1
|
Kappelt F, Maniak M. LPIN2 is the phosphatase dominating the penultimate step of neutral lipid biosynthesis in Dictyostelium. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001296. [PMID: 39512784 PMCID: PMC11541544 DOI: 10.17912/micropub.biology.001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Dictyostelium amoebae store surplus fatty acids from the diet in form of lipid droplets. Some of the enzymes governing neutral lipid synthesis are already known. For the phosphatidic acid-specific phosphatases, six genes were found, one of which was automatically annotated as LPIN2. Two GFP-tagged variants of LPIN2 homogeneously distribute in the cytoplasm and no organelle association was observed. LPIN2 - mutants contain less than 17% residual amount of the major neutral lipid species, but phospholipid amounts are not obviously affected. A growth retardation on bacteria as food source may suggest that lipid droplets serve to detoxify excess free fatty acids.
Collapse
|
2
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
3
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
McPhee MJ, Salsman J, Foster J, Thompson J, Mathavarajah S, Dellaire G, Ridgway ND. Running 'LAPS' Around nLD: Nuclear Lipid Droplet Form and Function. Front Cell Dev Biol 2022; 10:837406. [PMID: 35178392 PMCID: PMC8846306 DOI: 10.3389/fcell.2022.837406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The nucleus harbours numerous protein subdomains and condensates that regulate chromatin organization, gene expression and genomic stress. A novel nuclear subdomain that is formed following exposure of cells to excess fatty acids is the nuclear lipid droplet (nLD), which is composed of a neutral lipid core surrounded by a phospholipid monolayer and associated regulatory and lipid biosynthetic enzymes. While structurally resembling cytoplasmic LDs, nLDs are formed by distinct but poorly understood mechanisms that involve the emergence of lipid droplets from the lumen of the nucleoplasmic reticulum and de novo lipid synthesis. Luminal lipid droplets that emerge into the nucleoplasm do so at regions of the inner nuclear membrane that become enriched in promyelocytic leukemia (PML) protein. The resulting nLDs that retain PML on their surface are termed lipid-associated PML structures (LAPS), and are distinct from canonical PML nuclear bodies (NB) as they lack key proteins and modifications associated with these NBs. PML is a key regulator of nuclear signaling events and PML NBs are sites of gene regulation and post-translational modification of transcription factors. Therefore, the subfraction of nLDs that form LAPS could regulate lipid stress responses through their recruitment and retention of the PML protein. Both nLDs and LAPS have lipid biosynthetic enzymes on their surface suggesting they are active sites for nuclear phospholipid and triacylglycerol synthesis as well as global lipid regulation. In this review we have summarized the current understanding of nLD and LAPS biogenesis in different cell types, their structure and composition relative to other PML-associated cellular structures, and their role in coordinating a nuclear response to cellular overload of fatty acids.
Collapse
Affiliation(s)
- Michael J McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jason Foster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jordan Thompson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
6
|
Kappelt F, Du Ma X, Abou Hasna B, Kornke JM, Maniak M. Phospholipids containing ether-bound hydrocarbon-chains are essential for efficient phagocytosis and neutral lipids of the ester-type perturb development in Dictyostelium. Biol Open 2020; 9:9/7/bio052126. [PMID: 32675052 PMCID: PMC7375469 DOI: 10.1242/bio.052126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipids are the building blocks for cellular membranes; they provide signalling molecules for membrane dynamics and serve as energy stores. One path of their synthesis is initiated by glycerol-3-phosphate acyltransferase (GPAT), which in Dictyostelium resides on the endoplasmic reticulum. When an excess of fatty acids is present, it redistributes to storage organelles, the lipid droplets. Mutants, where the GPAT was eliminated by homologous recombination, produce fewer lipid droplets and are almost devoid of triacylglycerols (TAG), rendering them more resistant to cell death and cell loss in the developmental stages preceding fruiting body formation. The enzyme most closely related to GPAT is called FARAT, because it combines a fatty acyl-reductase (FAR) and an acyltransferase (AT) domain in its sequence. The protein is confined to the lumen of the peroxisome, where it transfers a fatty acid to dihydroxyacetone-phosphate initiating the synthesis of ether lipids, later completed at the endoplasmic reticulum. A mutant lacking FARAT produces lipid droplets that are devoid of the storage lipid monoalkyl-diacyl-glycerol (MDG), but the efficiency of spore formation in the developmental cycle is largely unaltered. Instead, these mutants are strongly impaired in phagocytosis of yeast particles, which is attributed to reduced synthesis of membrane phospholipids containing ether-linked chains.
