1
|
Son YE, Cho HJ, Park HS. The MYB-like protein MylA contributes to conidiogenesis and conidial germination in Aspergillus nidulans. Commun Biol 2024; 7:768. [PMID: 38918572 PMCID: PMC11199622 DOI: 10.1038/s42003-024-05866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 06/27/2024] Open
Abstract
Myeloblastosis (MYB)-like proteins are a family of highly conserved transcription factors in animals, plants, and fungi and are involved in the regulation of mRNA expression of genes. In this study, we identified and characterized one MYB-like protein in the model organism Aspergillus nidulans. We screened the mRNA levels of genes encoding MYB-like proteins containing two MYB repeats in conidia and found that the mRNA levels of four genes including flbD, cicD, and two uncharacterized genes, were high in conidia. To investigate the roles of two uncharacterized genes, AN4618 and AN10944, deletion mutants for each gene were generated. Our results revealed that AN4618 was required for fungal development. Therefore, we further investigated the role of AN4618, named as mylA, encoding the MYB-like protein containing two MYB repeats. Functional studies revealed that MylA was essential for normal fungal growth and development. Phenotypic and transcriptomic analyses demonstrated that deletion of mylA affected stress tolerance, cell wall integrity, and long-term viability in A. nidulans conidia. In addition, the germination rate of the mylA deletion mutant conidia was decreased compared with that of the wild-type conidia. Overall, this study suggests that MylA is critical for appropriate development, conidial maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Suarez-Fernandez M, Álvarez-Aragón R, Pastor-Mediavilla A, Maestre-Guillén A, del Olmo I, De Francesco A, Meile L, Sánchez-Vallet A. Sas3-mediated histone acetylation regulates effector gene activation in a fungal plant pathogen. mBio 2023; 14:e0138623. [PMID: 37642412 PMCID: PMC10653901 DOI: 10.1128/mbio.01386-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Marine Sciences and Applied Biology, University of Alicante, Alicante, Spain
| | - Rocio Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Pastor-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alejandro Maestre-Guillén
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ivan del Olmo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Kramer HM, Cook DE, Seidl MF, Thomma BP. Epigenetic regulation of nuclear processes in fungal plant pathogens. PLoS Pathog 2023; 19:e1011525. [PMID: 37535497 PMCID: PMC10399791 DOI: 10.1371/journal.ppat.1011525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Collapse
Affiliation(s)
- H. Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
4
|
Hu SJ, Zheng H, Li XP, Li ZX, Xu C, Li J, Liu JH, Hu WX, Zhao XY, Wang JJ, Qiu L. Ada2 and Ada3 Regulate Hyphal Growth, Asexual Development, and Pathogenicity in Beauveria bassiana by Maintaining Gcn5 Acetyltransferase Activity. Microbiol Spectr 2023; 11:e0028123. [PMID: 37052485 PMCID: PMC10269768 DOI: 10.1128/spectrum.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
The histone acetyltransferase (HAT) Gcn5 ortholog is essential for a variety of fungi. Here, we characterize the roles of Ada2 and Ada3, which are functionally linked to Gcn5, in the insect-pathogenic fungus Beauveria bassiana. Loss of Ada2 and Ada3 led to severe hyphal growth defects on rich and minimal media and drastic decreases in blastospore yield and conidiation capacity, with abnormal conidia-producing structures. ΔAda2 and ΔAda3 exhibited a delay in conidial germination and increased sensitivity to multiple chemical stresses and heat shock. Nearly all their pathogenicity was lost, and their ability to secrete extracellular enzymes, Pr1 proteases and chitinases for cuticle degradation was reduced. A yeast two-hybrid assay demonstrated that Ada2 binds to Ada3 and directly interacts with Gcn5, confirming the existence of a yeast-like Ada3-Ada2-Gcn5 HAT complex in this fungus. Additionally, deletion of the Ada genes reduced the activity of Gcn5, especially in the ΔAda2 strain, which was consistent with the acetylation level of histone H3 determined by Western blotting. These results illustrate the dependence of Gcn5 enzyme activity on Ada2 and Ada3 in fungal hyphal growth, asexual development, multiple stress responses, and pathogenicity in B. bassiana. IMPORTANCE The histone acetyltransferase Gcn5 ortholog contributes significantly to the growth and development of various fungi. In this study, we found that Ada2 and Ada3 have critical regulatory effects on Gcn5 enzyme activity and influence the acetylation of histone H3. Deletion of Ada2 or Ada3 decreased the fungal growth rate and asexual conidial yield and increased susceptibility to multiple stresses in Beauveria bassiana. Importantly, Ada genes are vital virulence factors, and their deletion caused the most virulence loss, mainly by inhibiting the activity of a series of hydrolytic enzymes and the dimorphic transition ability. These findings provide a new perspective on the function of the Gcn5 acetyltransferase complex in pathogens.
Collapse
Affiliation(s)
- Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hao Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin-Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhi-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen-Xiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xian-Yan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
5
|
Zhang X, Noberini R, Vai A, Bonaldi T, Seidl MF, Collemare J. Detection and quantification of the histone code in the fungal genus Aspergillus. Fungal Genet Biol 2023; 167:103800. [PMID: 37146898 DOI: 10.1016/j.fgb.2023.103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Alessandro Vai
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy.
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Jérȏme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
6
|
Zehetbauer F, Seidl A, Berger H, Sulyok M, Kastner F, Strauss J. RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genet Biol 2022; 162:103726. [PMID: 35843417 DOI: 10.1016/j.fgb.2022.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Depending on the prevailing environmental, developmental and nutritional conditions, fungi activate biosynthetic gene clusters (BGCs) to produce condition-specific secondary metabolites (SMs). For activation, global chromatin-based de-repression must be integrated with pathway-specific induction signals. Here we describe a new global regulator needed to activate starvation-induced SMs. In our transcriptome dataset, we found locus AN7572 strongly transcribed solely under conditions of starvation-induced SM production. The predicted AN7572 protein is most similar to the stress and nutritional regulator Rim15 of Saccharomyces cerevisiae, and to STK-12 of Neurospora crassa. Based on this similarity and on stress and nutritional response phenotypes of A. nidulans knock-out and overexpression strains, AN7572 is designated rimO. In relation to SM production, we found that RimO is required for the activation of starvation-induced BGCs, including the sterigmatocystin (ST) gene cluster. Here, RimO regulates the pathway-specific transcription factor AflR both at the transcriptional and post-translational level. At the transcriptional level, RimO mediates aflR induction following carbon starvation and at the post-translational level, RimO is required for nuclear accumulation of the AflR protein. Genome-wide transcriptional profiling showed that cells lacking rimO fail to adapt to carbon starvation that, in the wild type, leads to down-regulation of genes involved in basic metabolism, membrane biogenesis and growth. Consistently, strains overexpressing rimO are more resistant to oxidative and osmotic stress, largely insensitive to glucose repression and strongly overproduce several SMs. Our data indicate that RimO is a positive regulator within the SM and stress response network, but this requires nutrient depletion that triggers both, rimO gene transcription and activation of the RimO protein.
