1
|
Robinson KP, Jochem A, Johnson SE, Reddy TR, Russell JD, Coon JJ, Pagliarini DJ. Defining intermediates and redundancies in coenzyme Q precursor biosynthesis. J Biol Chem 2021; 296:100643. [PMID: 33862086 PMCID: PMC8122105 DOI: 10.1016/j.jbc.2021.100643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/04/2022] Open
Abstract
Coenzyme Q (CoQ), a redox-active lipid essential for oxidative phosphorylation, is synthesized by virtually all cells, but how eukaryotes make the universal CoQ head group precursor 4-hydroxybenzoate (4-HB) from tyrosine is unknown. The first and last steps of this pathway have been defined in Saccharomyces cerevisiae, but the intermediates and enzymes involved in converting 4-hydroxyphenylpyruvate (4-HPP) to 4-hydroxybenzaldehyde (4-HBz) have not been described. Here, we interrogate this pathway with genetic screens, targeted LC-MS, and chemical genetics. We identify three redundant aminotransferases (Bna3, Bat2, and Aat2) that support CoQ biosynthesis in the absence of the established pathway tyrosine aminotransferases, Aro8 and Aro9. We use isotope labeling to identify bona fide tyrosine catabolites, including 4-hydroxyphenylacetate (4-HPA) and 4-hydroxyphenyllactate (4-HPL). Additionally, we find multiple compounds that rescue this pathway when exogenously supplemented, most notably 4-hydroxyphenylacetaldehyde (4-HPAA) and 4-hydroxymandelate (4-HMA). Finally, we show that the Ehrlich pathway decarboxylase Aro10 is dispensable for 4-HB production. These results define new features of 4-HB synthesis in yeast, demonstrate the redundant nature of this pathway, and provide a foundation for further study.
Collapse
Affiliation(s)
- Kyle P Robinson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Adam Jochem
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Sheila E Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Thiruchelvi R Reddy
- Morgridge Institute for Research, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason D Russell
- Morgridge Institute for Research, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
2
|
Dörnte B, Peng C, Fang Z, Kamran A, Yulvizar C, Kües U. Selection markers for transformation of the sequenced reference monokaryon Okayama 7/#130 and homokaryon AmutBmut of Coprinopsis cinerea. Fungal Biol Biotechnol 2020; 7:15. [PMID: 33062286 PMCID: PMC7552465 DOI: 10.1186/s40694-020-00105-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two reference strains have been sequenced from the mushroom Coprinopsis cinerea, monokaryon Okayama 7/#130 (OK130) and the self-compatible homokaryon AmutBmut. An adenine-auxotrophy in OK130 (ade8-1) and a para-aminobenzoic acid (PABA)-auxotrophy in AmutBmut (pab1-1) offer selection markers for transformations. Of these two strains, homokaryon AmutBmut had been transformed before to PABA-prototrophy and with the bacterial hygromycin resistance marker hph, respectively. RESULTS Gene ade8 encodes a bifunctional enzyme with an N-terminal glycinamide ribonucleotide synthase (GARS) and a C-terminal aminoimidazole ribonucleotide synthase (AIRS) domain required for steps 2 and 5 in the de novo biosynthesis of purines, respectively. In OK130, a missense mutation in ade8-1 rendered residue N231 for ribose recognition by the A loop of the GARS domain into D231. The new ade8 + vector pCcAde8 complements the auxotrophy of OK130 in transformations. Transformation rates with pCcAde8 in single-vector and co-transformations with ade8 +-selection were similarly high, unlike for trp1 + plasmids which exhibit suicidal feedback-effects in single-vector transformations with complementation of tryptophan synthase defects. As various other plasmids, unselected pCcAde8 helped in co-transformations of trp1 strains with a trp1 +-selection vector to overcome suicidal effects by transferred trp1 +. Co-transformation rates of pCcAde8 in OK130 under adenine selection with nuclear integration of unselected DNA were as high as 80% of clones. Co-transformation rates of expressed genes reached 26-42% for various laccase genes and up to 67% with lcc9 silencing vectors. The bacterial gene hph can also be used as another, albeit less efficient, selection marker for OK130 transformants, but with similarly high co-transformation rates. We further show that the pab1-1 defect in AmutBmut is due to a missense mutation which changed the conserved PIKGT motif for chorismate binding in the C-terminal PabB domain to PIEGT in the mutated 4-amino-4-deoxychorismate synthase. CONCLUSIONS ade8-1 and pab1-1 auxotrophic defects in C. cinerea reference strains OK130 and AmutBmut for complementation in transformation are described. pCcAde8 is a new transformation vector useful for selection in single and co-transformations of the sequenced monokaryon OK130 which was transformed for the first time. The bacterial gene hph can also be used as an additional selection marker in OK130, making in combination with ade8 + successive rounds of transformation possible.