Collapse
Affiliation(s)
| | - Xiaoli Du Ma
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | | | | | - Markus Maniak
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
7
|
Kretzschmar FK, Doner NM, Krawczyk HE, Scholz P, Schmitt K, Valerius O, Braus GH, Mullen RT, Ischebeck T. Identification of Low-Abundance Lipid Droplet Proteins in Seeds and Seedlings. PLANT PHYSIOLOGY 2020; 182:1326-1345. [PMID: 31826923 PMCID: PMC7054876 DOI: 10.1104/pp.19.01255] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/24/2019] [Indexed: 05/11/2023]
Abstract
The developmental program of seed formation, germination, and early seedling growth requires not only tight regulation of cell division and metabolism, but also concerted control of the structure and function of organelles, which relies on specific changes in their protein composition. Of particular interest is the switch from heterotrophic to photoautotrophic seedling growth, for which cytoplasmic lipid droplets (LDs) play a critical role as depots for energy-rich storage lipids. Here, we present the results of a bottom-up proteomics study analyzing the total protein fractions and LD-enriched fractions in eight different developmental phases during silique (seed) development, seed germination, and seedling establishment in Arabidopsis (Arabidopsis thaliana). The quantitative analysis of the LD proteome using LD-enrichment factors led to the identification of six previously unidentified and comparably low-abundance LD proteins, each of which was confirmed by intracellular localization studies with fluorescent protein fusions. In addition to these advances in LD protein discovery and the potential insights provided to as yet unexplored aspects in plant LD functions, our data set allowed for a comparative analysis of the LD protein composition throughout the various developmental phases examined. Among the most notable of the alterations in the LD proteome were those during seedling establishment, indicating a switch in the physiological function(s) of LDs after greening of the cotyledons. This work highlights LDs as dynamic organelles with functions beyond lipid storage.
Collapse
Affiliation(s)
- Franziska K Kretzschmar
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| | - Nathan M Doner
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| | - Patricia Scholz
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- University of Göttingen, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Department of Molecular Microbiology and Genetics, 37077 Göttingen, Germany
| | - Oliver Valerius
- University of Göttingen, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Department of Molecular Microbiology and Genetics, 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Department of Molecular Microbiology and Genetics, 37077 Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077 Göttingen, Germany
| |
Collapse
|
8
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
9
|
López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, Hagedorn M, King JS, Soldati T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathog 2018; 14:e1007501. [PMID: 30596802 PMCID: PMC6329560 DOI: 10.1371/journal.ppat.1007501] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments. Upon uptake by a host cell, intracellular pathogens reside in a membranous compartment called phagosome. Within the phagosome, microbes are protected from the extracellular and cytosolic immune defences, whilst access to nutrients is limited. Some microbes gain access to the host cytosol by damaging the membrane of the phagosome, a step preceding egress and dissemination. Autophagy, a major catabolic pathway in eukaryotes, has been previously proposed to contribute to autonomous cell defence and to repair the membrane damage induced by intracellular pathogens. Here, we provide evidence that, in Dictyostelium discoideum, autophagy does not work alone in the containment of vacuolar mycobacteria, but it operates together with the Endosomal Sorting Complex Required for Transport (ESCRT), a protein machinery recently shown to repair endolysosomal damage. We demonstrate that the membrane perforations induced by the ESX-1 secretion system of Mycobacterium marinum are targeted by both ESCRT and autophagy, which seal the damaged vacuole. We propose that ESCRT might mend small membrane pores, whilst autophagy patches larger cumulative wounds. Interestingly, and contrary to what has been described in mammalian cells for ESCRT-dependent endolysosomal repair, in D. discoideum, repair of sterile membrane damage appears not to require Ca2+. The evolutionary conservation of the function of ESCRT in membrane repair suggests that this machinery plays an ancestral and widespread role to contain a broad range of intracellular pathogens.
