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wonhee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - James W Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Hu G, Horianopoulos L, Sánchez-León E, Caza M, Jung W, Kronstad JW. The monothiol glutaredoxin Grx4 influences thermotolerance, cell wall integrity, and Mpk1 signaling in Cryptococcus neoformans. G3 (BETHESDA, MD.) 2021; 11:jkab322. [PMID: 34542604 PMCID: PMC8527476 DOI: 10.1093/g3journal/jkab322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Monothiol glutaredoxins are important regulators of iron homeostasis that play conserved roles in the sensing and trafficking of iron-sulfur clusters. We previously characterized the role of the monothiol glutaredoxin Grx4 in iron homeostasis, the interaction with the iron regulator Cir1, and virulence in Cryptococcus neoformans. This important fungal pathogen causes cryptococcal meningoencephalitis in immunocompromised individuals worldwide. Here, we demonstrate that Grx4 is required for proliferation at elevated temperatures (both 37°C and 39°C) and under stress conditions. In particular, the grx4Δ mutant was hypersensitive to SDS, calcofluor white (CFW), and caffeine, suggesting that Grx4 is required for membrane and cell wall integrity (CWI). In this context, we found that Grx4 regulated the phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) of the CWI pathway in cells grown at elevated temperature or upon treatment with CFW, caffeine, or SDS. The grx4Δ mutant also displayed increased sensitivity to FK506 and cyclosporin A, two inhibitors of the calcineurin pathway, indicating that Grx4 may influence growth at higher temperatures in parallel with calcineurin signaling. Upon thermal stress or calcium treatment, loss of Grx4 also caused partial mis-localization of Crz1, the transcription factor that is a calcineurin substrate. The phenotypes of the grx4Δ, crz1Δ, and cna1Δ (calcineurin) mutants suggest shared contributions to the regulation of temperature, cell wall, and other stresses. In summary, we show that Grx4 is also a key regulator of the responses to a variety of stress conditions in addition to its roles in iron homeostasis in C. neoformans.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Wonhee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Omar NF, Widiasih Widiyanto T, Utami ST, Niimi M, Niimi K, Toh-E A, Kajiwara S. Vph1 is associated with the copper homeostasis of Cryptococcus neoformans serotype D. J GEN APPL MICROBIOL 2021; 67:195-206. [PMID: 34219070 DOI: 10.2323/jgam.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We clarified the roles of VPH1 in Cryptococcus neoformans serotype D by examining the detailed phenotypes of VPH1-deficient cells (Δvph1) in terms of their capability to grow in acidic and alkaline pH, at a high temperature, and under high osmotic conditions, in addition to the involvement of VPH1 in copper (Cu) homeostasis and the expression of some C. neoformans virulence factors. Δvph1 could grow well on minimal medium (YNB) but exhibited hypersensitivity to 20 μM Cu due to the failure to induce Cu-detoxifying metallothionein genes (CMT1 and CMT2). In contrast, Δvph1 exhibited defective growth on rich medium (YPD), and the induction of Cu transporter genes (CTR1 and CTR4) did not occur in this medium, implying that this strain was incapable of the uptake of Cu ions for growth. However, the addition of excess Cu promoted CTR gene expression and supported Δvph1 growth. These results suggested that the lack of the VPH1 gene disturbed Cu homeostasis in C. neoformans. Moreover, the loss of Vph1 function influenced the urease activity of C. neoformans.
Collapse
Affiliation(s)
- Noor Fatin Omar
- School of Life Science and Technology, Tokyo Institute of Technology
| | | | | | - Masakazu Niimi
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Kyoko Niimi
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Akio Toh-E
- Medical Mycology Research Center, Chiba University
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
13
|
Oxidative Stress Causes Vacuolar Fragmentation in the Human Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7070523. [PMID: 34210104 PMCID: PMC8305764 DOI: 10.3390/jof7070523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Vacuoles are dynamic cellular organelles, and their morphology is altered by various stimuli or stresses. Vacuoles play an important role in the physiology and virulence of many fungal pathogens. For example, a Cryptococcus neoformans mutant deficient in vacuolar functions showed significantly reduced expression of virulence factors such as capsule and melanin synthesis and was avirulent in a mouse model of cryptococcosis. In the current study, we found significantly increased vacuolar fragmentation in the C. neoformans mutants lacking SOD1 or SOD2, which respectively encode Zn, Cu-superoxide dismutase and Mn-superoxide dismutase. The sod2 mutant showed a greater level of vacuole fragmentation than the sod1 mutant. We also observed that the vacuoles were highly fragmented when wild-type cells were grown in a medium containing high concentrations of iron, copper, or zinc. Moreover, elevated temperature and treatment with the antifungal drug fluconazole caused increased vacuolar fragmentation. These conditions also commonly cause an increase in the levels of intracellular reactive oxygen species in the fungus, suggesting that vacuoles are fragmented in response to oxidative stress. Furthermore, we observed that Sod2 is not only localized in mitochondria but also in the cytoplasm within phagocytosed C. neoformans cells, possibly due to copper or iron limitation.