Collapse
Affiliation(s)
- Bastian Dörnte
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Can Peng
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Aysha Kamran
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Present Address: Institute for Microbiology and Genetics, University of Goettingen, 37077 Goettingen, Germany
| | - Cut Yulvizar
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:1853-1867. [PMID: 32265288 PMCID: PMC7263696 DOI: 10.1534/g3.120.401137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.
Collapse
|
4
|
Caudy AA, Hanchard JA, Hsieh A, Shaan S, Rosebrock AP. Functional genetic discovery of enzymes using full-scan mass spectrometry metabolomics. Biochem Cell Biol 2019; 97:73-84. [DOI: 10.1139/bcb-2018-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our understanding of metabolic networks is incomplete, and new enzymatic activities await discovery in well-studied organisms. Mass spectrometric measurement of cellular metabolites reveals compounds inside cells that are unexplained by current maps of metabolic reactions, and existing computational models are unable to account for all activities observed within cells. Additional large-scale genetic and biochemical approaches are required to elucidate metabolic gene function. We have used full-scan mass spectrometry metabolomics of polar small molecules to examine deletion mutants of candidate enzymes in the model yeast Saccharomyces cerevisiae. We report the identification of 25 genes whose deletion results in focal metabolic changes consistent with loss of enzymatic activity and describe the informatic approaches used to enrich for candidate enzymes from uncharacterized open reading frames. Triumphs and pitfalls of metabolic phenotyping screens are discussed, including estimates of the frequency of uncharacterized eukaryotic genes that affect metabolism and key issues to consider when searching for new enzymatic functions in other organisms.
Collapse
Affiliation(s)
- Amy A. Caudy
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Julia A. Hanchard
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Alan Hsieh
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Saravannan Shaan
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Adam P. Rosebrock
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
5
|
Fattah TA, Bua S, Saeed A, Shabir G, Supuran CT. 3-Aminobenzenesulfonamides incorporating acylthiourea moieties selectively inhibit the tumor-associated carbonic anhydrase isoform IX over the off-target isoforms I, II and IV. Bioorg Chem 2019; 82:123-128. [DOI: 10.1016/j.bioorg.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/21/2023]
|
6
|
Averesch NJH, Krömer JO. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies. Front Bioeng Biotechnol 2018; 6:32. [PMID: 29632862 PMCID: PMC5879953 DOI: 10.3389/fbioe.2018.00032] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Re)construction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.
Collapse
Affiliation(s)
- Nils J H Averesch
- Universities Space Research Association at NASA Ames Research Center, Moffett Field, CA, United States
| | - Jens O Krömer
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
7
|
Pierrel F. Impact of Chemical Analogs of 4-Hydroxybenzoic Acid on Coenzyme Q Biosynthesis: From Inhibition to Bypass of Coenzyme Q Deficiency. Front Physiol 2017; 8:436. [PMID: 28690551 PMCID: PMC5479927 DOI: 10.3389/fphys.2017.00436] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Coenzyme Q is a lipid that participates to important physiological functions. Coenzyme Q is synthesized in multiple steps from the precursor 4-hydroxybenzoic acid. Mutations in enzymes that participate to coenzyme Q biosynthesis result in primary coenzyme Q deficiency, a type of mitochondrial disease. Coenzyme Q10 supplementation of patients is the classical treatment but it shows limited efficacy in some cases. The molecular understanding of the coenzyme Q biosynthetic pathway allowed the design of experiments to bypass deficient biosynthetic steps with analogs of 4-hydroxybenzoic acid. These molecules provide the defective chemical group and can reactivate endogenous coenzyme Q biosynthesis as demonstrated recently in yeast, mammalian cell cultures, and mouse models of primary coenzyme Q deficiency. This mini review presents how the chemical properties of various analogs of 4-hydroxybenzoic acid dictate the effect of the molecules on CoQ biosynthesis and how the reactivation of endogenous coenzyme Q biosynthesis may achieve better results than exogenous CoQ10 supplementation.