Collapse
Affiliation(s)
- Ana T. López-Jiménez
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Lilli Gerstenmaier
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Monica Hagedorn
- Life Sciences and Chemistry, Jacobs University Bremen gGmbH, group Ribogenetics, Bremen, Germany
| | - Jason S. King
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Unfolding the Endoplasmic Reticulum of a Social Amoeba: Dictyostelium discoideum as a New Model for the Study of Endoplasmic Reticulum Stress. Cells 2018; 7:cells7060056. [PMID: 29890774 PMCID: PMC6025073 DOI: 10.3390/cells7060056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum (ER) is a membranous network with an intricate dynamic architecture necessary for various essential cellular processes. Nearly one third of the proteins trafficking through the secretory pathway are folded and matured in the ER. Additionally, it acts as calcium storage, and it is a main source for lipid biosynthesis. The ER is highly connected with other organelles through regions of membrane apposition that allow organelle remodeling, as well as lipid and calcium traffic. Cells are under constant changes due to metabolic requirements and environmental conditions that challenge the ER network’s maintenance. The unfolded protein response (UPR) is a signaling pathway that restores homeostasis of this intracellular compartment upon ER stress conditions by reducing the load of proteins, and by increasing the processes of protein folding and degradation. Significant progress on the study of the mechanisms that restore ER homeostasis was achieved using model organisms such as yeast, Arabidopsis, and mammalian cells. In this review, we address the current knowledge on ER architecture and ER stress response in Dictyostelium discoideum. This social amoeba alternates between unicellular and multicellular phases and is recognized as a valuable biomedical model organism and an alternative to yeast, particularly for the presence of traits conserved in animal cells that were lost in fungi.
Collapse
|
12
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis 2017; 11:e0006104. [PMID: 29284029 PMCID: PMC5746216 DOI: 10.1371/journal.pntd.0006104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
Primary Amoebic Meningoencephalitis (PAM) is caused by Naegleria fowleri, a free-living amoeba that occasionally infects humans. While considered "rare" (but likely underreported) the high mortality rate and lack of established success in treatment makes PAM a particularly devastating infection. In the absence of economic inducements to invest in development of anti-PAM drugs by the pharmaceutical industry, anti-PAM drug discovery largely relies on drug 'repurposing'-a cost effective strategy to apply known drugs for treatment of rare or neglected diseases. Similar to fungi, N. fowleri has an essential requirement for ergosterol, a building block of plasma and cell membranes. Disruption of sterol biosynthesis by small-molecule inhibitors is a validated interventional strategy against fungal pathogens of medical and agricultural importance. The N. fowleri genome encodes the sterol 14-demethylase (CYP51) target sharing ~35% sequence identity to fungal orthologues. The similarity of targets raises the possibility of repurposing anti-mycotic drugs and optimization of their usage for the treatment of PAM. In this work, we (i) systematically assessed the impact of anti-fungal azole drugs, known as conazoles, on sterol biosynthesis and viability of cultured N. fowleri trophozotes, (ii) identified the endogenous CYP51 substrate by mass spectrometry analysis of N. fowleri lipids, and (iii) analyzed the interactions between the recombinant CYP51 target and conazoles by UV-vis spectroscopy and x-ray crystallography. Collectively, the target-based and parasite-based data obtained in these studies validated CYP51 as a potentially 'druggable' target in N. fowleri, and conazole drugs as the candidates for assessment in the animal model of PAM.
Collapse
Affiliation(s)
- Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Claudia M. Calvet
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Gareth Jennings
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenxu Zhou
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Alexander Aksenov
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Madeline R. Luth
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - W. David Nes
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Abstract
Triacylglycerol is a universal storage molecule for metabolic energy in living organisms. However, Dictyostelium amoebae, that have accumulated storage fat from added fatty acids do not progress through the starvation period preceding the development of the durable spore. Mutants deficient in genes of fat metabolism, such as fcsA, encoding a fatty acid activating enzyme, or dgat1 and dgat2, specifying proteins that synthesize triacylglycerol, strongly increase their chances to contribute to the spore fraction of the developing fruiting body, but lose the ability to produce storage fat efficiently. Dictyostelium seipin, an orthologue of a human protein that in patients causes the complete loss of adipose tissue when mutated, does not quantitatively affect fat storage in the amoeba. Dictyostelium seiP knockout mutants have lipid droplets that are enlarged in size but reduced in number. These mutants are as vulnerable as the wild type when exposed to fatty acids during their vegetative growth phase, and do not efficiently enter the spore head in Dictyostelium development. Summary: In contrast to many living organisms, storage fat is not beneficial for Dictyostelium cells when progressing through starvation and subsequent development of a dormant stage.