Collapse
|
14
|
Lin J, Zangi M, Kumar TVH, Shakar Reddy M, Reddy LVR, Sadhukhan SK, Bradley DP, Moreira-Walsh B, Edwards TC, O’Dea AT, Tavis JE, Meyers MJ, Donlin MJ. Synthetic Derivatives of Ciclopirox are Effective Inhibitors of Cryptococcus neoformans. ACS OMEGA 2021; 6:8477-8487. [PMID: 33817509 PMCID: PMC8015083 DOI: 10.1021/acsomega.1c00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Opportunistic fungal infections caused by Cryptococcus neoformans are a significant source of mortality in immunocompromised patients. They are challenging to treat because of a limited number of antifungal drugs, and novel and more effective anticryptococcal therapies are needed. Ciclopirox olamine, a N-hydroxypyridone, has been in use as an approved therapeutic agent for the treatment of topical fungal infections for more than two decades. It is a fungicide, with broad activity across multiple fungal species. We synthesized 10 N-hydroxypyridone derivatives to develop an initial structure-activity understanding relative to efficacy as a starting point for the development of systemic antifungals. We screened the derivatives for antifungal activity against C. neoformans and Cryptococcus gattii and counter-screened for specificity in Candida albicans and two Malassezia species. Eight of the ten show inhibition at 1-3 μM concentration (0.17-0.42 μg per mL) in both Cryptococcus species and in C. albicans, but poor activity in the Malassezia species. In C. neoformans, the N-hydroxypyridones are fungicides, are not antagonistic with either fluconazole or amphotericin B, and are synergistic with multiple inhibitors of the mitochondrial electron transport chain. They appear to function primarily by chelating iron within the active site of iron-dependent enzymes. This preliminary structure-activity relationship points to the need for a lipophilic functional group at position six of the N-hydroxypyridone ring and identifies positions four and six as sites where further substitution may be tolerated. These molecules provide a clear starting point for future optimization for efficacy and target identification.
Collapse
Affiliation(s)
- Jeffrey Lin
- Department
of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Maryam Zangi
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | | | - Makala Shakar Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Lingala Vijaya Raghava Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Daniel P. Bradley
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Brenda Moreira-Walsh
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
| | - Tiffany C. Edwards
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Austin T. O’Dea
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
15
|
Smith AD, Garcia-Santamarina S, Ralle M, Loiselle DR, Haystead TA, Thiele DJ. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase. J Biol Chem 2021; 296:100391. [PMID: 33567338 PMCID: PMC7961099 DOI: 10.1016/j.jbc.2021.100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5’-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor–mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.
Collapse
Affiliation(s)
- Aaron D Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
16
|
Yu CH, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, Giamberardino C, Litvintseva A, Perfect JR, Cuomo CA. Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microb Genom 2020; 6. [PMID: 31860441 PMCID: PMC7067042 DOI: 10.1099/mgen.0.000319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of C. neoformans. To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven C. neoformans isolates grown in five representative in vitro environmental and in vivo conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to in vivo stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of C. neoformans across natural isolates, and provides insights into genes important for in vitro and in vivo growth stages.
Collapse
Affiliation(s)
- Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anastasia Litvintseva
- Mycotic Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Chhabra R, Saha A, Chamani A, Schneider N, Shah R, Nanjundan M. Iron Pathways and Iron Chelation Approaches in Viral, Microbial, and Fungal Infections. Pharmaceuticals (Basel) 2020; 13:E275. [PMID: 32992923 PMCID: PMC7601909 DOI: 10.3390/ph13100275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; (R.C.); (A.S.); (A.C.); (N.S.); (R.S.)
| |
Collapse
|
18
|
Choi Y, Do E, Hu G, Caza M, Horianopoulos LC, Kronstad JW, Jung WH. Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans. J Microbiol Biotechnol 2020; 30:1142-1148. [PMID: 32522963 DOI: 10.4014/jmb.2004.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/18/2020] [Indexed: 11/01/2022]
Abstract
Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.
Collapse
Affiliation(s)
- Yoojeong Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - Mélissa Caza
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - Linda C Horianopoulos
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - James W Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
19
|
Kornitzer D, Roy U. Pathways of heme utilization in fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118817. [PMID: 32777371 DOI: 10.1016/j.bbamcr.2020.118817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Iron acquisition is challenging in most environments. As an alternative to elemental iron, organisms can take up iron-protoporphyrin IX, or heme. Heme can be found in decaying organic matter and is particularly prevalent in animal hosts. Fungi have evolved at least three distinct endocytosis-mediated heme uptake systems, which have been studied in detail in the organisms Candida albicans, Cryptococcus neoformans and Schizosaccharomyces pombe. Here we summarize the known molecular details of these three uptake systems that enable parasitic and saprophytic fungi to take advantage of external heme as either cellular iron or heme sources.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Udita Roy
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
20
|
A Cytoplasmic Heme Sensor Illuminates the Impacts of Mitochondrial and Vacuolar Functions and Oxidative Stress on Heme-Iron Homeostasis in Cryptococcus neoformans. mBio 2020; 11:mBio.00986-20. [PMID: 32723917 PMCID: PMC7387795 DOI: 10.1128/mbio.00986-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal diseases are increasing in frequency, and new drug targets and antifungal drugs are needed to bolster therapy. The mechanisms by which pathogens obtain critical nutrients such as iron from heme during host colonization represent a promising target for therapy. In this study, we employed a fluorescent heme sensor to investigate heme homeostasis in Cryptococcus neoformans. We demonstrated that endocytosis is a key aspect of heme acquisition and that vacuolar and mitochondrial functions are important in regulating the pool of available heme in cells. Stress generated by oxidative conditions impacts the heme pool, as do the drugs artemisinin and metformin; these drugs have heme-related activities and are in clinical use for malaria and diabetes, respectively. Overall, our study provides insights into mechanisms of fungal heme acquisition and demonstrates the utility of the heme sensor for drug characterization in support of new therapies for fungal diseases. Pathogens must compete with hosts to acquire sufficient iron for proliferation during pathogenesis. The pathogenic fungus Cryptococcus neoformans is capable of acquiring iron from heme, the most abundant source in vertebrate hosts, although the mechanisms of heme sensing and acquisition are not entirely understood. In this study, we adopted a chromosomally encoded heme sensor developed for Saccharomyces cerevisiae to examine cytosolic heme levels in C. neoformans using fluorescence microscopy, fluorimetry, and flow cytometry. We validated the responsiveness of the sensor upon treatment with exogenous hemin, during proliferation in macrophages, and in strains defective for endocytosis. We then used the sensor to show that vacuolar and mitochondrial dysregulation and oxidative stress reduced the labile heme pool in the cytosol. Importantly, the sensor provided a tool to further demonstrate that the drugs artemisinin and metformin have heme-related activities and the potential to be repurposed for antifungal therapy. Overall, this study provides insights into heme sensing by C. neoformans and establishes a powerful tool to further investigate mechanisms of heme-iron acquisition in the context of fungal pathogenesis.