Collapse
Affiliation(s)
- Franz Zehetbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Angelika Seidl
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Harald Berger
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| | - Florian Kastner
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Joseph Strauss
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
7
|
Zhang S, Guo Y, Chen S, Li H. The Histone Acetyltransferase CfGcn5 Regulates Growth, Development, and Pathogenicity in the Anthracnose Fungus Colletotrichum fructicola on the Tea-Oil Tree. Front Microbiol 2021; 12:680415. [PMID: 34248895 PMCID: PMC8260702 DOI: 10.3389/fmicb.2021.680415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023] Open
Abstract
The tea-oil tree (Camellia oleifera Abel.) is a commercial edible-oil tree in China, and anthracnose commonly occurs in its plantations, causing great losses annually. We have previously revealed that CfSnf1 is essential for pathogenicity in Colletotrichum fructicola, the major pathogen of anthracnose on the tea-oil tree. Here, we identified CfGcn5 as the homolog of yeast histone acetyltransferase ScGcn5, which cooperates with ScSnf1 to modify histone H3 in Saccharomyces cerevisiae. Targeted gene deletion revealed that CfGcn5 is important in fungi growth, conidiation, and responses to environmental stresses. Pathogenicity assays indicated that CfGcn5 is essential for C. fructicola virulence both in unwounded and wounded tea-oil tree leaves. Further, we found that CfGcn5 is localized to the nucleus and this specific localization is dependent on both NLS region and HAT domain. Moreover, we provided evidence showing that the nuclear localization is essential but not sufficient for the full function of CfGcn5, and the NLS, HAT, and Bromo domains were proven to be important for normal CfGcn5 functions. Taken together, our studies not only illustrate the key functions of CfGcn5 in growth, development, and pathogenicity but also highlight the relationship between its locations with functions in C. fructicola.
Collapse
Affiliation(s)
- Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Yuan Guo
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Siqi Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China.,Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China.,Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| |
Collapse
|
8
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Lodens S, Roelants SLKW, Luyten G, Geys R, Coussement P, De Maeseneire SL, Soetaert W. Unraveling the regulation of sophorolipid biosynthesis in Starmerella bombicola. FEMS Yeast Res 2020; 20:5824630. [DOI: 10.1093/femsyr/foaa021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTStarmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1). A clear positioning effect was observed for both promotors with significantly higher GFP expression levels at the URA3 locus. No clear GFP upregulation was observed in the stationary phase for any of the new strains.
Collapse
Affiliation(s)
- Sofie Lodens
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Goedele Luyten
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Coussement
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Wassano NS, Leite AB, Reichert-Lima F, Schreiber AZ, Moretti NS, Damasio A. Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp. Braz J Microbiol 2020; 51:673-683. [PMID: 32170592 DOI: 10.1007/s42770-020-00253-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.
Collapse
Affiliation(s)
- Natália Sayuri Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariely Barbosa Leite
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Franqueline Reichert-Lima
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelica Zaninelli Schreiber
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
11
|
Dash A, Gurdaswani V, D'Souza JS, Ghag SB. Functional characterization of an inducible bidirectional promoter from Fusarium oxysporum f. sp. cubense. Sci Rep 2020; 10:2323. [PMID: 32047173 PMCID: PMC7012866 DOI: 10.1038/s41598-020-59159-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 01/27/2023] Open
Abstract
Bidirectional promoters (BDPs) are regulatory DNA sequences (~1000 bp long) intervening two genes arranged on opposite strands with their 5' ends in close proximity. These genes are mostly co-expressed; but, instances of anti-correlation and independent transcription have been observed. In fungal systems, BDPs have shown to provide an improved genetic circuit by assembling and regulating transcription of different genes of a common metabolic pathway. We have identified an intergenic region (1063 bp) from the genome of Fusarium oxysporum f. sp. cubense (Foc), a banana root pathogen. This intergenic region regulates the expression of a gene pair required for the breakdown of hemicellulose. For characterization, it was cloned into pCSN44 vector backbone between two reporter genes, namely β-glucuronidase (GUS) and enhanced green fluorescent protein (EGFP). The newly formed vector was transformed into Foc and tested for its bidirectional expression activity. Using histochemical staining and fluorescence microscopy, the kinetics for both, GUS and EGFP expression were tested under different growth conditions respectively. The activity was differentially regulated by inducers such as xylan, arabinogalactan and pectin. This is the first report on the isolation of the intergenic region with inducible bidirectional promoter activity from Fusarium. Characterization of such BDPs will find applications in genetic engineering, metabolic engineering and synthetic biology using fungal systems.
Collapse
Affiliation(s)
- Ashutosh Dash
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India
| | - Vartika Gurdaswani
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India
| | - Jacinta S D'Souza
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India
| | - Siddhesh B Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (East), Mumbai, 400098, India.
| |
Collapse
|
12
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
13
|
Wang B, Li X, Yu D, Chen X, Tabudravu J, Deng H, Pan L. Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites. Microbiol Res 2018; 217:101-107. [DOI: 10.1016/j.micres.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/22/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
|
14
|
Fischer J, Müller SY, Netzker T, Jäger N, Gacek-Matthews A, Scherlach K, Stroe MC, García-Altares M, Pezzini F, Schoeler H, Reichelt M, Gershenzon J, Krespach MKC, Shelest E, Schroeckh V, Valiante V, Heinzel T, Hertweck C, Strauss J, Brakhage AA. Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. eLife 2018; 7:e40969. [PMID: 30311911 PMCID: PMC6234034 DOI: 10.7554/elife.40969] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic epigenetic machinery can be modified by bacteria to reprogram the response of eukaryotes during their interaction with microorganisms. We discovered that the bacterium Streptomyces rapamycinicus triggered increased chromatin acetylation and thus activation of the silent secondary metabolism ors gene cluster in the fungus Aspergillus nidulans. Using this model, we aim understanding mechanisms of microbial communication based on bacteria-triggered chromatin modification. Using genome-wide ChIP-seq analysis of acetylated histone H3, we uncovered the unique chromatin landscape in A. nidulans upon co-cultivation with S. rapamycinicus and relate changes in the acetylation to that in the fungal transcriptome. Differentially acetylated histones were detected in genes involved in secondary metabolism, in amino acid and nitrogen metabolism, in signaling, and encoding transcription factors. Further molecular analyses identified the Myb-like transcription factor BasR as the regulatory node for transduction of the bacterial signal in the fungus and show its function is conserved in other Aspergillus species.