Collapse
Affiliation(s)
- Jessica M Kornke
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | - Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
15
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
16
|
Barisch C, Soldati T. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie 2017; 141:54-61. [PMID: 28587792 DOI: 10.1016/j.biochi.2017.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
Tuberculosis (Tb) is a lung infection caused by Mycobacterium tuberculosis (Mtb). With one third of the world population latently infected, it represents the most prevalent bacterial infectious diseases worldwide. Typically, persistence is linked to so-called "dormant" slow-growing bacteria, which have a low metabolic rate and a reduced response to antibiotic treatments. However, dormant bacteria regain growth and virulence when the immune system is weakened, leading again to the active form of the disease. Fatty acids (FAs) released from host triacylglycerols (TAGs) and sterols are proposed to serve as sole carbon sources during infection. The metabolism of FAs requires beta-oxidation as well as gluconeogenesis and the glyoxylate shunt. Interestingly, the Mtb genome encodes more than hundred proteins involved in the five reactions of beta-oxidation, clearly demonstrating the importance of lipids as energy source. FAs have also been proposed to play a role during resuscitation, the resumption of replicative activities from dormancy. Lipid droplets (LDs) are energy and carbon reservoirs and have been described in all domains. TAGs and sterol esters (SEs) are stored in their hydrophobic core, surrounded by a phospholipid monolayer. Importantly, host LDs have been described as crucial for several intracellular bacterial pathogens and viruses and specifically translocate to the pathogen-containing vacuole (PVC) during mycobacteria infection. FAs released from host LDs are used by the pathogen as energy source and as building blocks for membrane synthesis. Despite their essential role, the mechanisms by which pathogenic mycobacteria induce the cellular redistribution of LDs and gain access to the stored lipids are still poorly understood. This review describes recent evidence about the dual interaction of mycobacteria with host LDs and membrane phospholipids and integrates them in a broader view of the underlying cellular processes manipulated by various intracellular pathogens to gain access to host lipids.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211, Geneva-4, Switzerland.
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211, Geneva-4, Switzerland
| |
Collapse
|
17
|
Meyers A, Weiskittel TM, Dalhaimer P. Lipid Droplets: Formation to Breakdown. Lipids 2017; 52:465-475. [PMID: 28528432 DOI: 10.1007/s11745-017-4263-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
One of the most exciting areas of cell biology during the last decade has been the study of lipid droplets. Lipid droplets allow cells to store non-polar molecules such as neutral lipids in specific compartments where they are sequestered from the aqueous environment of the cell yet can be accessed through regulated mechanisms. These structures are highly conserved, appearing in organisms throughout the phylogenetic tree. Until somewhat recently, lipid droplets were widely regarded as inert, however progress in the field has continued to demonstrate their vast roles in a number of cellular processes in both mitotic and post-mitotic cells. No doubt the increase in the attention given to lipid droplet research is due to their central role in current pressing human diseases such as obesity, type-2 diabetes, and atherosclerosis. This review provides a mechanistic timeline from neutral lipid synthesis through lipid droplet formation and size augmentation to droplet breakdown.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
18
|
Meyers A, Chourey K, Weiskittel TM, Pfiffner S, Dunlap JR, Hettich RL, Dalhaimer P. The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe. J Microbiol 2017; 55:112-122. [PMID: 28120187 DOI: 10.1007/s12275-017-6205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022]
Abstract
Lipid droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer with bound proteins. Much of the information on lipid droplet function comes from proteomic and lipodomic studies that identify the components of droplets isolated from organisms throughout the phylogenetic tree. Here, we add to that important inventory by reporting lipid droplet factors from the fission yeast, Schizosaccharomyces pombe. Unique to this study was the fact that cells were cultured in three different environments: 1) late log growth phase in glucose-based media, 2) stationary phase in glucosebased media, and 3) late log growth phase in media containing oleic acid. We confirmed colocalization of major factors with lipid droplets using live-cell fluorescent microscopy. We also analyzed droplets from each of the three conditions for sterol ester (SE) and triacylglycerol (TAG) content, along with their respective fatty acid compositions. We identified a previously undiscovered lipid droplet protein, Vip1p, which affects droplet size distribution. The results provide further insight into the workings of these ubiquitous organelles.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA
| | - Karuna Chourey
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA
| | - Susan Pfiffner
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - John R Dunlap
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.,Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA. .,Institute of Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
19
|
Thul PJ, Tschapalda K, Kolkhof P, Thiam AR, Oberer M, Beller M. Lipid droplet subset targeting of the Drosophila protein CG2254/dmLdsdh1. J Cell Sci 2017; 130:3141-3157. [DOI: 10.1242/jcs.199661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/26/2017] [Indexed: 01/02/2023] Open
Abstract
Lipid droplets (LDs) are the principal organelles of lipid storage. They consist of a hydrophobic core of storage lipids, surrounded by a phospholipid monolayer with proteins attached. While some of these proteins are essential to regulate cellular and organismic lipid metabolism, key questions concerning LD protein function, such as their targeting to LDs, are still unanswered. Intriguingly, some proteins are restricted to LD subsets by an as yet unknown mechanism. This finding makes LD targeting even more complex.