Collapse
|
21
|
Martínez-Pastor MT, Puig S. Adaptation to iron deficiency in human pathogenic fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118797. [PMID: 32663505 DOI: 10.1016/j.bbamcr.2020.118797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.
Collapse
Affiliation(s)
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
22
|
Fu M, Su H, Su Z, Yin Z, Jin J, Wang L, Zhang Q, Xu X. Transcriptome analysis of Corynebacterium pseudotuberculosis-infected spleen of dairy goats. Microb Pathog 2020; 147:104370. [PMID: 32653437 DOI: 10.1016/j.micpath.2020.104370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Caseous lymphadenitis is a chronic disease of goats caused by Corynebacterium pseudotuberculosis (C.pseudotuberculosis) which causes great harm to the dairy goats industry. In order to obtain detailed information about the pathogenesis and host immune response in C.pseudotuberculosis-infected goats, in this study, the gene expression difference of spleen tissue after infection with C.pseudotuberculosis was analyzed by high-throughput sequencing. Transcripts obtained over 412 700 462 clean reads after reassembly were 21 343 genes detected, of which 14 720 were known genes and 7623 new genes were predicted. There were 448 up-regulated and 519 down-regulated differentially expressed genes (DEGs). Gene Ontology (GO) analysis indicated that all of the DEGs were annotated into biological process, cellular component and molecular function. Most of these unigenes are annotated in cellular processes, the cell and binding. KEGG analysis of the DEGs showed that a total of 8733 DEGs unigenes were annotated into 459 pathways classified into 6 main categories. Most of these annotated unigenes were related to immune system response to the infectious diseases pathways. In addition, 14 DEGs were verified by quantitative real-time PCR. As the first, in vivo, RNAseq analysis of dairy goats and C.pseudotuberculosis infection, this study provides knowledge about the transcriptomics of spleen in C.pseudotuberculosis-infected goats, from which a complex molecular pathways and immune response mechanism are involved in C.pseudotuberculosis infection.
Collapse
Affiliation(s)
- Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Su
- College of Animal Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zhanqiang Su
- College of Animal Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
A Transcriptional Regulatory Map of Iron Homeostasis Reveals a New Control Circuit for Capsule Formation in Cryptococcus neoformans. Genetics 2020; 215:1171-1189. [PMID: 32580959 DOI: 10.1534/genetics.120.303270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the growth of the human fungal pathogen Cryptococcus neoformans within the vertebrate host, and iron sensing contributes to the elaboration of key virulence factors, including the formation of the polysaccharide capsule. C. neoformans employs sophisticated iron acquisition and utilization systems governed by the transcription factors Cir1 and HapX. However, the details of the transcriptional regulatory networks that are governed by these transcription factors and connections to virulence remain to be defined. Here, we used chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and transcriptome analysis (RNA-seq) to identify genes directly regulated by Cir1 and/or HapX in response to iron availability. Overall, 40 and 100 genes were directly regulated by Cir1, and 171 and 12 genes were directly regulated by HapX, under iron-limited and replete conditions, respectively. More specifically, we found that Cir1 directly controls the expression of genes required for iron acquisition and metabolism, and indirectly governs capsule formation by regulating specific protein kinases, a regulatory connection not previously revealed. HapX regulates the genes responsible for iron-dependent pathways, particularly under iron-depleted conditions. By analyzing target genes directly bound by Cir1 and HapX, we predicted the binding motifs for the transcription factors and verified that the purified proteins bind these motifs in vitro Furthermore, several direct target genes were coordinately and reciprocally regulated by Cir1 and HapX, suggesting that these transcription factors play conserved roles in the response to iron availability. In addition, biochemical analyses revealed that Cir1 and HapX are iron-containing proteins, implying that the regulatory networks of Cir1 and HapX may be influenced by the incorporation of iron into these proteins. Taken together, our identification of the genome-wide transcriptional networks provides a detailed understanding of the iron-related regulatory landscape, establishes a new connection between Cir1 and kinases that regulate capsule, and underpins genetic and biochemical analyses that reveal iron-sensing mechanisms for Cir1 and HapX in C. neoformans.
Collapse
|
24
|
|
25
|
Multicopper Oxidases in Saccharomyces cerevisiae and Human Pathogenic Fungi. J Fungi (Basel) 2020; 6:jof6020056. [PMID: 32349384 PMCID: PMC7345259 DOI: 10.3390/jof6020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022] Open
Abstract
Multicopper oxidases (MCOs) are produced by microscopic and macroscopic fungal species and are involved in various physiological processes such as morphogenesis, lignin degradation, and defense mechanisms to stress inducing environmental conditions as well as fungal virulence. This review will summarize our current understanding regarding the functions of MCOs present in Saccharomyces cerevisiae and in different human fungal pathogens. Of the two main MCO groups, the first group of MCOs is involved in iron homoeostasis and the second includes laccases. This review will also discuss their role in the pathogenesis of human fungal pathogens.
Collapse
|
26
|
Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat Commun 2020; 11:1521. [PMID: 32251295 PMCID: PMC7090016 DOI: 10.1038/s41467-020-15329-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, we study the roles played by fungal kinases and transcription factors (TFs) in blood-brain barrier (BBB) crossing and brain infection in mice. We use a brain infectivity assay to screen signature-tagged mutagenesis (STM)-based libraries of mutants defective in kinases and TFs, generated in the C. neoformans H99 strain. We also monitor in vivo transcription profiles of kinases and TFs during host infection using NanoString technology. These analyses identify signalling components involved in BBB adhesion and crossing, or survival in the brain parenchyma. The TFs Pdr802, Hob1, and Sre1 are required for infection under all the conditions tested here. Hob1 controls the expression of several factors involved in brain infection, including inositol transporters, a metalloprotease, PDR802, and SRE1. However, Hob1 is dispensable for most cellular functions in Cryptococcus deuterogattii R265, a strain that does not target the brain during infection. Our results indicate that Hob1 is a master regulator of brain infectivity in C. neoformans. Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, the authors identify fungal kinases and transcription factors involved in blood-brain barrier crossing and brain infection in mice.
