1
|
Zhang D, Ren L, Wang Q, Wenjing Li, Song Z, Jin X, Fang W, Yan D, Li Y, Wang Q, He L, Cao A. Systematic assessment of the antifungal mechanism of soil fumigant methyl isothiocyanate against Fusarium oxysporum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122791. [PMID: 37940016 DOI: 10.1016/j.envpol.2023.122791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
Fusarium oxysporum is an important phytopathogenic fungus, it can be controlled by the soil fumigant methyl isothiocyanate (MITC). However, the antimicrobial mechanism of MITC against F. oxysporum, especially at the transcriptional level, is still unclear. In this experiment, the antimicrobial mechanism of MITC against F. oxysporum was investigated. Our results indicated that when F. oxysporum was exposed to 6 mg/L MITC for 12 h, the inhibitory rate of MITC on F. oxysporum was 80%. Transmission electron microscopes showed that the cell wall and membrane of F. oxysporum had shrunk and folded, vacuoles increased, and mitochondria swelled and deformed. In addition, the enzyme activity of F. oxysporum treated with MITC showed a decrease of 32.50%, 8.28% and 74.04% in catalase, peroxidase and superoxide dismutase, respectively. Transcriptome sequencing of F. oxysporum was performed and the results showed that 1478 differentially expressed genes (DEGs) were produced in response to MITC exposure. GO and KEGG analysis showed that the DEGs identified were involved in substance and energy metabolism, signal transduction, transport and catalysis. MITC disrupted cell homeostasis by influencing the expression of some key genes involved in chitin synthase and detoxification enzymes production, but F. oxysporum also protected itself by up-regulating genes involved in energy synthesis (such as upregulating acnA, CS and LSC2 in TCA). qRT-PCR data validated the reliability of transcriptome data. Our research used biochemical and genetic techniques to identify molecular lesions in the mycelia of F. oxysporum exposed to MITC, and provide valuable insights into the toxic mechanism of pathogenic fungi mediated by MITC. These techniques are also likely to be useful for rapidly screening and identifying new, environmentally-friendly soil fumigants that are efficacious against fungal pathogens.
Collapse
Affiliation(s)
- Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenjing Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhaoxin Song
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Jin
- Beijing Innovation Consortium of Agriculture Research System, Beijing 100193, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China
| | - Lin He
- Innovation Research Team of Vegetable Pests Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Innovation Consortium of Agriculture Research System, Beijing 100193, China; Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Hebei 071000, China.
| |
Collapse
|
2
|
Sridhar PS, Vasquez V, Monteil-Rivera F, Allingham JS, Loewen MC. A peroxidase-derived ligand that induces Fusarium graminearum Ste2 receptor-dependent chemotropism. Front Cell Infect Microbiol 2024; 13:1287418. [PMID: 38239502 PMCID: PMC10794396 DOI: 10.3389/fcimb.2023.1287418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The fungal G protein-coupled receptors Ste2 and Ste3 are vital in mediating directional hyphal growth of the agricultural pathogen Fusarium graminearum towards wheat plants. This chemotropism is induced by a catalytic product of peroxidases secreted by the wheat. Currently, the identity of this product, and the substrate it is generated from, are not known. Methods and results We provide evidence that a peroxidase substrate is derived from F. graminearum conidia and report a simple method to extract and purify the FgSte2-activating ligand for analyses by mass spectrometry. The mass spectra arising from t he ligand extract are characteristic of a 400 Da carbohydrate moiety. Consistent with this type of molecule, glycosidase treatment of F. graminearum conidia prior to peroxidase treatment significantly reduced the amount of ligand extracted. Interestingly, availability of the peroxidase substrate appears to depend on the presence of both FgSte2 and FgSte3, as knockout of one or the other reduces the chemotropism-inducing effect of the extracts. Conclusions While further characterization is necessary, identification of the F. graminearum-derived peroxidase substrate and the FgSte2-activating ligand will unearth deeper insights into the intricate mechanisms that underlie fungal pathogenesis in cereal crops, unveiling novel avenues for inhibitory interventions.