Collapse
Affiliation(s)
- Fabien Pierrel
- Centre National de la Recherche Scientifique, Grenoble INP, TIMC-IMAG, University Grenoble AlpesGrenoble, France
| |
Collapse
|
8
|
Payet LA, Leroux M, Willison JC, Kihara A, Pelosi L, Pierrel F. Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chem Biol 2016; 23:1241-1250. [PMID: 27693056 DOI: 10.1016/j.chembiol.2016.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022]
Abstract
Coenzyme Q (Q) is a redox lipid that is central for the energetic metabolism of eukaryotes. The biosynthesis of Q from the aromatic precursor 4-hydroxybenzoic acid (4-HB) is understood fairly well. However, biosynthetic details of how 4-HB is produced from tyrosine remain elusive. Here, we provide key insights into this long-standing biosynthetic problem by uncovering molecular details of the first and last reactions of the pathway in the yeast Saccharomyces cerevisiae, namely the deamination of tyrosine to 4-hydroxyphenylpyruvate by Aro8 and Aro9, and the oxidation of 4-hydroxybenzaldehyde to 4-HB by Hfd1. Inactivation of the HFD1 gene in yeast resulted in Q deficiency, which was rescued by the human enzyme ALDH3A1. This suggests that a similar pathway operates in animals, including humans, and led us to propose that patients with genetically unassigned Q deficiency should be screened for mutations in aldehyde dehydrogenase genes, especially ALDH3A1.
Collapse
Affiliation(s)
- Laurie-Anne Payet
- Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France
| | - Mélanie Leroux
- CEA-Grenoble, DRF-BIG-CBM, UMR5249, 38000 Grenoble, France
| | | | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ludovic Pelosi
- Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France.
| |
Collapse
|
9
|
Averesch NJH, Winter G, Krömer JO. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb Cell Fact 2016; 15:89. [PMID: 27230236 PMCID: PMC4882779 DOI: 10.1186/s12934-016-0485-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biological production of the aromatic compound para-aminobenzoic acid (pABA) is of great interest to the chemical industry. Besides its application in pharmacy and as crosslinking agent for resins and dyes pABA is a potential precursor for the high-volume aromatic feedstocks terephthalic acid and para-phenylenediamine. The yeast Saccharomyces cerevisiae synthesises pABA in the shikimate pathway: Outgoing from the central shikimate pathway intermediate chorismate, pABA is formed in two enzyme-catalysed steps, encoded by the genes ABZ1 and ABZ2. In this study S. cerevisiae metabolism was genetically engineered for the overproduction of pABA. Using in silico metabolic modelling an observed impact of carbon-source on product yield was investigated and exploited to optimize production. RESULTS A strain that incorporated the feedback resistant ARO4 (K229L) and deletions in the ARO7 and TRP3 genes, in order to channel flux to chorismate, was used to screen different ABZ1 and ABZ2 genes for pABA production. In glucose based shake-flaks fermentations the highest titer (600 µM) was reached when over-expressing the ABZ1 and ABZ2 genes from the wine yeast strains AWRI1631 and QA23, respectively. In silico metabolic modelling indicated a metabolic advantage for pABA production on glycerol and combined glycerol-ethanol carbon-sources. This was confirmed experimentally, the empirical ideal glycerol to ethanol uptake ratios of 1:2-2:1 correlated with the model. A (13)C tracer experiment determined that up to 32% of the produced pABA originated from glycerol. Finally, in fed-batch bioreactor experiments pABA titers of 1.57 mM (215 mg/L) and carbon yields of 2.64% could be achieved. CONCLUSION In this study a combination of genetic engineering and in silico modelling has proven to be a complete and advantageous approach to increase pABA production. Especially the enzymes that catalyse the last two steps towards product formation appeared to be crucial to direct flux to pABA. A stoichiometric model for carbon-utilization proved useful to design carbon-source composition, leading to increased pABA production. The reported pABA concentrations and yields are, to date, the highest in S. cerevisiae and the second highest in a microbial production system, underlining the great potential of yeast as a cell factory for renewable aromatic feedstocks.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| | - Gal Winter
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
- />School of Science and Technology, University of New England, Armidale, Australia
| | - Jens O. Krömer
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Ozeir M, Pelosi L, Ismail A, Mellot-Draznieks C, Fontecave M, Pierrel F. Coq6 is responsible for the C4-deamination reaction in coenzyme Q biosynthesis in Saccharomyces cerevisiae. J Biol Chem 2015; 290:24140-51. [PMID: 26260787 DOI: 10.1074/jbc.m115.675744] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway.