Collapse
|
27
|
Kaur K, Sidhu H, Capalash N, Sharma P. Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence. Microb Pathog 2020; 143:104124. [PMID: 32169492 DOI: 10.1016/j.micpath.2020.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
A putative multicopper oxidase, encoded as CopA in the proteome of Acinetobacter baumannii 19606, and designated as AbMCO, was expressed heterologously in E. coli (pET-28a) and purified by Ni-NTA affinity chromatography. The purified AbMCO exhibited in vitro oxidase activities upon exogenous addition of ≥1 μM copper ions. Kinetic studies revealed its phenol oxidase activity as it could catalyze the oxidation of substrates viz. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol, pyrogallol and catechol. Additionally, AbMCO displayed siderophore oxidase activity which depicted its role in metal homeostasis and protection from the toxic redox states of copper and iron. Importantly, expression of abMCO increased manifold upon challenge with high concentrations of copper sulphate (CuSO4, 1.5 mM) and sodium chloride (NaCl, 700 mM) which suggested its protective role in stress adaptation and management. Intra-macrophage assay of abMCO-expressing and abMCO-non expressing cells depicted no significant change in the survival rate of A. baumannii inside the macrophages. These findings indicate that A. baumannii encodes a multicopper oxidase, conferring copper tolerance and survival under stress conditions but had no role in virulence of this pathogen.
Collapse
Affiliation(s)
- Kavleen Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
28
|
Chayakulkeeree M, Tangkoskul T, Waywa D, Tiengrim S, Pati N, Thamlikitkul V. Impact of iron chelators on growth and expression of iron-related genes of Cryptococcus species. J Mycol Med 2019; 30:100905. [PMID: 31706700 DOI: 10.1016/j.mycmed.2019.100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/31/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200μg/mL to 6.25 or 12.5μg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.
Collapse
Affiliation(s)
- M Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - T Tangkoskul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - D Waywa
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - S Tiengrim
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - N Pati
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - V Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
29
|
Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O'Meally RN, Cordero RJB, Cole RN, McCaffery JM, Stark RE, Casadevall A. The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem 2019; 294:10471-10489. [PMID: 31118223 PMCID: PMC6615676 DOI: 10.1074/jbc.ra119.008684] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.
Collapse
Affiliation(s)
- Emma Camacho
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Raghav Vij
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Christine Chrissian
- the Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, the City University of New York
- Ph.D. Programs in Biochemistry and
| | - Rafael Prados-Rosales
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
- the CIC bioGUNE, 48160 Derio, Vizcaya, Spain
- the Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28049 Madrid, Spain
| | - David Gil
- the CIC bioGUNE, 48160 Derio, Vizcaya, Spain
| | - Robert N O'Meally
- the Johns Hopkins Mass Spectrometry and Proteomic Facility, The Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Radames J B Cordero
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Robert N Cole
- the Johns Hopkins Mass Spectrometry and Proteomic Facility, The Johns Hopkins University, Baltimore, Maryland 21205, and
| | - J Michael McCaffery
- the Integrated Imaging Center, Department of Biology, Engineering in Oncology Center, and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Ruth E Stark
- the Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, the City University of New York
- Ph.D. Programs in Biochemistry and
- Chemistry, New York, New York 10016
| | - Arturo Casadevall
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205,
| |
Collapse
|
30
|
Do E, Lee HG, Park M, Cho YJ, Kim DH, Park SH, Eun D, Park T, An S, Jung WH. Antifungal Mechanism of Action of Lauryl Betaine Against Skin-Associated Fungus Malassezia restricta. MYCOBIOLOGY 2019; 47:242-249. [PMID: 31448144 PMCID: PMC6691833 DOI: 10.1080/12298093.2019.1625175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
Betaine derivatives are considered major ingredients of shampoos and are commonly used as antistatic and viscosity-increasing agents. Several studies have also suggested that betaine derivatives can be used as antimicrobial agents. However, the antifungal activity and mechanism of action of betaine derivatives have not yet been fully understood. In this study, we investigated the antifungal activity of six betaine derivatives against Malassezia restricta, which is the most frequently isolated fungus from the human skin and is implicated in the development of dandruff. We found that, among the six betaine derivatives, lauryl betaine showed the most potent antifungal activity. The mechanism of action of lauryl betaine was studied mainly using another phylogenetically close model fungal organism, Cryptococcus neoformans, because of a lack of available genetic manipulation and functional genomics tools for M. restricta. Our genome-wide reverse genetic screening method using the C. neoformans gene deletion mutant library showed that the mutants with mutations in genes for cell membrane synthesis and integrity, particularly ergosterol synthesis, are highly sensitive to lauryl betaine. Furthermore, transcriptome changes in both C. neoformans and M. restricta cells grown in the presence of lauryl betaine were analyzed and the results indicated that the compound mainly affected cell membrane synthesis, particularly ergosterol synthesis. Overall, our data demonstrated that lauryl betaine influences ergosterol synthesis in C. neoformans and that the compound exerts a similar mechanism of action on M. restricta.
