1
|
Oleaginous Heterotrophic Dinoflagellates—Crypthecodiniaceae. Mar Drugs 2023; 21:md21030162. [PMID: 36976211 PMCID: PMC10055936 DOI: 10.3390/md21030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The heterotrophic Crypthecodinium cohnii is a major model for dinoflagellate cell biology, and a major industrial producer of docosahexaenoic acid, a key nutraceutical and added pharmaceutical compound. Despite these factors, the family Crypthecodiniaceae is not fully described, which is partly attributable to their degenerative thecal plates, as well as the lack of ribotype-referred morphological description in many taxons. We report here significant genetic distances and phylogenetic cladding that support inter-specific variations within the Crypthecodiniaceae. We describe Crypthecodinium croucheri sp. nov. Kwok, Law and Wong, that have different genome sizes, ribotypes, and amplification fragment length polymorphism profiles when compared to the C. cohnii. The interspecific ribotypes were supported by distinctive truncation-insertion at the ITS regions that were conserved at intraspecific level. The long genetic distances between Crypthecodiniaceae and other dinoflagellate orders support the separation of the group, which includes related taxons with high oil content and degenerative thecal plates, to be ratified to the order level. The current study provides the basis for future specific demarcation-differentiation, which is an important facet in food safety, biosecurity, sustainable agriculture feeds, and biotechnology licensing of new oleaginous models.
Collapse
|
2
|
Castillo T, Ramos D, García-Beltrán T, Brito-Bazan M, Galindo E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Ruggero F, Porter AE, Voulvoulis N, Carretti E, Lotti T, Lubello C, Gori R. A highly efficient multi-step methodology for the quantification of micro-(bio)plastics in sludge. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:956-965. [PMID: 33250042 DOI: 10.1177/0734242x20974094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study develops a multi-step methodology for identification and quantification of microplastics and micro-bioplastics (together called in the current work micro-(bio)plastics) in sludge. In previous studies, different methods for the extraction of microplastics were devised for traditional plastics, while the current research tested the methodology on starch-based micro-bioplastics of 0.1-2 mm size. Compostable bioplastics are expected to enter the anaerobic or aerobic biological treatments that lead to end-products applicable in agriculture; some critical conditions of treatments (e.g. low temperature and moisture) can slow down the degradation process and be responsible for the presence of microplastics in the end-product. The methodology consists of an initial oxidation step, with hydrogen peroxide 35% concentrated to clear the sludge and remove the organic fraction, followed by a combination of flotation with sodium chloride and observation of the residues under a fluorescence microscope using a green filter. The workflow revealed an efficacy of removal from 94% to 100% and from 92% to 96% for plastic fragments, 0.5-2 mm and 0.1-0.5 mm size, respectively. The methodology was then applied to samples of food waste pulp harvested after a shredding pre-treatment in an anaerobic digestion (AD) plant in Italy, where polyethylene, starch-based Mater-Bi® and cellophane microplastics were recovered in amounts of 9 ± 1.3/10 g <2 mm and 4.8 ± 1.2/10 g ⩾2 mm. The study highlights the need to lower the threshold size for the quantification of plastics in organic fertilizers, which is currently set by legislations at 2 mm, by improving the background knowledge about the fate of the micro-(bio)plastics in biological treatments for the organic waste.