Collapse
Affiliation(s)
- Juliane Fischer
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Sebastian Y Müller
- Systems Biology and BioinformaticsLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Tina Netzker
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Nils Jäger
- Department of BiochemistryFriedrich Schiller UniversityJenaGermany
| | - Agnieszka Gacek-Matthews
- Department for Applied Genetics and Cell BiologyBOKU University of Natural Resources and Life SciencesViennaAustria
- Institute of MicrobiologyUniversity of Veterinary MedicineViennaAustria
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Maria C Stroe
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - María García-Altares
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Francesco Pezzini
- Systems Biology and BioinformaticsLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Hanno Schoeler
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Mario KC Krespach
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| | - Ekaterina Shelest
- Systems Biology and BioinformaticsLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Volker Schroeckh
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Vito Valiante
- Leibniz Research Group – Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
| | - Thorsten Heinzel
- Department of BiochemistryFriedrich Schiller UniversityJenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
- Chair for Natural Product ChemistryFriedrich Schiller UniversityJenaGermany
| | - Joseph Strauss
- Department for Applied Genetics and Cell BiologyBOKU University of Natural Resources and Life SciencesViennaAustria
| | - Axel A Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
- Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
| |
Collapse
|
15
|
Nie X, Li B, Wang S. Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:191-226. [PMID: 30342722 DOI: 10.1016/bs.aambs.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic and posttranslational modifications have been proved to participate in multiple cellular processes and suggested to be an important regulatory mechanism on transcription of genes in eukaryotes. However, our knowledge about epigenetic and posttranslational modifications mainly comes from the studies of yeasts, plants, and animals. Recently, epigenetic and posttranslational modifications have also raised concern for the relevance of regulating fungal biology in Aspergillus. Emerging evidence indicates that these modifications could be a connection between genetic elements and environmental factors, and their combined effects may finally lead to fungal phenotypical changes. This article describes the advances in typical DNA and protein modifications in the genus Aspergillus, focusing on methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and neddylation.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Molecular basis of resistance to the microtubule-depolymerizing antitumor compound plocabulin. Sci Rep 2018; 8:8616. [PMID: 29872155 PMCID: PMC5988728 DOI: 10.1038/s41598-018-26736-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Plocabulin (PM060184) is a microtubule depolymerizing agent with potent antiproliferative activity undergoing phase II clinical trials for the treatment of solid tumors. Plocabulin shows antifungal activity virtually abolishing growth of the filamentous fungus Aspergillus nidulans. A. nidulans hyphae depend both on mitotic and interphase microtubules, as human cells. Here, we exploited the A. nidulans genetic amenability to gain insight into the mechanism of action of plocabulin. By combining mutations in the two A. nidulans β-tubulin isotypes we obtained a plocabulin-insensitive strain, showing that β-tubulin is the only molecular target of plocabulin in fungal cells. From a genetic screen, we recovered five mutants that show plocabulin resistance but do not carry mutations in β-tubulin. Resistance mutations resulted in amino acid substitutions in (1) two subunits of the eukaryotic translation initiation factor eIF2B activating the General Amino Acid Control, (2) TIM44, an essential component of the inner mitochondrial membrane translocase, (3) two transcription factors of the binuclear zinc cluster family potentially interfering with the uptake or efflux of plocabulin. Given the conservation of some of the identified proteins and their respective cellular functions in the tumor environment, our results pinpoint candidates to be tested as potential biomarkers for determination of drug efficiency.
Collapse
|
17
|
Gournas C, Athanasopoulos A, Sophianopoulou V. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways. Int J Mol Sci 2018; 19:E1398. [PMID: 29738448 PMCID: PMC5983819 DOI: 10.3390/ijms19051398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT) family. These consist of (a) residues conserved across YATs that interact with the invariable part of amino acid substrates and (b) variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.
Collapse
Affiliation(s)
- Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| |
Collapse
|
18
|
Gómez-Rodríguez EY, Uresti-Rivera EE, Patrón-Soberano OA, Islas-Osuna MA, Flores-Martínez A, Riego-Ruiz L, Rosales-Saavedra MT, Casas-Flores S. Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS One 2018; 13:e0193872. [PMID: 29708970 PMCID: PMC5927414 DOI: 10.1371/journal.pone.0193872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Some filamentous fungi of the Trichoderma genus are used as biocontrol agents against airborne and soilborne phytopathogens. The proposed mechanism by which Trichoderma spp. antagonizes phytopathogens is through the release of lytic enzymes, antimicrobial compounds, mycoparasitism, and the induction of systemic disease-resistance in plants. Here we analyzed the role of TGF-1 (Trichoderma Gcn Five-1), a histone acetyltransferase of Trichoderma atroviride, in mycoparasitism and antibiosis against the phytopathogen Rhizoctonia solani. Trichostatin A (TSA), a histone deacetylase inhibitor that promotes histone acetylation, slightly affected T. atroviride and R. solani growth, but not the growth of the mycoparasite over R. solani. Application of TSA to the liquid medium induced synthesis of antimicrobial compounds. Expression analysis of the mycoparasitism-related genes ech-42 and prb-1, which encode an endochitinase and a proteinase, as well as the secondary metabolism-related genes pbs-1 and tps-1, which encode a peptaibol synthetase and a terpene synthase, respectively, showed that they were regulated by TSA. A T. atroviride strain harboring a deletion of tgf-1 gene showed slow growth, thinner and less branched hyphae than the wild-type strain, whereas its ability to coil around the R. solani hyphae was not affected. Δtgf-1 presented a diminished capacity to grow over R. solani, but the ability of its mycelium -free culture filtrates (MFCF) to inhibit the phytopathogen growth was enhanced. Intriguingly, addition of TSA to the culture medium reverted the enhanced inhibition growth of Δtgf-1 MFCF on R. solani at levels compared to the wild-type MFCF grown in medium amended with TSA. The presence of R. solani mycelium in the culture medium induced similar proteinase activity in a Δtgf-1 compared to the wild-type, whereas the chitinolytic activity was higher in a Δtgf-1 mutant in the absence of R. solani, compared to the parental strain. Expression of mycoparasitism- and secondary metabolism-related genes in Δtgf-1 was differentially regulated in the presence or absence of R. solani. These results indicate that histone acetylation may play important roles in the biocontrol mechanisms of T. atroviride.