Collapse
Affiliation(s)
- Pooja S. Sridhar
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Vinicio Vasquez
- National Research Council of Canada, Aquatic and Crop Resources Development, Montreal, QC, Canada
| | - Fanny Monteil-Rivera
- National Research Council of Canada, Aquatic and Crop Resources Development, Montreal, QC, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Michele C. Loewen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- National Research Council of Canada, Aquatic and Crop Resources Development, Ottawa, ON, Canada
| |
Collapse
|
3
|
Chiu T, Poucet T, Li Y. The potential of plant proteins as antifungal agents for agricultural applications. Synth Syst Biotechnol 2022; 7:1075-1083. [PMID: 35891944 PMCID: PMC9305310 DOI: 10.1016/j.synbio.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Fungal pathogens induce a variety of diseases in both plants and post-harvest food crops, resulting in significant crop losses for the agricultural industry. Although the usage of chemical-based fungicides is the most common way to control these diseases, they damage the environment, have the potential to harm human and animal life, and may lead to resistant fungal strains. Accordingly, there is an urgent need for diverse and effective agricultural fungicides that are environmentally- and eco-friendly. Plants have evolved various mechanisms in their innate immune system to defend against fungal pathogens, including soluble proteins secreted from plants with antifungal activities. These proteins can inhibit fungal growth and infection through a variety of mechanisms while exhibiting diverse functionality in addition to antifungal activity. In this mini review, we summarize and discuss the potential of using plant antifungal proteins for future agricultural applications from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Tiffany Chiu
- Graduate Program in Genetics, Genomics, And Bioinformatics, 1140 Batchelor Hall, University of California Riverside, California, 92521, USA
| | - Theo Poucet
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Hall RA, Wallace EW. Post-transcriptional control of fungal cell wall synthesis. Cell Surf 2022; 8:100074. [PMID: 35097244 PMCID: PMC8783092 DOI: 10.1016/j.tcsw.2022.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.
Collapse
Affiliation(s)
- Rebecca A. Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Edward W.J. Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
5
|
Han S, Chen J, Zhao Y, Cai H, Guo C. Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104916. [PMID: 34446192 DOI: 10.1016/j.pestbp.2021.104916] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Soybean root rot occurs globally and seriously affects soybean production. To avoid the many disadvantages of chemical fungicides, the addition of Bacillus is gradually becoming an alternative strategy to tackle soybean root rot. However, the molecular mechanism of phytopathogenic fungi in this process by Bacillus inhibition is rarely reported. In this study, we isolated a strain of B. subtilis HSY21 from soybean rhizosphere soil, which had an inhibition rate of 81.30 ± 0.15% (P < 0.05) against Fusarium oxysporum. The control effects of this strain against soybean root rot under greenhouse and field conditions were 63.83% and 57.07% (P < 0.05), respectively. RNA-seq analysis of F. oxysporum after treatment with strain HSY21 revealed 1445 downregulated genes and 1561 upregulated genes. Among them, genes involved in mycelial growth, metabolism regulation, and disease-related enzymes were mostly downregulated. The activities of cellulase, β-glucosidase, α-amylase, and pectin-methyl- galacturonase as well as levels of oxalic acid and ergosterol in F. oxysporum were significantly decreased after HSY21 treatment. These results demonstrated that B. subtilis HSY21 could effectively control F. oxysporum by inhibiting its growth and the expression of pathogenic genes, thus indicating that this strain may be an ideal candidate for the prevention and control of soybean root rot.