Here, we characterize the Drosophila protein CG2254 which targets LD subsets in cultured cells and different larval Drosophila tissues, where the prevalence of LD subsets appears highly dynamic. We find that an amphipathic amino acid stretch mediates CG2254 LD localization. Additionally, we identified a juxtaposed sequence stretch limiting CG2254 localization to LD subsets. This sequence is sufficient to restrict a chimeric protein - consisting of the subset targeting sequence introduced to an otherwise pan LD localized protein sequence - to LD subsets. Based on its subcellular localization and annotated function, we suggest to rename CG2254 to Lipid droplet subset dehydrogenase 1 (Ldsdh1).
Collapse
Affiliation(s)
- Peter J. Thul
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kirsten Tschapalda
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, Ecole Normale Superieure, PSL Research University, Universite de Paris Diderot Sorbonne Paris-Cite, Paris, France
| | - Monika Oberer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Austria
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Kolkhof P, Werthebach M, van de Venn A, Poschmann G, Chen L, Welte M, Stühler K, Beller M. A Luciferase-fragment Complementation Assay to Detect Lipid Droplet-associated Protein-Protein Interactions. Mol Cell Proteomics 2016; 16:329-345. [PMID: 27956707 DOI: 10.1074/mcp.m116.061499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
A critical challenge for all organisms is to carefully control the amount of lipids they store. An important node for this regulation is the protein coat present at the surface of lipid droplets (LDs), the intracellular organelles dedicated to lipid storage. Only limited aspects of this regulation are understood so far. For the probably best characterized case, the regulation of lipolysis in mammals, some of the major protein players have been identified, and it has been established that this process crucially depends on an orchestrated set of protein-protein interactions. Proteomic analysis has revealed that LDs are associated with dozens, if not hundreds, of different proteins, most of them poorly characterized, with even fewer data regarding which of them might physically interact. To comprehensively understand the mechanism of lipid storage regulation, it will likely be essential to define the interactome of LD-associated proteins.Previous studies of such interactions were hampered by technical limitations. Therefore, we have developed a split-luciferase based protein-protein interaction assay and test for interactions among 47 proteins from Drosophila and from mouse. We confirmed previously described interactions and identified many new ones. In 1561 complementation tests, we assayed for interactions among 487 protein pairs of which 92 (19%) resulted in a successful luciferase complementation. These results suggest that a prominent fraction of the LD-associated proteome participates in protein-protein interactions.In targeted experiments, we analyzed the two proteins Jabba and CG9186 in greater detail. Jabba mediates the sequestration of histones to LDs. We successfully applied our split luciferase complementation assay to learn more about this function as we were e.g. able to map the interaction between Jabba and histones. For CG9186, expression levels affect the positioning of LDs. Here, we reveal the ubiquitination of CG9186, and link this posttranslational modification to LD cluster induction.