Collapse
Affiliation(s)
| | | | | | - María Auxiliadora Islas-Osuna
- Laboratorio de Genética y Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | - Alberto Flores-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, IPICYT, San Luis Potosí, San Luis Potosí, Mexico
| | | | - Sergio Casas-Flores
- División de Biología Molecular, IPICYT, San Luis Potosí, San Luis Potosí, Mexico
- * E-mail:
| |
Collapse
|
19
|
Cai Q, Wang JJ, Fu B, Ying SH, Feng MG. Gcn5-dependent histone H3 acetylation and gene activity is required for the asexual development and virulence of Beauveria bassiana. Environ Microbiol 2018; 20:1484-1497. [PMID: 29417710 DOI: 10.1111/1462-2920.14066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Gcn5 is a core histone acetyltransferase that catalyzes histone H3 acetylation on N-terminal lysine residues in yeasts and was reported to catalyze H3K9/K14 acetylation required for activating asexual development in Aspergillus. Here, we report a localization of Gcn5 ortholog in the nucleus and cytoplasm of Beauveria bassiana, a fungal insect pathogen. Deletion of gcn5 led to hypoacetylated H3 at K9/14/18/27 and 97% reduction in conidiation capacity as well as severe defects in colony growth and conidial thermotolerance. Two master conidiation genes, namely brlA and abaA, were transcriptionally repressed to undetectable level in Δgcn5, but sharply upregulated in wild-type, at the beginning time of conidiation. Based on chromatin immunoprecipitation, both DNA and acetylation levels of the distal and proximal fragments of the brlA promoter bound by acetylated H3K14 alone were upregulated in wild-type, but not in Δgcn5, at the mentioned time. In Δgcn5, normal cuticle infection was abolished while virulence through cuticle-bypassing infection was greatly attenuated, accompanied by drastically reduced activities of putative cuticle-degrading enzymes, retarded dimorphic transition and transcriptional repression of associated genes. These findings unveil a novel mechanism by which Gcn5 activates asexual development pathway by acetylating H3K14 and regulates the virulence-related cellular events in B. bassiana.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Juan-Juan Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.,School of Biological Science and Biotechnology, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Bo Fu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| |
Collapse
|
20
|
Deletion of ADA2 Increases Antifungal Drug Susceptibility and Virulence in Candida glabrata. Antimicrob Agents Chemother 2018; 62:AAC.01924-17. [PMID: 29311082 DOI: 10.1128/aac.01924-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Candida glabrata, the second most frequent cause of candidiasis after Candida albicans, is an emerging human fungal pathogen that is intrinsically drug tolerant. Currently, studies of C. glabrata genes involved in drug tolerance are limited. Ada2, a component serving as a transcription adaptor of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, is required for antifungal drug tolerance and virulence in C. albicans However, its roles in C. glabrata remain elusive. In this study, we found that ada2 mutants demonstrated severe growth defects at 40°C but only mild defects at 37°C or 25°C. In addition, C. glabrata ada2 mutants exhibited pleiotropic phenotypes, including susceptibility to three classes of antifungal drugs (i.e., azoles, echinocandins, and polyenes) and cell wall-perturbing agents but resistance to the endoplasmic reticulum stressor tunicamycin. According to RNA sequence analysis, the expression of 43 genes was downregulated and the expression of 442 genes was upregulated in the ada2 mutant compared to their expression in the wild type. C. glabrata ADA2, along with its downstream target ERG6, controls antifungal drug tolerance and cell wall integrity. Surprisingly, ada2 mutants were hypervirulent in a murine model of systemic infection, possibly due to the upregulation of multiple adhesin-like genes, increased agar invasion, and overstimulation of murine tumor necrosis factor alpha production.
Collapse
|
21
|
Lv Y. Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 2017; 12:e0178603. [PMID: 28582408 PMCID: PMC5459447 DOI: 10.1371/journal.pone.0178603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- * E-mail:
| |
Collapse
|
22
|
Li Y, Zheng X, Zhang X, Bao L, Zhu Y, Qu Y, Zhao J, Qin Y. The Different Roles of Penicillium oxalicum LaeA in the Production of Extracellular Cellulase and β-xylosidase. Front Microbiol 2016; 7:2091. [PMID: 28066400 PMCID: PMC5177634 DOI: 10.3389/fmicb.2016.02091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Cellulolytic enzyme hydrolysis of lignocellulose biomass to release fermentable sugars is one of the key steps in biofuel refining. Gene expression of fungal cellulolytic enzymes is tightly controlled at the transcriptional level. Key transcription factors such as activator ClrB/CLR2 and XlnR/XYR1, as well as repressor CreA/CRE1 play crucial roles in this process. The putative protein methyltransferase LaeA/LAE1 has also been reported to regulate the gene expression of the cellulolytic enzyme. The formation and gene expression of the cellulolytic enzyme was compared among Penicillium oxalicum wild type (WT) and seven mutants, including ΔlaeA (deletion of laeA), OEclrB (clrB overexpression), OEclrBΔlaeA (clrB overexpression with deletion of laeA), OExlnR (xlnR overexpression), OExlnRΔlaeA (xlnR overexpression with deletion of laeA), ΔcreA (deletion of creA), and ΔcreAΔlaeA (double deletion of creA and laeA). Results revealed that LaeA extensively affected the expression of glycoside hydrolase genes. The expression of genes that encoded the top 10 glycoside hydrolases assayed in secretome was remarkably downregulated especially in later phases of prolonged batch cultures by the deletion of laeA. Cellulase synthesis of four mutants ΔlaeA, OEclrBΔlaeA, OExlnRΔlaeA, and ΔcreAΔlaeA was repressed remarkably compared with their parent strains WT, OEclrB, OExlnR, and ΔcreA, respectively. The overexpression of clrB or xlnR could not rescue the impairment of cellulolytic enzyme gene expression and cellulase synthesis when LaeA was absent, suggesting that LaeA was necessary for the expression of cellulolytic enzyme gene activated by ClrB or XlnR. In contrast to LaeA positive roles in regulating prominent cellulase and hemicellulase, the extracellular β-xylosidase formation was negatively regulated by LaeA. The extracellular β-xylosidase activities improved over 5-fold in the OExlnRΔlaeA mutant compared with that of WT, and the expression of prominent β-xylosidase gene xyl3A was activated remarkably. The cumulative effect of LaeA and transcription factor XlnR has potential applications in the production of more β-xylosidase.
Collapse
Affiliation(s)
- Yanan Li
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong UniversityJinan, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong UniversityJinan, China
| | - Xiaoju Zheng
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University Jinan, China
| | - Xiujun Zhang
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University Jinan, China
| | - Longfei Bao
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University Jinan, China
| | - Yingying Zhu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University Jinan, China
| | - Yinbo Qu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University Jinan, China
| | - Jian Zhao
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University Jinan, China
| | - Yuqi Qin
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong UniversityJinan, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong UniversityJinan, China
| |
Collapse
|
23
|
The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016; 63:647-667. [DOI: 10.1007/s00294-016-0666-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
|
24
|
Studt L, Rösler SM, Burkhardt I, Arndt B, Freitag M, Humpf HU, Dickschat JS, Tudzynski B. Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 2016; 18:4037-4054. [PMID: 27348741 PMCID: PMC5118082 DOI: 10.1111/1462-2920.13427] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023]
Abstract
Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6kd strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6kd strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Corresponding author: L. Studt, Division of Microbial Genetics and Pathogen Interaction, Department of Applied Genetics and Cell Biology, Campus-Tulln, BOKU-University of Natural Resources and Life Science, Vienna, Austria, , phone: (+43) 1 / 47654-6722
| | - Sarah M. Rösler
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany,Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, 97331 Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121 Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143 Münster, Germany
| |
Collapse
|
25
|
Rösler SM, Kramer K, Finkemeier I, Humpf HU, Tudzynski B. The SAGA complex in the rice pathogenFusarium fujikuroi: structure and functional characterization. Mol Microbiol 2016; 102:951-974. [DOI: 10.1111/mmi.13528] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah M. Rösler
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster; Corrensstraße 45 Münster 48149 Germany
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster; Schlossplatz 7/8 Münster 48143 Germany
| | - Katharina Kramer
- Max Planck Institute for Plant Breeding Research, Plant Proteomics Group; Carl-von-Linne-Weg 10 Cologne 50829 Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster; Schlossplatz 7/8 Münster 48143 Germany
- Max Planck Institute for Plant Breeding Research, Plant Proteomics Group; Carl-von-Linne-Weg 10 Cologne 50829 Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster; Corrensstraße 45 Münster 48149 Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster; Schlossplatz 7/8 Münster 48143 Germany
| |
Collapse
|
26
|
Alam MA, Kamlangdee N, Kelly JM. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016:10.1007/s00294-016-0643-x. [PMID: 27589970 DOI: 10.1007/s00294-016-0643-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
| | - Niyom Kamlangdee
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
- Walailak University, 222 Thaiburi Thasala, Nakhonsithamrat, Nakhon Si Thammarat, 80160, Thailand
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
27
|
KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genet 2016; 12:e1006222. [PMID: 27548260 PMCID: PMC4993369 DOI: 10.1371/journal.pgen.1006222] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. In this work we monitored by proteomic analysis and ChIP-seq the genome-wide distribution of several key modifications on histone H3 in the model fungus Aspergillus nidulans cultivated either under optimal physiological conditions (active growth) or less favourable conditions which are known to promote the production of secondary metabolites (SM). When we correlated the chromatin status to transcriptional activities in actively growing cells we found that the silenced SM gene clusters are flanked by heterochromatic domains presumably contributing to silencing but that the bodies of the clusters only carry background levels of any of the investigated marks. In nutrient-depleted conditions, activating marks were invading some, but by far not all transcribed clusters, leaving open the question how activation of these regions occurs at the chromatin level. Surprisingly, a large number of these gene clusters actually depend on KdmB for normal activation and it will be interesting to see in future how this protein thought to mainly act as repressor by removing positive H3K4m3 marks switches gears to activate transcription directly or indirectly.