Collapse
Affiliation(s)
- Songyang Han
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Yujie Zhao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China..
| |
Collapse
|
6
|
Zhao Q, Qiu B, Li S, Zhang Y, Cui X, Liu D. Osmotin-Like Protein Gene from Panax notoginseng Is Regulated by Jasmonic Acid and Involved in Defense Responses to Fusarium solani. PHYTOPATHOLOGY 2020; 110:1419-1427. [PMID: 32301678 DOI: 10.1094/phyto-11-19-0410-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Osmotin and osmotin-like proteins (OLPs) play important roles in plant defense responses. The full-length cDNA sequence of an OLP gene was cloned from Panax notoginseng using rapid amplification of cDNA-end technology and named PnOLP1. A quantitative reverse transcription-PCR analysis showed that the signaling molecules methyl jasmonate, salicylic acid, ethylene, and hydrogen peroxide induced PnOLP1 expression to different degrees. In addition, the expression level of PnOLP1 rapidly increased within 48 h of inoculating P. notoginseng with the root rot pathogen Fusarium solani. Subcellular localization revealed that PnOLP1 localized to the cell wall. A prokaryotic expression vector containing PnOLP1 was constructed and transformed into Escherichia coli BL21 (DE3), and in vitro antifungal assays were performed using the purified recombinant PnOLP1 protein. The recombinant PnOLP1 protein had strong inhibitory effects on the mycelial growth of F. oxysporum, F. graminearum, and F. solani. A plant PnOLP1-overexpression vector was constructed and transfected into tobacco, and the resistance of T2 transgenic tobacco against F. solani was significantly enhanced compared with wild-type tobacco. Moreover, a PnOLP1 RNAi vector was constructed and transferred to the P. notoginseng leaves for transient expression, and the decrease of PnOLP1 expression level in P. notoginseng leaves increased the susceptibility to F. solani. Thus, PnOLP1 is an important disease resistance gene involved in the defense responses of P. notoginseng to F. solani.
Collapse
Affiliation(s)
- Qin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Yingpeng Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| |
Collapse
|
7
|
Zaman NR, Kumar B, Nasrin Z, Islam MR, Maiti TK, Khan H. Proteome Analyses Reveal Macrophomina phaseolina's Survival Tools When Challenged by Burkholderia contaminans NZ. ACS OMEGA 2020; 5:1352-1362. [PMID: 32010805 PMCID: PMC6990438 DOI: 10.1021/acsomega.9b01870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/03/2020] [Indexed: 05/09/2023]
Abstract
A phytopathogenic fungus, Macrophomina phaseolina, which infects a wide range of plants, is an important consideration in agronomy. A jute endophytic bacterium, Burkholderia contaminans NZ, was found to have a promising effect in controlling the fungus in in vitro culture conditions. Using the iTRAQ LC-MS/MS method for quantitative proteomics study, an analysis of the whole proteome of Macrophomina phaseolina with or without B. contaminans NZ challenge identified 2204 different proteins, of which 137 were found to have significant deviation in expression. Kyoto encyclopedia of genes and genomes pathway analysis identified most of the upregulated proteins to be functionally related to energy production (26.11%), as well as defense and stress response (23.45%), while there was significant downregulation in oxidative stress protection pathways (42.61%), growth and cell wall integrity (30.95%), and virulence (23.81%). Findings of this study suggest the development of a battle when the phytopathogen encounters the bacterium. B. contaminans NZ manages to arrest the growth of the fungus and decrease its pathogenicity, but the fungus apparently survives under "hibernating" conditions by upregulating its energy metabolism. This first ever proteomic study of M. phaseolina will go a long way in understanding and developing strategies for its effective control.