Collapse
Affiliation(s)
- Petra Kolkhof
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Werthebach
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,§Systems Biology of Lipid metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Anna van de Venn
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,§Systems Biology of Lipid metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Gereon Poschmann
- ¶Molecular Proteomics Laboratory, Institute for Molecular Medicine, Heinrich Heine University, Duesseldorf, Germany.,‖Biomedical Research Center (BMFZ), Heinrich Heine University, Duesseldorf, Germany
| | - Lili Chen
- **Department of Biology, University of Rochester, Rochester, New York
| | - Michael Welte
- **Department of Biology, University of Rochester, Rochester, New York
| | - Kai Stühler
- ¶Molecular Proteomics Laboratory, Institute for Molecular Medicine, Heinrich Heine University, Duesseldorf, Germany.,‖Biomedical Research Center (BMFZ), Heinrich Heine University, Duesseldorf, Germany
| | - Mathias Beller
- From the ‡Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany; .,§Systems Biology of Lipid metabolism, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
21
|
Conte M, Franceschi C, Sandri M, Salvioli S. Perilipin 2 and Age-Related Metabolic Diseases: A New Perspective. Trends Endocrinol Metab 2016; 27:893-903. [PMID: 27659144 DOI: 10.1016/j.tem.2016.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
Perilipin 2 (Plin2), a protein associated with the metabolism of intracellular lipid droplets (LDs), has long been considered only for its role in lipid storage. However, the manipulation of its expression affects the severity of a variety of metabolic and age-related diseases, such as fatty liver, insulin resistance and type 2 diabetes (T2D), cardiovascular disease, atherosclerosis, sarcopenia, and cancer, suggesting that this protein may play a role in these pathological conditions. In particular, its downregulation in mice prevents or mitigates some of the above mentioned diseases. Conversely, in humans high levels of Plin2 are present in sarcopenia, hepatic steatosis, atherosclerosis, and some types of cancer. We propose that inhibition of Plin2 might be a strategy to counteract several metabolic and age-related diseases.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy.
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Marco Sandri
- Department of Biomedical Science, University of Padova, 35121 Padova, Italy; Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
22
|
Santucci P, Bouzid F, Smichi N, Poncin I, Kremer L, De Chastellier C, Drancourt M, Canaan S. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Front Cell Infect Microbiol 2016; 6:122. [PMID: 27774438 PMCID: PMC5054039 DOI: 10.3389/fcimb.2016.00122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Feriel Bouzid
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITEMarseille, France
| | - Nabil Smichi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France
| | - Isabelle Poncin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Laurent Kremer
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Institut National de la Santé et de la Recherche MédicaleMontpellier, France
| | - Chantal De Chastellier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITE Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| |
Collapse
|
23
|
Viljoen A, Blaise M, de Chastellier C, Kremer L. MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus. Mol Microbiol 2016; 102:611-627. [PMID: 27513974 DOI: 10.1111/mmi.13482] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Slow growing pathogenic mycobacteria utilize host-derived lipids and accumulate large amounts of triacylglycerol (TAG) in the form of intracytoplasmic lipid inclusions (ILI), serving as a source of carbon and energy during prolonged infection. Mycobacterium abscessus is an emerging and rapidly growing species capable to induce severe and chronic pulmonary infections. However, whether M. abscessus, like Mycobacterium tuberculosis, possesses the machinery to acquire and store host lipids, remains unaddressed. Herein, we aimed at deciphering the contribution of the seven putative M. abscessus TAG synthases (Tgs) in TAG synthesis/accumulation thanks to a combination of genetic and biochemical techniques and a well-defined foamy macrophage (FM) model along with electron microscopy. Targeted gene deletion and functional complementation studies identified the MAB_3551c product, Tgs1, as the major Tgs involved in TAG production. Tgs1 exhibits a preference for long acyl-CoA substrates and site-directed mutagenesis demonstrated that His144 and Gln145 are essential for enzymatic activity. Importantly, in the lipid-rich intracellular context of FM, M. abscessus formed large ILI in a Tgs1-dependent manner. This supports the ability of M. abscessus to assimilate host lipids and the crucial role of Tgs1 in intramycobacterial TAG production, which may represent important mechanisms for long-term storage of a rich energy supply.
Collapse
Affiliation(s)
- Albertus Viljoen
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Mickael Blaise
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, Marseille, 13288, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France.,INSERM, CPBS, Montpellier, 34293, France
| |
Collapse
|
24
|
Chughtai AA, Kaššák F, Kostrouchová M, Novotný JP, Krause MW, Saudek V, Kostrouch Z, Kostrouchová M. Perilipin-related protein regulates lipid metabolism in C. elegans. PeerJ 2015; 3:e1213. [PMID: 26357594 PMCID: PMC4562238 DOI: 10.7717/peerj.1213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets similarly as human perilipins 1 and 2. Downregulation or elimination of W01A8.1 affects the appearance of lipid droplets resulting in the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. Visualization of lipid containing structures by CARS microscopy in vivo showed that lipid-containing structures become gradually enlarged during oogenesis and relocate during the first zygotic division around the dividing nucleus. In mutant embryos, the lipid containing structures show defective intracellular distribution in subsequent embryonic divisions and become gradually smaller during further development. In contrast to embryos, lipid-containing structures in enterocytes and in epidermal cells of adult animals are smaller in mutants than in wild type animals. Our results demonstrate the existence of a perilipin-related regulation of fat metabolism in nematodes and provide new possibilities for functional studies of lipid metabolism.