Collapse
|
28
|
Deepika VB, Murali TS, Satyamoorthy K. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiol Res 2015; 182:125-40. [PMID: 26686621 DOI: 10.1016/j.micres.2015.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
Novel drugs with unique and targeted mode of action are very much need of the hour to treat and manage severe multidrug infections and other life-threatening complications. Though natural molecules have proved to be effective and environmentally safe, the relative paucity of discovery of new drugs has forced us to lean towards synthetic chemistry for developing novel drug molecules. Plants and microbes are the major resources that we rely upon in our pursuit towards discovery of novel compounds of pharmacological importance with less toxicity. Endophytes, an eclectic group of microbes having the potential to chemically bridge the gap between plants and microbes, have attracted the most attention due to their relatively high metabolic versatility. Since continuous large scale supply of major metabolites from microfungi and especially endophytes is severely impeded by the phenomenon of attenuation in axenic cultures, the major challenge is to understand the regulatory mechanisms in operation that drive the expression of metabolic gene clusters of pharmaceutical importance. This review is focused on the major regulatory elements that operate in filamentous fungi and various combinatorial multi-disciplinary approaches involving bioinformatics, molecular biology, and metabolomics that could aid in large scale synthesis of important lead molecules.
Collapse
Affiliation(s)
- V B Deepika
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| | - T S Murali
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India.
| | - K Satyamoorthy
- Division of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, India
| |
Collapse
|
29
|
Zhao W, Wang T, Liu S, Chen Q, Qi R. The histone acetyltransferase PsGcn5 mediates oxidative stress responses and is required for full virulence of Phytophthora sojae. Microb Pathog 2015; 87:51-8. [PMID: 26209751 DOI: 10.1016/j.micpath.2015.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/05/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
In eukaryotic organisms, histone acetyltransferase complexes are coactivators that are important for transcriptional activation by modifying chromatin. In this study, a gene (PsGcn5) from Phytophthora sojae encoding a histone acetyltransferase was identified as a homolog of one component of the histone acetyltransferase complex from yeasts to mammals. PsGcn5 was constitutively expressed in each stage tested, but had a slightly higher expression in sporulating hyphae and 3 h after infection. PsGcn5-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation. These mutants had normal development, but compared to wild type strains they had higher sensitivity to hydrogen peroxide (H2O2) and significantly reduced virulence in soybean. Diaminobenzidine staining revealed an accumulation of H2O2 around the infection sites of PsGcn5-silenced mutants but not for wild type strains. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation in soybean cells and restored infectious hyphal growth of the mutants. Thus, we concluded that PsGcn5 is important for growth under conditions of oxidative stress and contributes to the full virulence of P. sojae by suppressing the host-derived reactive oxygen species.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, Hefei, Anhui, China
| | - Tao Wang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, Hefei, Anhui, China
| | - Shusen Liu
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Qingqing Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Rende Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; Scientific Observing and Experimental Station of Crop Pests in Hefei, Ministry of Agriculture, Hefei, Anhui, China.
| |
Collapse
|
30
|
Di Stefano V, Wang B, Parobchak N, Roche N, Rosen T. RelB/p52-mediated NF-κB signaling alters histone acetylation to increase the abundance of corticotropin-releasing hormone in human placenta. Sci Signal 2015; 8:ra85. [DOI: 10.1126/scisignal.aaa9806] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R. Light-dependent gene activation inAspergillus nidulansis strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 2015; 97:733-45. [DOI: 10.1111/mmi.13062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Maren Hedtke
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Stefan Rauscher
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Julian Röhrig
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP) U.P.M. - I.N.I.A.; Campus de Montegancedo; Autopista M-40 (Km 38) 28223 Pozuelo de Alarcón, Madrid Spain
| | - Zhenzhong Yu
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| | - Reinhard Fischer
- Department of Microbiology; Karlsruhe Institute of Technology; Institute for Applied Biosciences; Hertzstrasse 16 D-76187 Karlsruhe Germany
| |
Collapse
|
32
|
Scazzocchio C. Fungal biology in the post-genomic era. Fungal Biol Biotechnol 2014; 1:7. [PMID: 28955449 PMCID: PMC5611559 DOI: 10.1186/s40694-014-0007-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
In this review I give a personal perspective of how fungal biology has changed since I started my Ph. D. in 1963. At that time we were working in the shadow of the birth of molecular biology as an autonomous and reductionistic discipline, embodied in Crick’s central dogma. This first period was methodologically characterised by the fact that we knew what genes were, but we could not access them directly. This radically changed in the 70s-80s when gene cloning, reverse genetics and DNA sequencing become possible. The “next generation” sequencing techniques have produced a further qualitative revolutionary change. The ready access to genomes and transcriptomes of any microbial organism allows old questions to be asked in a radically different way and new questions to be approached. I provide examples chosen somewhat arbitrarily to illustrate some of these changes, from applied aspects to fundamental problems such as the origin of fungal specific genes, the evolutionary history of genes clusters and the realisation of the pervasiveness of horizontal transmission. Finally, I address how the ready availability of genomes and transcriptomes could change the status of model organisms.
Collapse
Affiliation(s)
- Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, SW7 2AZ UK.,Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, Orsay, 91405 France
| |
Collapse
|
33
|
González-Prieto JM, Rosas-Quijano R, Domínguez A, Ruiz-Herrera J. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence. Fungal Genet Biol 2014; 71:86-95. [PMID: 25242418 DOI: 10.1016/j.fgb.2014.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene.