Collapse
Affiliation(s)
- Nazia R. Zaman
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
- Functional Proteomics Laboratory, Regional
Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Bhoj Kumar
- Functional Proteomics Laboratory, Regional
Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Zulia Nasrin
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad R. Islam
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tushar K. Maiti
- Functional Proteomics Laboratory, Regional
Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
- E-mail: (T.K.M.)
| | - Haseena Khan
- Department of Biochemistry
and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
- E-mail: (H.K.)
| |
Collapse
|
8
|
Pluskota WE, Pupel P, Głowacka K, Okorska SB, Jerzmanowski A, Nonogaki H, Górecki RJ. Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:74-81. [PMID: 30537615 DOI: 10.1016/j.jplph.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 05/18/2023]
Abstract
The expression of SlNP24 encoding osmotin was studied in germinating tomato seeds Solanum lycopersicum L. cv. Moneymaker. The results show that the accumulation of the transcripts of SlNP24 and its potential upstream regulator TERF1 encoding an ethylene response factor was induced by ethylene and methyl jasmonate in germinating tomato seeds. There was no effect of gibberellins on the expression of the genes studied. The expression of SlNP24 was localized in the micropylar region of the endosperm of tomato seeds. The promoter of tomato osmotin was active in the endosperm cells of transgenic Arabidopsis thaliana seeds, which contain reporter genes under control of SlNP24 promoter. The activity of SlNP24 promoter in A. thaliana reporter line seeds was visible when the expression of its ortholog gene in A. thaliana (AtOMS34) was observed. The mechanism of induction and a possible role of NP24 in germinating tomato seeds are discussed.
Collapse
Affiliation(s)
- Wioletta E Pluskota
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland.
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Sylwia B Okorska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Andrzej Jerzmanowski
- Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryszard J Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| |
Collapse
|
9
|
Mattos BB, Montebianco C, Romanel E, da Franca Silva T, Bernabé RB, Simas-Tosin F, Souza LM, Sassaki GL, Vaslin MFS, Barreto-Bergter E. A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:206-216. [PMID: 29525444 DOI: 10.1016/j.plaphy.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/17/2023]
Abstract
Cladosporium herbarum is a plant pathogen associated with passion fruit scab and mild diseases in pea and soybean. In this study, a peptidogalactomannan (pGM) of C. herbarum mycelium was isolated and structurally characterized, and its role in plant-fungus interactions was evaluated. C. herbarum pGM is composed of carbohydrates (76%) and contains mannose, galactose and glucose as its main monosaccharides (molar ratio, 52:36:12). Methylation and 13C-nuclear magnetic resonance (13C-NMR) spectroscopy analysis have shown the presence of a main chain containing (1 → 6)-linked α-D-Manp residues, and β-D-Galf residues are present as (1 → 5)-interlinked side chains. β-Galactofuranose containing similar structures were characterized by our group in A. fumigatus, A. versicolor, A. flavus and C. resinae. Tobacco BY-2 cells were used as a model system to address the question of the role of C. herbarum pGM in cell viability and induction of the expression of plant defense-related genes. Native and partially acid hydrolyzed pGMs (lacking galactofuranosyl side-chain residues) were incubated with BY-2 cell suspensions at different concentrations. Cell viability drastically decreased after exposure to more than 400 μg ml-1 pGM; however no cell viability effect was observed after exposure to a partially acid hydrolyzed pGM. BY-2 cell contact with pGM strongly induce the expression of plant defense-related genes, such as phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX), as well as the pathogen-related PR-1a, PR-2 and PR-3 genes, suggesting that pGM activates defense responses in tobacco cells. Interestingly, contact with partially hydrolyzed pGM also induced defense-related gene expression at earlier times than native pGM. These results show that the side chains of the (1 → 5)-linked β-D-galactofuranosyl units from pGM play an important role in the first line fungus-plant interactions mediating plant responses against C. herbarum. In addition, it was observed that pGM and/or C. herbarum conidia are able to induced HR when in contact with tobacco leaves and in vitro plantlets roots, producing necrotic lesions and peroxidase and NO burst, respectively.
Collapse
Affiliation(s)
- Bianca Braz Mattos
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil
| | - Caroline Montebianco
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil
| | - Elisson Romanel
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil; Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil
| | - Tatiane da Franca Silva
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil
| | - Renato Barroso Bernabé
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil
| | - Fernanda Simas-Tosin
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Lauro M Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Guilherme L Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Maite F S Vaslin
- Laboratório de Virologia Molecular Vegetal, Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941590, Rio de Janeiro, Brazil.