Collapse
Affiliation(s)
- Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyun Gee Lee
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | | | - Dong Hyeun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Se-Ho Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Daekyung Eun
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Taehun Park
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Susun An
- Safety Research Institute, Amorepacific R&D Center, Yongin, Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| |
Collapse
|
31
|
Pulmonary Iron Limitation Induced by Exogenous Type I IFN Protects Mice from Cryptococcus gattii Independently of T Cells. mBio 2019; 10:mBio.00799-19. [PMID: 31213551 PMCID: PMC6581853 DOI: 10.1128/mbio.00799-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause fatal infection in immunodeficient and immunocompetent individuals. While these fungi are sibling species, C. gattii infects very few AIDS patients, while C. neoformans infection is an AIDS-defining illness, suggesting that the host response to HIV selects C. neoformans over C. gattii. We used a viral mimic molecule (pICLC) to stimulate the immune response, and pICLC treatment improved mouse outcomes from both species. pICLC-induced action against C. neoformans was due to activation of well-defined immune pathways known to deter C. neoformans, whereas these immune pathways were dispensable for pICLC treatment of C. gattii. Since these immune pathways are eventually destroyed by HIV/AIDS, our data help explain why the antiviral immune response in AIDS patients is unable to control C. neoformans infection but is protective against C. gattii. Furthermore, pICLC induced tighter control of iron in the lungs of mice, which inhibited C. gattii, thus suggesting an entirely new mode of nutritional immunity activated by viral signals. Cryptococcus neoformans causes deadly mycosis primarily in AIDS patients, whereas Cryptococcus gattii infects mostly non-HIV patients, even in regions with high burdens of HIV/AIDS and an established environmental presence of C. gattii. As HIV induces type I IFN (t1IFN), we hypothesized that t1IFN would differentially affect the outcome of C. neoformans and C. gattii infections. Exogenous t1IFN induction using stabilized poly(I·C) (pICLC) improved murine outcomes in either cryptococcal infection. In C. neoformans-infected mice, pICLC activity was associated with C. neoformans containment and classical Th1 immunity. In contrast, pICLC activity against C. gattii did not require any immune factors previously associated with C. neoformans immunity: T, B, and NK cells, IFN-γ, and macrophages were all dispensable. Interestingly, C. gattii pICLC activity depended on β-2-microglobulin, which impacts iron levels among other functions. Iron supplementation reversed pICLC activity, suggesting C. gattii pICLC activity requires iron limitation. Also, pICLC induced a set of iron control proteins, some of which were directly inhibitory to cryptococcus in vitro, suggesting t1IFN regulates iron availability in the pulmonary air space fluids. Thus, exogenous induction of t1IFN significantly improves the outcome of murine infection by C. gattii and C. neoformans but by distinct mechanisms; the C. gattii effect was mediated by iron limitation, while the effect on C. neoformans infection was through induction of classical T-cell-dependent immunity. Together this difference in types of T-cell-dependent t1IFN immunity for different Cryptococcus species suggests a possible mechanism by which HIV infection may select against C. gattii but not C. neoformans.
Collapse
|
32
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Simm C, May RC. Zinc and Iron Homeostasis: Target-Based Drug Screening as New Route for Antifungal Drug Development. Front Cell Infect Microbiol 2019; 9:181. [PMID: 31192169 PMCID: PMC6548825 DOI: 10.3389/fcimb.2019.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The incidence of fungal diseases is on the rise and the number of fatalities is still unacceptably high. While advances into antifungal drug development have been made there remains an urgent need to develop novel antifungal agents targeting as-yet unexploited pathways, such as metal ion homeostasis. Here we report such an approach by developing a metal sensor screen in the opportunistic human fungal pathogen Candida albicans. Using this reporter strain, we screened a library of 1,200 compounds and discovered several active compounds not previously described as chemical entities with antifungal properties. Two of these, artemisinin and pyrvinium pamoate, have been further characterized and their interference with metal homeostasis and potential as novel antifungal compounds validated. Lastly, we demonstrate that the same strain can be used to report on intracellular conditions within host phagocytes, paving the way toward the development of novel screening platforms that could identify compounds with the potential to perturb ion homeostasis of the pathogen specifically within host cells.
Collapse
Affiliation(s)
- Claudia Simm
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Robin C May
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
Do E, Park S, Li MH, Wang JM, Ding C, Kronstad JW, Jung WH. The mitochondrial ABC transporter Atm1 plays a role in iron metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Med Mycol 2019; 56:458-468. [PMID: 29420779 DOI: 10.1093/mmy/myx073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.