Collapse
Affiliation(s)
- Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tam. 88710, Mexico; Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico
| | - Raymundo Rosas-Quijano
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tam. 88710, Mexico; Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico
| | - Angel Domínguez
- Departamento de Microbiología y Genética, CIETUS, IBSAL, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico.
| |
Collapse
|
34
|
Fekete E, Karaffa L, Karimi Aghcheh R, Németh Z, Fekete E, Orosz A, Paholcsek M, Stágel A, Kubicek CP. The transcriptome of lae1 mutants of Trichoderma reesei cultivated at constant growth rates reveals new targets of LAE1 function. BMC Genomics 2014; 15:447. [PMID: 24909838 PMCID: PMC4061448 DOI: 10.1186/1471-2164-15-447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/04/2014] [Indexed: 01/02/2023] Open
Abstract
Background The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi. In Trichoderma reesei, its ortholog LAE1 appears to predominantly regulate genes involved in increasing competitive fitness in its environment, including expression of cellulases and polysaccharide hydrolases. A drawback in all studies related to LaeA/LAE1 function so far, however, is that the respective loss-of-function and overexpressing mutants display different growth rates. Thus some of the properties attributed to LaeA/LAE1 could be simply due to changes of the growth rate. Results We cultivated T. reesei, a Δlae1 mutant and a lae1-overexpressing strain in chemostats on glucose at two different growth rates (0.075 and 0.020 h-1) which resemble growth rates at repressing and derepressing conditions, respectively. Under these conditions, the effect of modulating LAE1 expression was mainly visible in the Δlae1 mutant, whereas the overexpressing strain showed little differences to the parent strain. The effect on the expression of some gene categories identified earlier (polyketide synthases, heterokaryon incompatibility proteins, PTH11-receptors) was confirmed, but in addition GCN5-N-acetyltransferases, amino acid permeases and flavin monooxygenases were identified as so far unknown major targets of LAE1 action. LAE1 was also shown to interfere with the regulation of expression of several genes by the growth rate. About a tenth of the genes differentially expressed in the Δlae1 mutant under either growth condition were found to be clustered in the genome, but no specific gene group was associated with this phenomenon. Conclusions Our data show that – using T. reesei LAE1 as a model - the investigation of transcriptome in regulatory mutants at constant growth rates leads to new insights into the physiological roles of the respective regulator. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-447) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 2014; 197:1175-89. [PMID: 24907261 DOI: 10.1534/genetics.114.165688] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acetylation of histones is a key regulatory mechanism of gene expression in eukaryotes. GcnE is an acetyltransferase of Aspergillus nidulans involved in the acetylation of histone H3 at lysine 9 and lysine 14. Previous works have demonstrated that deletion of gcnE results in defects in primary and secondary metabolism. Here we unveil the role of GcnE in development and show that a ∆gcnE mutant strain has minor growth defects but is impaired in normal conidiophore development. No signs of conidiation were found after 3 days of incubation, and immature and aberrant conidiophores were found after 1 week of incubation. Centroid linkage clustering and principal component (PC) analysis of transcriptomic data suggest that GcnE occupies a central position in Aspergillus developmental regulation and that it is essential for inducing conidiation genes. GcnE function was found to be required for the acetylation of histone H3K9/K14 at the promoter of the master regulator of conidiation, brlA, as well as at the promoters of the upstream developmental regulators of conidiation flbA, flbB, flbC, and flbD (fluffy genes). However, analysis of the gene expression of brlA and the fluffy genes revealed that the lack of conidiation originated in a complete absence of brlA expression in the ∆gcnE strain. Ectopic induction of brlA from a heterologous alcA promoter did not remediate the conidiation defects in the ∆gcnE strain, suggesting that additional GcnE-mediated mechanisms must operate. Therefore, we conclude that GcnE is the only nonessential histone modifier with a strong role in fungal development found so far.
Collapse
|
36
|
Glass NL, Schmoll M, Cate JH, Coradetti S. Plant Cell Wall Deconstruction by Ascomycete Fungi. Annu Rev Microbiol 2013; 67:477-98. [DOI: 10.1146/annurev-micro-092611-150044] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Monika Schmoll
- Austrian Institute of Technology GmbH (AIT), Health and Environment, Bioresources, 3430 Tulln, Austria
| | - Jamie H.D. Cate
- Molecular and Cellular Biology Department, and
- Chemistry Department, University of California, Berkeley, California 94720;
| | | |
Collapse
|
37
|
Bok JW, Soukup AA, Chadwick E, Chiang YM, Wang CCC, Keller NP. VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Mol Microbiol 2013; 89:963-74. [PMID: 23841751 DOI: 10.1111/mmi.12326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Abstract
A perplexing aspect of fungal secondary metabolite gene clusters is that most clusters remain 'silent' under common laboratory growth conditions where activation is obtained through gene manipulation or encounters with environmental signals. Few proteins have been found involved in repression of silent clusters. Through multicopy suppressor mutagenesis, we have identified a novel cluster suppressor in Aspergillus nidulans, MvlA (modulator of veA loss). Genetic assessment of MvlA mutants revealed the role of both itself and VeA (but not the VeA partner LaeA) in the suppression of the cryptic ors gene cluster producing orsellinic acid and its F9775 derivatives. Loss of veA upregulates F9775A and F9775B production and this increase is reduced 4-5-fold when an overexpression mvlA (OE:mvlA) allele is introduced into the ΔveA background. Previous studies have implicated a positive role for GcnE (H3K9 acetyltransferase of the SAGA/ADA complex) in ors cluster expression and here we find expression of gcnE is upregulated in ΔveA and suppressed by OE:mvlA in the ΔveA background. H3K9 acetylation levels of ors cluster genes correlated with gcnE expression and F9775 production in ΔveA and OE:mvlAΔveA strains. Finally, deletion of gcnE in the ΔveA background abolishes ors cluster activation and F9775 production. Together, this work supports a role for VeA and MvlA in modifying SAGA/ADA complex activity.
Collapse
Affiliation(s)
- Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
38
|
Xin Q, Gong Y, Lv X, Chen G, Liu W. Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression. Curr Microbiol 2013; 67:580-9. [PMID: 23748966 DOI: 10.1007/s00284-013-0396-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
Gcn5 is a well-established histone acetyltransferase involved in chromatin modification by catalyzing the acetylation of specific lysine residues within the N-terminal tails of the core histones. To assess the role of chromatin remodeling in the transcriptional response of cellulolytic Trichoderma reesei to the changes of environmental conditions, we identified the T. reesei ortholog of Saccharomyces cerevisiae Gcn5 by sequence alignment and functional analysis. Heterologous expression of TrGcn5 in S. cerevisiae gcn5Δ strain restored the growth defect under nutrient limitation as well as stresses. In contrast, mutant TrGcn5 with site-directed changes of residues critical for Gcn5 histone acetyltransferase activity could not complement the growth defect. The T. reesei gcn5Δ mutant strain displayed a strongly decreased growth rate and dramatic morphological changes including misshapen hyphal cells and abolished conidiation. Moreover, the induced expression of cellulase genes was severely impaired in the gcn5Δ T. reesei with acetylation of K9 and K14 of histone H3 in the cellulase gene promoter dramatically affected in the absence of TrGcn5. The results indicate that TrGcn5 plays a critical role in filamentous growth, morphogenesis, and transcriptional activation of specific genes including cellulase encoding genes.
Collapse
Affiliation(s)
- Qi Xin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
39
|
Georgakopoulos P, Lockington RA, Kelly JM. The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One 2013; 8:e65221. [PMID: 23762321 PMCID: PMC3676421 DOI: 10.1371/journal.pone.0065221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/23/2013] [Indexed: 01/15/2023] Open
Abstract
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.