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microorganismos, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, CCS 21941599, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Upasani ML, Gurjar GS, Kadoo NY, Gupta VS. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression. PLoS One 2016; 11:e0156490. [PMID: 27227745 PMCID: PMC4882060 DOI: 10.1371/journal.pone.0156490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/16/2016] [Indexed: 01/01/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc) is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP) gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62) and wilt-resistant (Digvijay) chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR) to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR), which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar.
Collapse
Affiliation(s)
- Medha L. Upasani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gayatri S. Gurjar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Narendra Y. Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- * E-mail: (VSG); (NYK)
| | - Vidya S. Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- * E-mail: (VSG); (NYK)
| |
Collapse
|
11
|
Anil Kumar S, Hima Kumari P, Shravan Kumar G, Mohanalatha C, Kavi Kishor PB. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. FRONTIERS IN PLANT SCIENCE 2015; 6:163. [PMID: 25852715 PMCID: PMC4360817 DOI: 10.3389/fpls.2015.00163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 03/01/2015] [Indexed: 05/18/2023]
Abstract
Osmotin is a stress responsive antifungal protein belonging to the pathogenesis-related (PR)-5 family that confers tolerance to both biotic and abiotic stresses in plants. Protective efforts of osmotin in plants range from high temperature to cold and salt to drought. It lyses the plasma membrane of the pathogens. It is widely distributed in fruits and vegetables. It is a differentially expressed and developmentally regulated protein that protects the cells from osmotic stress and invading pathogens as well, by structural or metabolic alterations. During stress conditions, osmotin helps in the accumulation of the osmolyte proline, which quenches reactive oxygen species and free radicals. Osmotin expression results in the accumulation of storage reserves and increases the shelf-life of fruits. It binds to a seven-transmembrane-domain receptor-like protein and induces programmed cell death in Saccharomyces cerevisiae through RAS2/cAMP signaling pathway. Adiponectin, produced in adipose tissues of mammals, is an insulin-sensitizing hormone. Strangely, osmotin acts like the mammalian hormone adiponectin in various in vitro and in vivo models. Adiponectin and osmotin, the two receptor binding proteins do not share sequence similarity at the amino acid level, but interestingly they have a similar structural and functional properties. In experimental mice, adiponectin inhibits endothelial cell proliferation and migration, primary tumor growth, and reduces atherosclerosis. This retrospective work examines the vital role of osmotin in plant defense and as a potential targeted therapeutic drug for humans.
Collapse
Affiliation(s)
- S. Anil Kumar
- Department of Genetics, Osmania University, HyderabadIndia
| | - P. Hima Kumari
- Department of Genetics, Osmania University, HyderabadIndia
| | | | | | | |
Collapse
|
12
|
Moriguchi K, Yamamoto S, Tanaka K, Kurata N, Suzuki K. Trans-kingdom horizontal DNA transfer from bacteria to yeast is highly plastic due to natural polymorphisms in auxiliary nonessential recipient genes. PLoS One 2013; 8:e74590. [PMID: 24058593 PMCID: PMC3772842 DOI: 10.1371/journal.pone.0074590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022] Open
Abstract
With the rapid accumulation of genomic information from various eukaryotes in the last decade, genes proposed to have been derived from recent horizontal gene transfer (HGT) events have been reported even in non-phagotrophic unicellular and multicellular organisms, but the molecular pathways underlying HGT remain to be explained. The development of in vitro HGT detection systems, which permit the molecular and genetic analyses of donor and recipient organisms and quantify HGT, are helpful in order to gain insight into mechanisms that may contribute to contemporary HGT events or may have contributed to past HGT events. We applied a horizontal DNA transfer system model based on conjugal gene transfer called trans-kingdom conjugation (TKC) from the prokaryote Escherichia coli to the eukaryote Saccharomyces cerevisiae, and assessed whether and to what extent genetic variations in the eukaryotic recipient affect its receptivity to TKC. Strains from a collection of 4,823 knock-out mutants of S. cerevisiae MAT-α haploids were tested for their individual TKC receptivity. Two types of mutants, an ssd1 mutant and respiratory mutants, which are also found in experimental strains and in nature widely, were identified as highly receptive mutants. The TKC efficiency for spontaneously accrued petite (rho−/0) mutants of the functional allele (SSD1-V) strain showed increased receptivity. The TKC efficiency of the ssd1Δ mutant was 36% for bacterial conjugation, while that of the petite/ssd1Δ double mutants was even higher (220% in average) compared to bacterial conjugation. This increased TKC receptivity was also observed when other conjugal transfer systems were applied and the donor bacterium was changed to Agrobacterium tumefaciens. These results support the idea that the genomes of certain eukaryotes have been exposed to exogenous DNA more frequently and continuously than previously thought.