Collapse
Affiliation(s)
- Ahmed Ali Chughtai
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague , Albertov, Prague , Czech Republic
| | - Filip Kaššák
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague , Albertov, Prague , Czech Republic
| | - Markéta Kostrouchová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague , Albertov, Prague , Czech Republic ; Department of Pathology, Third Faculty of Medicine, Charles University in Prague , Ruská, Prague , Czech Republic
| | - Jan Philipp Novotný
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague , Albertov, Prague , Czech Republic
| | - Michael W Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Vladimír Saudek
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science , Cambridge , UK
| | - Zdenek Kostrouch
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague , Albertov, Prague , Czech Republic
| | - Marta Kostrouchová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague , Albertov, Prague , Czech Republic
| |
Collapse
|
25
|
Barisch C, Paschke P, Hagedorn M, Maniak M, Soldati T. Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. Cell Microbiol 2015; 17:1332-49. [PMID: 25772333 DOI: 10.1111/cmi.12437] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 01/15/2023]
Abstract
Lipid droplets exist in virtually every cell type, ranging not only from mammals to plants, but also to eukaryotic and prokaryotic unicellular organisms such as Dictyostelium and bacteria. They serve among other roles as energy reservoir that cells consume in times of starvation. Mycobacteria and some other intracellular pathogens hijack these organelles as a nutrient source and to build up their own lipid inclusions. The mechanisms by which host lipid droplets are captured by the pathogenic bacteria are extremely poorly understood. Using the powerful Dictyostelium discoideum/Mycobacterium marinum infection model, we observed that, immediately after their uptake, lipid droplets translocate to the vicinity of the vacuole containing live but not dead mycobacteria. Induction of lipid droplets in Dictyostelium prior to infection resulted in a vast accumulation of neutral lipids and sterols inside the bacterium-containing compartment. Subsequently, under these conditions, mycobacteria accumulated much larger lipid inclusions. Strikingly, the Dictyostelium homologue of perilipin and the murine perilipin 2 surrounded bacteria that had escaped to the cytosol of Dictyostelium or microglial BV-2 cells respectively. Moreover, bacterial growth was inhibited in Dictyostelium plnA knockout cells. In summary, our results provide evidence that mycobacteria actively manipulate the lipid metabolism of the host from very early infection stages.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Peggy Paschke
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Dictyostelium discoideum Dgat2 can substitute for the essential function of Dgat1 in triglyceride production but not in ether lipid synthesis. EUKARYOTIC CELL 2014; 13:517-26. [PMID: 24562909 DOI: 10.1128/ec.00327-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triacylglycerol (TAG), the common energy storage molecule, is formed from diacylglycerol and a coenzyme A-activated fatty acid by the action of an acyl coenzyme A:diacylglycerol acyltransferase (DGAT). In order to conduct this step, most organisms rely on more than one enzyme. The two main candidates in Dictyostelium discoideum are Dgat1 and Dgat2. We show, by creating single and double knockout mutants, that the endoplasmic reticulum (ER)-localized Dgat1 enzyme provides the predominant activity, whereas the lipid droplet constituent Dgat2 contributes less activity. This situation may be opposite from what is seen in mammalian cells. Dictyostelium Dgat2 is specialized for the synthesis of TAG, as is the mammalian enzyme. In contrast, mammalian DGAT1 is more promiscuous regarding its substrates, producing diacylglycerol, retinyl esters, and waxes in addition to TAG. The Dictyostelium Dgat1, however, produces TAG, wax esters, and, most interestingly, also neutral ether lipids, which represent a significant constituent of lipid droplets. Ether lipids had also been found in mammalian lipid droplets, but the role of DGAT1 in their synthesis was unknown. The ability to form TAG through either Dgat1 or Dgat2 activity is essential for Dictyostelium to grow on bacteria, its natural food substrate.
Collapse
|