Collapse
Affiliation(s)
- Paraskevi Georgakopoulos
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Robin A. Lockington
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Joan M. Kelly
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
40
|
Soukup AA, Chiang YM, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CCC, Strauss J, Keller NP. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 2012; 86:314-30. [PMID: 22882998 PMCID: PMC3514908 DOI: 10.1111/j.1365-2958.2012.08195.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
Abstract
Regulation of secondary metabolite (SM) gene clusters in Aspergillus nidulans has been shown to occur through cluster-specific transcription factors or through global regulators of chromatin structure such as histone methyltransferases, histone deacetylases, or the putative methyltransferase LaeA. A multicopy suppressor screen for genes capable of returning SM production to the SM deficient ΔlaeA mutant resulted in identification of the essential histone acetyltransferase EsaA, able to complement an esa1 deletion in Saccharomyces cereviseae. Here we report that EsaA plays a novel role in SM cluster activation through histone 4 lysine 12 (H4K12) acetylation in four examined SM gene clusters (sterigmatocystin, penicillin, terrequinone and orsellinic acid), in contrast to no increase in H4K12 acetylation of the housekeeping tubA promoter. This augmented SM cluster acetylation requires LaeA for full effect and correlates with both increased transcript levels and metabolite production relative to wild type. H4K12 levels may thus represent a unique indicator of relative production potential, notably of SMs.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Department of Genetics, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706
| | - Yi-Ming Chiang
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC 71710,Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Jin Woo Bok
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706
| | - Yazmid Reyes-Dominguez
- Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna, and Austrian Institute of Technology GmbH, University and Research Center Campus Tulln, Konrad Lorenz Strasse 24, Tulln/Donau, Austria A-3430
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, USA 66045
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033,Department of Chemistry, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna, and Austrian Institute of Technology GmbH, University and Research Center Campus Tulln, Konrad Lorenz Strasse 24, Tulln/Donau, Austria A-3430
| | - Nancy P. Keller
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706,Corresponding author: 3476 Microbial Sciences, 1550 Linden Drive, Madison, WI, USA 53706 Phone: (608) 262-9795 Fax: (608)262-8418
| |
Collapse
|
41
|
Abstract
Chromatin immunoprecipitation (ChIP) is used to map the interaction between proteins and DNA at a specific genomic locus in the living cell. The protein-DNA complexes are stabilized already in vivo by reversible crosslinking and the DNA is sheared by sonication or enzymatic digestion into fragments suitable for the subsequent immunoprecipitation step. Antibodies recognizing chromatin-linked proteins, transcription factors, artificial tags, or specific protein modifications are then used to pull down DNA-protein complexes containing the target. After reversal of crosslinks and DNA purification locus-specific quantitative PCR is used to determine the amount of DNA that was associated with the target at a given time point and experimental condition. DNA quantification can be carried out for several genomic regions by multiple qPCRs or at a genome-wide scale by massive parallel sequencing (ChIP-Seq).
Collapse
|
42
|
Gacek A, Strauss J. The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 2012; 95:1389-404. [PMID: 22814413 PMCID: PMC3427479 DOI: 10.1007/s00253-012-4208-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 01/07/2023]
Abstract
Secondary metabolite biosynthesis genes in fungi are usually physically linked and organized in large gene clusters. The physical linkage of genes involved in the same biosynthetic pathway minimizes the amount of regulatory steps necessary to regulate the biosynthetic machinery and thereby contributes to physiological economization. Regulation by chromatin accessibility is a proficient molecular mechanism to synchronize transcriptional activity of large genomic regions. Chromatin regulation largely depends on DNA and histone modifications and the histone code hypothesis proposes that a certain combination of modifications, such as acetylation, methylation or phosphorylation, is needed to perform a specific task. A number of reports from several laboratories recently demonstrated that fungal secondary metabolite (SM) biosynthesis clusters are controlled by chromatin-based mechanisms and histone acetyltransferases, deacetylases, methyltransferases, and proteins involved in heterochromatin formation were found to be involved. This led to the proposal that establishment of repressive chromatin domains over fungal SM clusters under primary metabolic conditions is a conserved mechanism that prevents SM production during the active growth phase. Consequently, transcriptional activation of SM clusters requires reprogramming of the chromatin landscape and replacement of repressive histone marks by activating marks. This review summarizes recent advances in our understanding of chromatin-based SM cluster regulation and highlights some of the open questions that remain to be answered before we can draw a more comprehensive picture.
Collapse
Affiliation(s)
- Agnieszka Gacek
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, University and Research Center—Campus Tulln, 3430 Tulln/Donau, Austria
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, University and Research Center—Campus Tulln, 3430 Tulln/Donau, Austria ,Health and Environment Department, Austrian Institute of Technology, University and Research Center—Campus Tulln, 3430 Tulln/Donau, Austria
| |
Collapse
|
43
|
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 2011; 108:14282-7. [PMID: 21825172 DOI: 10.1073/pnas.1103523108] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sequence analyses of fungal genomes have revealed that the potential of fungi to produce secondary metabolites is greatly underestimated. In fact, most gene clusters coding for the biosynthesis of antibiotics, toxins, or pigments are silent under standard laboratory conditions. Hence, it is one of the major challenges in microbiology to uncover the mechanisms required for pathway activation. Recently, we discovered that intimate physical interaction of the important model fungus Aspergillus nidulans with the soil-dwelling bacterium Streptomyces rapamycinicus specifically activated silent fungal secondary metabolism genes, resulting in the production of the archetypal polyketide orsellinic acid and its derivatives. Here, we report that the streptomycete triggers modification of fungal histones. Deletion analysis of 36 of 40 acetyltransferases, including histone acetyltransferases (HATs) of A. nidulans, demonstrated that the Saga/Ada complex containing the HAT GcnE and the AdaB protein is required for induction of the orsellinic acid gene cluster by the bacterium. We also showed that Saga/Ada plays a major role for specific induction of other biosynthesis gene clusters, such as sterigmatocystin, terrequinone, and penicillin. Chromatin immunoprecipitation showed that the Saga/Ada-dependent increase of histone 3 acetylation at lysine 9 and 14 occurs during interaction of fungus and bacterium. Furthermore, the production of secondary metabolites in A. nidulans is accompanied by a global increase in H3K14 acetylation. Increased H3K9 acetylation, however, was only found within gene clusters. This report provides previously undescribed evidence of Saga/Ada dependent histone acetylation triggered by prokaryotes.
Collapse
|
44
|
Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 2011; 12:269. [PMID: 21619626 PMCID: PMC3124439 DOI: 10.1186/1471-2164-12-269] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known. RESULTS Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina) by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes. CONCLUSIONS Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.