Collapse
Affiliation(s)
- Kazuki Moriguchi
- Department of Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| | - Shinji Yamamoto
- Department of Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Katsuyuki Tanaka
- Department of Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nori Kurata
- Plant Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
13
|
Aouida M, Kim K, Shaikh AR, Pardo JM, Eppinger J, Yun DJ, Bressan RA, Narasimhan ML. A Saccharomyces cerevisiae assay system to investigate ligand/AdipoR1 interactions that lead to cellular signaling. PLoS One 2013; 8:e65454. [PMID: 23762377 PMCID: PMC3676391 DOI: 10.1371/journal.pone.0065454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/21/2013] [Indexed: 12/12/2022] Open
Abstract
Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc) activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc) in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p). The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides’ ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA) signaling and AMP activated protein kinase (AMPK) phosphorylation in S. cerevisiae, which are homologous to important mammalian adiponectin-AdipoR1 signaling pathways. This system should facilitate the development of therapeutic inventions targeting adiponectin and/or AdipoR physiology.
Collapse
Affiliation(s)
- Mustapha Aouida
- Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Kangchang Kim
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Abdul Rajjak Shaikh
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jose M. Pardo
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Jörg Eppinger
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Dae-Jin Yun
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ray A. Bressan
- Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Meena L. Narasimhan
- Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
14
|
Tales of RAM and MOR: NDR kinase signaling in fungal morphogenesis. Curr Opin Microbiol 2010; 13:663-71. [DOI: 10.1016/j.mib.2010.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/30/2010] [Indexed: 02/04/2023]
|
15
|
López-García B, Gandía M, Muñoz A, Carmona L, Marcos JF. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides. BMC Microbiol 2010; 10:289. [PMID: 21078184 PMCID: PMC2996382 DOI: 10.1186/1471-2180-10-289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022] Open
Abstract
Background The mechanism of action of antimicrobial peptides (AMP) was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO) annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW). Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26), or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1) gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied here. Conclusions Reinforcement of CW is a general response common after exposure to distinct AMP, and likely contributes to shield cells from peptide interaction. However, a weakened CW is not necessarily indicative of a higher sensitivity to AMP. Additional processes modulate susceptibility to specific peptides, exemplified in the involvement of the metabolism of amino groups in the case of PAF26. The relevance of the response to unfolded protein stress or the sphingolipid biosynthesis, previously reported for other unrelated AMP, was also independently confirmed.
Collapse
Affiliation(s)
- Belén López-García
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), CSIC, Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
16
|
Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). PROTOPLASMA 2010; 245:133-41. [PMID: 20467880 DOI: 10.1007/s00709-010-0158-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/27/2010] [Indexed: 05/19/2023]
Abstract
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.
Collapse
Affiliation(s)
- D Goel
- National Research Center on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110 012, India
| | | | | | | | | |
Collapse
|