Collapse
Affiliation(s)
- Mohammad Ozeir
- From the University of Grenoble Alpes, LCBM, UMR5249, F-38000 Grenoble, France
| | - Ludovic Pelosi
- the University of Grenoble Alpes, LAPM, F-38000 Grenoble, France, the CNRS, LAPM, F-38000 Grenoble, France
| | - Alexandre Ismail
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France, and the Sup'Biotech, IONIS Education Group, 66 rue Guy-Moquet, F-94800 Villejuif, France
| | - Caroline Mellot-Draznieks
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France, and
| | - Marc Fontecave
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France, and
| | - Fabien Pierrel
- the University of Grenoble Alpes, LAPM, F-38000 Grenoble, France, the CNRS, LAPM, F-38000 Grenoble, France,
| |
Collapse
|
11
|
Functional characterization of the Pneumocystis jirovecii potential drug targets dhfs and abz2 involved in folate biosynthesis. Antimicrob Agents Chemother 2015; 59:2560-6. [PMID: 25691634 DOI: 10.1128/aac.05092-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/07/2015] [Indexed: 01/12/2023] Open
Abstract
Pneumocystis species are fungal parasites colonizing mammal lungs with strict host specificity. Pneumocystis jirovecii is the human-specific species and can turn into an opportunistic pathogen causing severe pneumonia in immunocompromised individuals. This disease is currently the second most frequent life-threatening invasive fungal infection worldwide. The most efficient drug, cotrimoxazole, presents serious side effects, and resistance to this drug is emerging. The search for new targets for the development of new drugs is thus of utmost importance. The recent release of the P. jirovecii genome sequence opens a new era for this task. It can now be carried out on the actual targets to be inhibited instead of on those of the relatively distant model Pneumocystis carinii, the species infecting rats. We focused on the folic acid biosynthesis pathway because (i) it is widely used for efficient therapeutic intervention, and (ii) it involves several enzymes that are essential for the pathogen and have no human counterparts. In this study, we report the identification of two such potential targets within the genome of P. jirovecii, the dihydrofolate synthase (dhfs) and the aminodeoxychorismate lyase (abz2). The function of these enzymes was demonstrated by the rescue of the null allele of the orthologous gene of Saccharomyces cerevisiae.