Collapse
Affiliation(s)
- Thomas Portnoy
- IFP Energies nouvelles, Département Biotechnologie, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
- École normale supérieure, Institut de Biologie de l'ENS, IBENS, Paris, F-75005 France. Inserm, U1024, Paris, F-75005 France. CNRS, UMR 8197, Paris, F-75005 France
| | - Antoine Margeot
- IFP Energies nouvelles, Département Biotechnologie, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Rita Linke
- Austrian Center of Industrial Biotechnology, c/o Institute of Chemical Engineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria
| | - Lea Atanasova
- Research Area Gene Technology and Applied Biochemistry, Institute of ChemicalEngineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4010, P.O.Box 56, Debrecen, Hungary
| | - Erzsébet Sándor
- Department of Plant Protection, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, H-4032 Böszörményi út 138., Debrecen, Hungary
| | - Lukas Hartl
- Research Area Gene Technology and Applied Biochemistry, Institute of ChemicalEngineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4010, P.O.Box 56, Debrecen, Hungary
| | - Irina S Druzhinina
- Research Area Gene Technology and Applied Biochemistry, Institute of ChemicalEngineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria
| | - Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of ChemicalEngineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria
| | - Stéphane Le Crom
- École normale supérieure, Institut de Biologie de l'ENS, IBENS, Paris, F-75005 France. Inserm, U1024, Paris, F-75005 France. CNRS, UMR 8197, Paris, F-75005 France
| | - Christian P Kubicek
- Research Area Gene Technology and Applied Biochemistry, Institute of ChemicalEngineering, Technische Universität Wien, Getreidemarkt 9/166, A-1060 Vienna, Austria
| |
Collapse
|
45
|
Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 2011; 48:62-9. [PMID: 20659575 PMCID: PMC3935439 DOI: 10.1016/j.fgb.2010.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 01/07/2023]
Abstract
Chromatin, composed of DNA wrapped around an octamer of histones, is the relevant substrate for all genetic processes in eukaryotic nuclei. Changes in chromatin structure are associated with the activation and silencing of gene transcription and reversible post-translational modifications of histones are now known to direct chromatin structure transitions. Recent studies in several fungal species have identified a chromatin-based regulation of secondary metabolism (SM) gene clusters representing an upper-hierarchical level for the coordinated control of large chromosomal elements. Regulation by chromatin transition processes provides a mechanistic model to explain how different SM clusters located at dispersed genomic regions can be simultaneously silenced during primary metabolism. Activation of SM clusters has been shown to be associated with increased acetylation of histones H3 and H4 and, consequently, inhibition of histone de-acetylase activities also leads to increased production of secondary metabolites. New findings suggest that SM clusters are silenced by heterochromatic histone marks and that the "closed" heterochromatic structures are reversed during SM activation. This process is mediated by the conserved activator of SM, LaeA. Despite the increase in knowledge about these processes, much remains to be learned from chromatin-level regulation of SM. For example, which proteins "position" the chromatin restructuring signal onto SM clusters or how exactly LaeA works to mediate the low level of heterochromatic marks inside different clusters remain open questions. Answers to these and other chromatin-related questions would certainly complete our understanding of SM gene regulation and signaling and, because for many predicted SM clusters corresponding products have not been identified so far, anti-silencing strategies would open new ways for the identification of novel bioactive substances.
Collapse
Affiliation(s)
- Joseph Strauss
- Corresponding author. Fax: +43 1 36006 6392. (J. Strauss)
| | | |
Collapse
|
46
|
Palmer JM, Keller NP. Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 2010; 13:431-6. [PMID: 20627806 DOI: 10.1016/j.mib.2010.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Filamentous fungi produce a vast array of small molecules called secondary metabolites, which include toxins as well as antibiotics. Coregulated gene clusters are the hallmark of fungal secondary metabolism, and there is a growing body of evidence that suggests regulation is at least, in part, epigenetic. Chromatin-level control is involved in several silencing phenomena observed in fungi including mating type switching, telomere position effect (TPE), silencing of ribosomal DNA, regulation of genes involved in nutrient acquisition, and as presented here, secondary metabolite cluster expression. These phenomena are tied together by the underlying theme of chromosomal location, often near centromeres and telomeres, where facultative heterochromatin plays a role in transcription. Secondary metabolite gene clusters are often located subtelomerically and recently it has been shown that proteins involved in chromatin remodeling, such as LaeA, ClrD, CclA, and HepA mediate cluster regulation.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Plant Pathology Department, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
47
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
48
|
GarcÃa I, Mathieu M, Nikolaev I, Felenbok BÃ, Scazzocchio C. Roles of theAspergillus nidulanshomologues of Tup1 and Ssn6 in chromatin structure and cell viability. FEMS Microbiol Lett 2008; 289:146-54. [DOI: 10.1111/j.1574-6968.2008.01379.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. EUKARYOTIC CELL 2008; 7:1831-46. [PMID: 18689524 DOI: 10.1128/ec.00130-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In filamentous fungi, the GATA-type transcription factor AreA plays a major role in the transcriptional activation of genes needed to utilize poor nitrogen sources. In Fusarium fujikuroi, AreA also controls genes involved in the biosynthesis of gibberellins, a family of diterpenoid plant hormones. To identify more genes responding to nitrogen limitation or sufficiency in an AreA-dependent or -independent manner, we examined changes in gene expression of F. fujikuroi wild-type and DeltaareA strains by use of a Fusarium verticillioides microarray representing approximately 9,300 genes. Analysis of the array data revealed sets of genes significantly down- and upregulated in the areA mutant under both N starvation and N-sufficient conditions. Among the downregulated genes are those involved in nitrogen metabolism, e.g., those encoding glutamine synthetase and nitrogen permeases, but also those involved in secondary metabolism. Besides AreA-dependent genes, we found an even larger set of genes responding to N starvation and N-sufficient conditions in an AreA-independent manner. To study the impact of NMR on AreA activity, we examined the expression of several AreA target genes in the wild type and in areA and nmr deletion and overexpression mutants. We show that NMR interacts with AreA as expected but affects gene expression only in early growth stages. This is the first report on genome-wide expression studies examining the influence of AreA on nitrogen-responsive gene expression in a genome-wide manner in filamentous fungi.
Collapse
|
50
|
Berger H, Basheer A, Böck S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol 2008; 69:1385-98. [PMID: 18673441 DOI: 10.1111/j.1365-2958.2008.06359.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY In the ascomycete fungus Aspergillus nidulans, the transcriptional activation of nitrate assimilating genes (niiA, niaD) depends on the cooperativity between a general nitrogen status-sensing regulator (the GATA factor AreA) and a pathway-specific activator (the Zn-cluster regulator NirA). Because nitrate assimilation leads to intracellular ammonium formation, it is difficult to determine the individual contributions of NirA and AreA in this complex activation/inactivation process. In an attempt to find a suitable marker for the nitrogen status sensed by AreA, we determined the intracellular free amino acid levels on different nitrogen growth conditions. We show that the amount of glutamine (Gln) inversely correlates with all known AreA activities. We find that AreA mediates chromatin remodelling by increasing histone H3 acetylation, a process triggered by transcriptional activation and, independently of transcription, by nitrogen starvation. NirA also participates in the chromatin opening process during nitrate induction but its function is not related to histone acetylation. This chromatin remodelling function of NirA is dispensable only in nitrogen-starved cells, conditions that lead to elevated AreA chromatin occupancy and histone H3 hyperacetylation. Continuous nitrate assimilation leads to self-nitrogen metabolite repression but nitrate-activated NirA is partially compensating for lowered AreA activities under these conditions.
Collapse
Affiliation(s)
- Harald Berger
- Fungal Genomics Unit, Austrian Research Centers, Tech Gate Vienna, Donau-City-Strasse 1, 1220 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|