Collapse
Affiliation(s)
- Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Seho Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Ming-Hui Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Jia-Mei Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
35
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
36
|
Brown AJ, Gow NA, Warris A, Brown GD. Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends Microbiol 2019; 27:219-230. [DOI: 10.1016/j.tim.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
37
|
Hovhannisyan H, Gabaldón T. Transcriptome Sequencing Approaches to Elucidate Host-Microbe Interactions in Opportunistic Human Fungal Pathogens. Curr Top Microbiol Immunol 2019; 422:193-235. [PMID: 30128828 DOI: 10.1007/82_2018_122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infections caused by opportunistic human fungal pathogens are a source of increasing medical concern, due to their growing incidence, the emergence of novel pathogenic species, and the lack of effective diagnostics tools. Fungal pathogens are phylogenetically diverse, and their virulence mechanisms can differ widely across species. Despite extensive efforts, the molecular bases of virulence in pathogenic fungi and their interactions with the human host remain poorly understood for most species. In this context, next-generation sequencing approaches hold the promise of helping to close this knowledge gap. In particular, high-throughput transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile of both host and microbes to elucidate their interactions and discover molecular mechanisms of virulence and host defense. Here, we provide an overview of transcriptome sequencing techniques and approaches, and survey their application in studying the interplay between humans and fungal pathogens. Finally, we discuss novel RNA-Seq approaches in studying host-pathogen interactions and their potential role in advancing the clinical diagnostics of fungal infections.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
38
|
Abstract
The acquisition of iron and the maintenance of iron homeostasis are important aspects of virulence for the pathogenic fungus Cryptococcus neoformans In this study, we characterized the role of the monothiol glutaredoxin Grx4 in iron homeostasis and virulence in C. neoformans Monothiol glutaredoxins are important regulators of iron homeostasis because of their conserved roles in [2Fe-2S] cluster sensing and trafficking. We initially identified Grx4 as a binding partner of Cir1, a master regulator of iron-responsive genes and virulence factor elaboration in C. neoformans We confirmed that Grx4 binds Cir1 and demonstrated that iron repletion promotes the relocalization of Grx4 from the nucleus to the cytoplasm. We also found that a grx4 mutant lacking the GRX domain displayed iron-related phenotypes similar to those of a cir1Δ mutant, including poor growth upon iron deprivation. Importantly, the grx4 mutant was avirulent in mice, a phenotype consistent with observed defects in the key virulence determinants, capsule and melanin, and poor growth at 37°C. A comparative transcriptome analysis of the grx4 mutant and the WT strain under low-iron and iron-replete conditions confirmed a central role for Grx4 in iron homeostasis. Dysregulation of iron-related metabolism was consistent with grx4 mutant phenotypes related to oxidative stress, mitochondrial function, and DNA repair. Overall, the phenotypes of the grx4 mutant lacking the GRX domain and the transcriptome sequencing (RNA-Seq) analysis of the mutant support the hypothesis that Grx4 functions as an iron sensor, in part through an interaction with Cir1, to extensively regulate iron homeostasis.IMPORTANCE Fungal pathogens cause life-threatening diseases in humans, particularly in immunocompromised people, and there is a tremendous need for a greater understanding of pathogenesis to support new therapies. One prominent fungal pathogen, Cryptococcus neoformans, causes meningitis in people suffering from HIV/AIDS. In the present study, we focused on characterizing mechanisms by which C. neoformans senses iron availability because iron is both a signal and a key nutrient for proliferation of the pathogen in vertebrate hosts. Specifically, we characterized a monothiol glutaredoxin protein, Grx4, that functions as a sensor of iron availability and interacts with regulatory factors to control the ability of C. neoformans to cause disease. Grx4 regulates key virulence factors, and a mutant is unable to cause disease in a mouse model of cryptococcosis. Overall, our study provides new insights into nutrient sensing and the role of iron in the pathogenesis of fungal diseases.
Collapse
|
39
|
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 2018; 21:e12961. [PMID: 30291809 DOI: 10.1111/cmi.12961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life-threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non-iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin-mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin-containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
The Sec1/Munc18 (SM) protein Vps45 is involved in iron uptake, mitochondrial function and virulence in the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 2018; 14:e1007220. [PMID: 30071112 PMCID: PMC6091972 DOI: 10.1371/journal.ppat.1007220] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/14/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The battle for iron between invading microorganisms and mammalian hosts is a pivotal determinant of the outcome of infection. The pathogenic fungus, Cryptococcus neoformans, employs multiple mechanisms to compete for iron during cryptococcosis, a disease primarily of immunocompromised hosts. In this study, we examined the role of endocytic trafficking in iron uptake by characterizing a mutant defective in the Sec1/Munc18 (SM) protein Vps45. This protein is known to regulate the machinery for vesicle trafficking and fusion via interactions with SNARE proteins. As expected, a vps45 deletion mutant was impaired in endocytosis and showed sensitivity to trafficking inhibitors. The mutant also showed poor growth on iron-limited media and a defect in transporting the Cfo1 ferroxidase of the high-affinity iron uptake system from the plasma membrane to the vacuole. Remarkably, we made the novel observation that Vps45 also contributes to mitochondrial function in that a Vps45-Gfp fusion protein associated with mitotracker, and a vps45 mutant showed enhanced sensitivity to inhibitors of electron transport complexes as well as changes in mitochondrial membrane potential. Consistent with mitochondrial function, the vps45 mutant was impaired in calcium homeostasis. To assess the relevance of these defects for virulence, we examined cell surface properties of the vps45 mutant and found increased sensitivity to agents that challenge cell wall integrity and to antifungal drugs. A change in cell wall properties was consistent with our observation of altered capsule polysaccharide attachment, and with attenuated virulence in a mouse model of cryptococcosis. Overall, our studies reveal a novel role for Vps45-mediated trafficking for iron uptake, mitochondrial function and virulence. Cryptococcus neoformans is a causative agent of cryptococcal meningitis, a disease that is estimated to cause ~ 15% of AIDS-related deaths. In this context, cryptococosis is one of the most common causes of mortality in people with HIV/AIDS, closely behind tuberculosis. Unfortunately, very few antifungal drugs are available to treat this disease. However, understanding mechanisms involved in the pathogenesis of C. neoformans can lead to new therapeutic avenues. In this study, we discovered a new role for a regulatory protein involved in vesicle transport. Specifically, we found that the Vps45 protein, which regulates vesicle fusion, participates in the trafficking of iron into fungal cells, supports mitochondria function, mediates antifungal resistance and is required for virulence. These discoveries shed light on the molecular mechanisms underlying the uptake and use of iron as an essential nutrient for the virulence of C. neoformans. Further investigations could lead to the development of drugs that target Vps45-mediated processes.
Collapse
|
41
|
Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C, Sanchis M, Capilla J, Nicolás FE, Garre V. Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci Rep 2018; 8:7660. [PMID: 29769603 PMCID: PMC5955967 DOI: 10.1038/s41598-018-26051-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mucormycosis is an emerging angio-invasive infection caused by Mucorales that presents unacceptable mortality rates. Iron uptake has been related to mucormycosis, since serum iron availability predisposes the host to suffer this infection. In addition, iron uptake has been described as a limiting factor that determines virulence in other fungal infections, becoming a promising field to study virulence in Mucorales. Here, we identified a gene family of three ferroxidases in Mucor circinelloides, fet3a, fet3b and fet3c, which are overexpressed during infection in a mouse model for mucormycosis, and their expression in vitro is regulated by the availability of iron in the culture media and the dimorphic state. Thus, only fet3a is specifically expressed during yeast growth under anaerobic conditions, whereas fet3b and fet3c are specifically expressed in mycelium during aerobic growth. A deep genetic analysis revealed partially redundant roles of the three genes, showing a predominant role of fet3c, which is required for virulence during in vivo infections, and shared functional roles with fet3b and fet3c during vegetative growth in media with low iron concentration. These results represent the first described functional specialization of an iron uptake system during fungal dimorphism.