Collapse
|
12
|
New aminobenzenesulfonamide–thiourea conjugates: Synthesis and carbonic anhydrase inhibition and docking studies. Eur J Med Chem 2014; 78:140-50. [DOI: 10.1016/j.ejmech.2014.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/16/2014] [Accepted: 03/08/2014] [Indexed: 11/22/2022]
|
13
|
Bolden S, Zhu XY, Etukala JR, Boateng C, Mazu T, Flores-Rozas H, Jacob MR, Khan SI, Walker LA, Ablordeppey SY. Structure-activity relationship (SAR) and preliminary mode of action studies of 3-substituted benzylthioquinolinium iodide as anti-opportunistic infection agents. Eur J Med Chem 2013; 70:130-42. [PMID: 24141203 DOI: 10.1016/j.ejmech.2013.09.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Opportunistic infections are devastating to immunocompromised patients. And in especially sub-Saharan Africa where the AIDS epidemic is still raging, the mortality rate was recently as high as 70%. The paucity of anti-opportunistic drugs, the decreasing efficacy and the development of resistance against the azoles and even amphotericin B have stimulated the search for new drugs with new mechanisms of action. In a previous work, we showed that a new chemotype derived from the natural product cryptolepine displayed selective toxicity against opportunistic pathogens with minimal cytotoxicity to normal cells. In this manuscript, we report the design and synthesis of substituted benzylthioquinolinium iodides, evaluated their anti-infective properties and formulated some initial structure-activity relationships around phenyl ring A from the original natural product. The sensitivity of the most potent analog 10l, to selected strains of C. cerevisiae was also evaluated leading to the observation that this scaffold may have a different mode of action from its predecessor, cryptolepine.
Collapse
Affiliation(s)
- Sidney Bolden
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Completing the folate biosynthesis pathway in Plasmodium falciparum: p-aminobenzoate is produced by a highly divergent promiscuous aminodeoxychorismate lyase. Biochem J 2013; 455:149-55. [DOI: 10.1042/bj20130896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified the aminodeoxychorismate lyase from Plasmodium falciparum. This enzyme participates in the biosynthesis of folate and could be a new target for antimalarial therapy. The enzyme has little similarity to its bacterial counterparts and shows a minor D-amino acid transaminase activity.
Collapse
|
15
|
Dai YN, Chi CB, Zhou K, Cheng W, Jiang YL, Ren YM, Ruan K, Chen Y, Zhou CZ. Structure and catalytic mechanism of yeast 4-amino-4-deoxychorismate lyase. J Biol Chem 2013; 288:22985-92. [PMID: 23818518 DOI: 10.1074/jbc.m113.480335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Abz2 is a pyridoxal 5'-phosphate (PLP)-dependent lyase that converts 4-amino-4-deoxychorismate (ADC) to para-aminobenzoate and pyruvate. To investigate the catalytic mechanism, we determined the 1.9 Å resolution crystal structure of Abz2 complexed with PLP, representing the first eukaryotic ADC lyase structure. Unlike Escherichia coli ADC lyase, whose dimerization is critical to the formation of the active site, the overall structure of Abz2 displays as a monomer of two domains. At the interdomain cleft, a molecule of cofactor PLP forms a Schiff base with residue Lys-251. Computational simulations defined a basic clamp to orientate the substrate ADC in a proper pose, which was validated by site-directed mutageneses combined with enzymatic activity assays. Altogether, we propose a putative catalytic mechanism of a unique class of monomeric ADC lyases led by yeast Abz2.
Collapse
Affiliation(s)
- Ya-Nan Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Salcedo-Sora JE, Ward SA. The folate metabolic network of Falciparum malaria. Mol Biochem Parasitol 2013; 188:51-62. [PMID: 23454873 DOI: 10.1016/j.molbiopara.2013.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023]
Abstract
The targeting of key enzymes in the folate pathway continues to be an effective chemotherapeutic approach that has earned antifolate drugs a valuable position in the medical pharmacopoeia. The successful therapeutic use of antifolates as antimalarials has been a catalyst for ongoing research into the biochemistry of folate and pterin biosynthesis in malaria parasites. However, our understanding of the parasites folate metabolism remains partial and patchy, especially in relation to the shikimate pathway, the folate cycle, and folate salvage. A sizeable number of potential folate targets remain to be characterised. Recent reports on the parasite specific transport of folate precursors that would normally be present in the human host awaken previous hypotheses on the salvage of folate precursors or by-products. As the parasite progresses through its life-cycle it encounters very contrasting host cell environments that present radically different metabolic milieus and biochemical challenges. It would seem probable that as the parasite encounters differing environments it would need to modify its biochemistry. This would be reflected in the folate homeostasis in Plasmodium. Recent drug screening efforts and insights into folate membrane transport substantiate the argument that folate metabolism may still offer unexplored opportunities for therapeutic attack.