Collapse
Affiliation(s)
| | - Carlos Pérez-Arques
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Laura Murcia
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Pablo Martínez-García
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Carlos Lax
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Sanchis
- Unidad de Microbiología, Universitat Rovira i Virgili. IISPV, Tarragona, Spain
| | - Javier Capilla
- Unidad de Microbiología, Universitat Rovira i Virgili. IISPV, Tarragona, Spain
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
42
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
43
|
Abstract
The devastating infections that fungal pathogens cause in humans are underappreciated relative to viral, bacterial and parasitic diseases. In recent years, the contributions to virulence of reductive iron uptake, siderophore-mediated uptake and heme acquisition have been identified in the best studied and most life-threatening fungal pathogens: Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In particular, exciting new work illustrates the importance of iron acquisition from heme and hemoglobin in the virulence of pathogenic yeasts. However, the challenge of establishing how these fungi gain access to hemoglobin in blood and to other sources of heme remains to be fully addressed. Recent studies are also expanding our knowledge of iron uptake in less-well studied fungal pathogens, including dimorphic fungi where new information reveals an integration of iron acquisition with morphogenesis and cell-surface properties for adhesion to host cells. Overall, the accumulating information provides opportunities to exploit iron acquisition for antifungal therapy, and new work highlights the development of specific inhibitors of siderophore biosynthesis and metal chelators for therapeutic use alone or in conjunction with existing antifungal drugs. It is clear that iron-related therapies will need to be customized for specific diseases because the emerging view is that fungal pathogens use different combinations of strategies for iron acquisition in the varied niches of vertebrate hosts.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
44
|
Helsel ME, White EJ, Razvi SZA, Alies B, Franz KJ. Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. Metallomics 2017; 9:69-81. [PMID: 27853789 DOI: 10.1039/c6mt00172f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A panel of iron (Fe) and copper (Cu) chelators was screened for growth inhibitory activity against the fungal pathogen Cryptococcus neoformans. Select bidentate metal-binding ligands containing mixed O,S or O,N donor atoms were identified as agents that induce cell killing in a Cu-dependent manner. Conversely, structurally similar ligands with O,O donor atoms did not inhibit C. neoformans growth regardless of Cu status. Studies of Cu(ii) and Cu(i) binding affinity, lipophilicity, and growth recovery assays of Cu-import deficient cells identified lipophilicity of thermodynamically stable CuIIL2 complexes as the best predictor of antifungal activity. These same complexes induce cellular hyperaccumulation of Zn and Fe in addition to Cu. The results described here present the utility of appropriate metal-binding ligands as potential antifungal agents that manipulate cellular metal balance as an antimicrobial strategy.
Collapse
Affiliation(s)
- Marian E Helsel
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Elizabeth J White
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Sayyeda Zeenat A Razvi
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Bruno Alies
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| | - Katherine J Franz
- Department of Chemistry, Duke University, French Family Science Center, 124 Science Drive, 22708, Durham, NC, USA.
| |
Collapse
|
45
|
Pradhan A, Herrero-de-Dios C, Belmonte R, Budge S, Lopez Garcia A, Kolmogorova A, Lee KK, Martin BD, Ribeiro A, Bebes A, Yuecel R, Gow NAR, Munro CA, MacCallum DM, Quinn J, Brown AJP. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathog 2017; 13:e1006405. [PMID: 28542620 PMCID: PMC5456399 DOI: 10.1371/journal.ppat.1006405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/02/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host. The pathogenic yeast Candida albicans faces multiple challenges within its human host. These include the need to protect itself against the toxic oxidants used by the host to kill invading microbes, and the need to scavenge iron, an essential micronutrient that is limiting in certain tissues. The iron-containing enzyme, catalase, detoxifies hydrogen peroxide, thereby playing a major role in protecting C. albicans against reactive oxygen species and neutrophil killing. Indeed, we show that high basal catalase expression increases the resistance of this yeast to oxidative and combinatorial (oxidative plus cationic) stresses. Yet, rather than enhancing the virulence of C. albicans as had been predicted, high basal catalase expression decreases fungal colonisation in certain iron-limiting tissues. Furthermore, we demonstrate that catalase inactivation does not significantly perturb the virulence of C. albicans in models of systemic infection. We also show that ectopic catalase expression increases the demand for iron in C. albicans, thereby reducing the fitness of this pathogen in the absence of stress under iron-limiting conditions. Therefore, high basal catalase expression is a double-edged sword: it enhances the fitness of C. albicans in the presence of stress, but reduces fitness in the absence of stress. This explains why catalase overexpression reduces rather than enhances virulence.