Collapse
Affiliation(s)
- J Enrique Salcedo-Sora
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | |
Collapse
|
17
|
Lanza AM, Blazeck JJ, Crook NC, Alper HS. Linking yeast Gcn5p catalytic function and gene regulation using a quantitative, graded dominant mutant approach. PLoS One 2012; 7:e36193. [PMID: 22558379 PMCID: PMC3338614 DOI: 10.1371/journal.pone.0036193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
Establishing causative links between protein functional domains and global gene regulation is critical for advancements in genetics, biotechnology, disease treatment, and systems biology. This task is challenging for multifunctional proteins when relying on traditional approaches such as gene deletions since they remove all domains simultaneously. Here, we describe a novel approach to extract quantitative, causative links by modulating the expression of a dominant mutant allele to create a function-specific competitive inhibition. Using the yeast histone acetyltransferase Gcn5p as a case study, we demonstrate the utility of this approach and (1) find evidence that Gcn5p is more involved in cell-wide gene repression, instead of the accepted gene activation associated with HATs, (2) identify previously unknown gene targets and interactions for Gcn5p-based acetylation, (3) quantify the strength of some Gcn5p-DNA associations, (4) demonstrate that this approach can be used to correctly identify canonical chromatin modifications, (5) establish the role of acetyltransferase activity on synthetic lethal interactions, and (6) identify new functional classes of genes regulated by Gcn5p acetyltransferase activity—all six of these major conclusions were unattainable by using standard gene knockout studies alone. We recommend that a graded dominant mutant approach be utilized in conjunction with a traditional knockout to study multifunctional proteins and generate higher-resolution data that more accurately probes protein domain function and influence.
Collapse
Affiliation(s)
- Amanda M. Lanza
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - John J. Blazeck
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Nathan C. Crook
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Hal S. Alper
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wallace IM, Urbanus ML, Luciani GM, Burns AR, Han MKL, Wang H, Arora K, Heisler LE, Proctor M, St Onge RP, Roemer T, Roy PJ, Cummins CL, Bader GD, Nislow C, Giaever G. Compound prioritization methods increase rates of chemical probe discovery in model organisms. ACTA ACUST UNITED AC 2012; 18:1273-83. [PMID: 22035796 DOI: 10.1016/j.chembiol.2011.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
Abstract
Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. These data were used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes, we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7500 growth-inhibitory molecules have been made commercially available and the computational model and filter used are provided.
Collapse
Affiliation(s)
- Iain M Wallace
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Saeed A, Mumtaz A, Ishida H. Synthesis, characterization of some new 1-aroyl-3-(4-aminosulfonylphenyl)thioureas and crystal structure of 1-(3,4,5-trimethoxybenzoyl)- 3-(4-aminosulfonylphenyl)thiourea. J Sulphur Chem 2011. [DOI: 10.1080/17415993.2010.541461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aamer Saeed
- a Department of Chemistry , Quaid-I-Azam University , Islamabad , 45320 , Pakistan
| | - Amara Mumtaz
- a Department of Chemistry , Quaid-I-Azam University , Islamabad , 45320 , Pakistan
| | - H. Ishida
- b Department of Chemistry, Faculty of Science , Okayama University , Okayama , 700-8530 , Japan
| |
Collapse
|
20
|
Saeed A, Mumtaz A, Florke U. Synthesis, characterization and crystal structure of 1-(4-methylbenzoyl)-3-(4 aminosulfonylphenyl)thiourea. ACTA ACUST UNITED AC 2010. [DOI: 10.5155/eurjchem.1.2.73-75.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF. para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem 2010; 285:27827-38. [PMID: 20592037 DOI: 10.1074/jbc.m110.151894] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable (13)C(6)-isotope of pABA (p- amino[aromatic-(13)C(6)]benzoic acid ([(13)C(6)]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[(13)C(6)]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [(13)C(6)]pABA or [(13)C(6)]4HB generate both (13)C(6)-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product (13)C(6)-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ(6). This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ(6) quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates.
Collapse
Affiliation(s)
- Beth Marbois
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
22
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|