Collapse
Affiliation(s)
- Arnab Pradhan
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Carmen Herrero-de-Dios
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Rodrigo Belmonte
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Angela Lopez Garcia
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Aljona Kolmogorova
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Keunsook K. Lee
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Brennan D. Martin
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Antonio Ribeiro
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Attila Bebes
- Iain Fraser Cytometry Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Carol A. Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Physiological Differences in Cryptococcus neoformans Strains In Vitro versus In Vivo and Their Effects on Antifungal Susceptibility. Antimicrob Agents Chemother 2017; 61:AAC.02108-16. [PMID: 28031206 PMCID: PMC5328578 DOI: 10.1128/aac.02108-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cryptococcus neoformans is an environmentally ubiquitous fungal pathogen that primarily causes disease in people with compromised immune systems, particularly those with advanced AIDS. There are estimated to be almost 1 million cases per year of cryptococcal meningitis in patients infected with human immunodeficiency virus, leading to over 600,000 annual deaths, with a particular burden in sub-Saharan Africa. Amphotericin B (AMB) and fluconazole (FLC) are key components of cryptococcal meningitis treatment: AMB is used for induction, and FLC is for consolidation, maintenance and, for occasional individuals, prophylaxis. However, the results of standard antifungal susceptibility testing (AFST) for AMB and FLC do not correlate well with therapeutic outcomes and, consequently, no clinical breakpoints have been established. While a number of explanations for this absence of correlation have been proffered, one potential reason that has not been adequately explored is the possibility that the physiological differences between the in vivo infection environment and the in vitro AFST environment lead to disparate drug susceptibilities. These susceptibility-influencing factors include melanization, which does not occur during AFST, the size of the polysaccharide capsule, which is larger in infecting cells than in those grown under normal laboratory conditions, and the presence of large polyploid "titan cells," which rarely occur under laboratory conditions. Understanding whether and how C. neoformans differentially expresses mechanisms of resistance to AMB and FLC in the AFST environment compared to the in vivo environment could enhance our ability to interpret AFST results and possibly lead to the development of more applicable testing methods.
Collapse
|
47
|
Hu G, Caza M, Bakkeren E, Kretschmer M, Bairwa G, Reiner E, Kronstad J. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2017; 19. [PMID: 28061020 DOI: 10.1111/cmi.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 12/29/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans delivers virulence factors such as capsule polysaccharide to the cell surface to cause disease in vertebrate hosts. In this study, we screened for mutants sensitive to the secretion inhibitor brefeldin A to identify secretory pathway components that contribute to virulence. We identified an ortholog of the cell division control protein 50 (Cdc50) family of the noncatalytic subunit of type IV P-type ATPases (flippases) that establish phospholipid asymmetry in membranes and function in vesicle-mediated trafficking. We found that a cdc50 mutant in C. neoformans was defective for survival in macrophages, attenuated for virulence in mice and impaired in iron acquisition. The mutant also showed increased sensitivity to drugs associated with phospholipid metabolism (cinnamycin and miltefosine), the antifungal drug fluconazole and curcumin, an iron chelator that accumulates in the endoplasmic reticulum. Cdc50 is expected to function with catalytic subunits of flippases, and we previously documented the involvement of the flippase aminophospholipid translocases (Apt1) in virulence factor delivery. A comparison of phenotypes with mutants defective in genes encoding candidate flippases (designated APT1, APT2, APT3, and APT4) revealed similarities primarily between cdc50 and apt1 suggesting a potential functional interaction. Overall, these results highlight the importance of membrane composition and homeostasis for the ability of C. neoformans to cause disease.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erik Bakkeren
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Institute of Microbiology, Zurich, Switzerland
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Gaurav Bairwa
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ethan Reiner
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Abstract
The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals.
Collapse
|
49
|
The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans. Biochem Biophys Res Commun 2016; 477:706-711. [PMID: 27353379 DOI: 10.1016/j.bbrc.2016.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022]
Abstract
The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis.
Collapse
|
50
|
The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans. mSphere 2016; 1:mSphere00080-15. [PMID: 27303693 PMCID: PMC4863601 DOI: 10.1128/msphere.00080-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022] Open
Abstract
Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal proliferation in vertebrate hosts. In this study, we examined the roles of the regulatory proteins Mig1 and HapX in mitochondrial function and antifungal drug susceptibility in the fungus Cryptococcus neoformans. This pathogen is a particular threat to the large population of individuals infected with human immunodeficiency virus (HIV). Our analysis revealed regulatory interactions between Mig1 and HapX, and a role for Mig1 in mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Importantly, loss of Mig1 increased susceptibility to the antifungal drug fluconazole, which is commonly used to treat cryptococcal disease. These studies highlight an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. The opportunistic pathogen Cryptococcus neoformans causes fungal meningoencephalitis in immunocompromised individuals. In previous studies, we found that the Hap complex in this pathogen represses genes encoding mitochondrial respiratory functions and tricarboxylic acid (TCA) cycle components under low-iron conditions. The orthologous Hap2/3/4/5 complex in Saccharomyces cerevisiae exerts a regulatory influence on mitochondrial functions, and Hap4 is subject to glucose repression via the carbon catabolite repressor Mig1. In this study, we explored the regulatory link between a candidate ortholog of the Mig1 protein and the HapX component of the Hap complex in C. neoformans. This analysis revealed repression of MIG1 by HapX and activation of HAPX by Mig1 under low-iron conditions and Mig1 regulation of mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Consistently with these regulatory functions, a mig1Δ mutant had impaired growth on inhibitors of mitochondrial respiration and inducers of ROS. Furthermore, deletion of MIG1 provoked a dysregulation in nutrient sensing via the TOR pathway and impacted the pathway for cell wall remodeling. Importantly, loss of Mig1 increased susceptibility to fluconazole, thus further establishing a link between azole antifungal drugs and mitochondrial function. Mig1 and HapX were also required together for survival in macrophages, but Mig1 alone had a minimal impact on virulence in mice. Overall, these studies provide novel insights into a HapX/Mig1 regulatory network and reinforce an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. IMPORTANCE Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal proliferation in vertebrate hosts. In this study, we examined the roles of the regulatory proteins Mig1 and HapX in mitochondrial function and antifungal drug susceptibility in the fungus Cryptococcus neoformans. This pathogen is a particular threat to the large population of individuals infected with human immunodeficiency virus (HIV). Our analysis revealed regulatory interactions between Mig1 and HapX, and a role for Mig1 in mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Importantly, loss of Mig1 increased susceptibility to the antifungal drug fluconazole, which is commonly used to treat cryptococcal disease. These studies highlight an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs.
Collapse
|