Collapse
Affiliation(s)
- Federica Ruggero
- Department of Civil and Environmental Engineering, University of Firenze, Firenze, Italy
| | - Alexandra E Porter
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| | | | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Firenze, Firenze, Italy
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering, University of Firenze, Firenze, Italy
| | - Claudio Lubello
- Department of Civil and Environmental Engineering, University of Firenze, Firenze, Italy
| | - Riccardo Gori
- Department of Civil and Environmental Engineering, University of Firenze, Firenze, Italy
| |
Collapse
|
4
|
Canelli G, Murciano Martínez P, Austin S, Ambühl ME, Dionisi F, Bolten CJ, Carpine R, Neutsch L, Mathys A. Biochemical and Morphological Characterization of Heterotrophic Crypthecodinium cohnii and Chlorella vulgaris Cell Walls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2226-2235. [PMID: 33570396 DOI: 10.1021/acs.jafc.0c05032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microalgae are attractive for the food and cosmetic industries because of their nutrient composition. However, the bioaccessibility and extractability of nutrients in microalgae are limited by the rigid and indigestible cell wall. The goal of this study is to explore the cell wall polysaccharides (CWPSs) composition and morphology in heterotrophic Crypthecodinium cohnii and Chlorella vulgaris biomasses during growth. Our results showed that glucose was the major component of CWPSs and exopolysaccharides in C. cohnii. C. vulgaris CWPSs have a similar sugar profile in exponential and stationary phases, essentially composed of rhamnose and galactose. C. vulgaris cell wall thickness increased from 82 nm in the exponential phase to 114 nm in the stationary phase and consisted of two main layers. C. cohnii's cell wall was 133 nm thick and composed of several membranes surrounding thecal plates. Understanding of the microalgae cell wall helps developing a more efficient and targeted biorefinery approach.
Collapse
Affiliation(s)
- Greta Canelli
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | - Sean Austin
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Mark E Ambühl
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Fabiola Dionisi
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Roberta Carpine
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820 Wädenswil, Switzerland
- Department of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Neutsch
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820 Wädenswil, Switzerland
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Hoshina R, Tsukii Y, Harumoto T, Suzaki T. Characterization of a green Stentor with symbiotic algae growing in an extremely oligotrophic environment and storing large amounts of starch granules in its cytoplasm. Sci Rep 2021; 11:2865. [PMID: 33536497 PMCID: PMC7859197 DOI: 10.1038/s41598-021-82416-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
The genus Stentor is a relatively well-known ciliate owing to its lucid trumpet shape. Stentor pyriformis represents a green, short, and fat Stentor, but it is a little-known species. We investigated 124 ponds and wetlands in Japan and confirmed the presence of S. pyriformis at 23 locations. All these ponds were noticeably oligotrophic. With the improvement of oligotrophic culture conditions, we succeeded in long-term cultivation of three strains of S. pyriformis. The cytoplasm of S. piriformis contains a large number of 1-3 μm refractive granules that turn brown by Lugol's staining. The granules also show a typical Maltese-cross pattern by polarization microscopy, strongly suggesting that the granules are made of amylopectin-rich starch. By analyzing the algal rDNA, it was found that all S. pyriformis symbionts investigated in this study were Chlorella variabilis. This species is known as the symbiont of Paramecium bursaria and is physiologically specialized for endosymbiosis. Genetic discrepancies between C. variabilis of S. pyriformis and P. bursaria may indicate that algal sharing was an old incident. Having symbiotic algae and storing carbohydrate granules in the cytoplasm is considered a powerful strategy for this ciliate to withstand oligotrophic and cold winter environments in highland bogs.
Collapse
Affiliation(s)
- Ryo Hoshina
- grid.419056.f0000 0004 1793 2541Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga 526-0829 Japan
| | - Yuuji Tsukii
- grid.257114.40000 0004 1762 1436Laboratory of Biological Science, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8160 Japan
| | - Terue Harumoto
- grid.174568.90000 0001 0059 3836Research Group of Biological Sciences, Division of Natural Sciences, Nara Women’s University, Kitauoya-Nishimachi, Nara 630-8506 Japan
| | - Toshinobu Suzaki
- grid.31432.370000 0001 1092 3077Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
6
|
Lv M, Wang F, Zeng L, Bi Y, Cui J, Liu L, Bi Y, Chen L, Zhang W. Identification and metabolomic analysis of a starch-deficient Crypthecodinium cohnii mutant reveals multiple mechanisms relevant to enhanced growth and lipid accumulation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ruggero F, Carretti E, Gori R, Lotti T, Lubello C. Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis. CHEMOSPHERE 2020; 246:125770. [PMID: 31901665 DOI: 10.1016/j.chemosphere.2019.125770] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
This paper presents the results of a composting lab-scale test carried out on Mater-Bi® film, a starch-based biopolymer. The test material is composed by starch, additives and polybutylene adipate terephthalate (PBAT). The test lasted for 45 days and was developed in three replicates under different temperature and moisture conditions, with the aim to assess the influence on Mater-Bi® degradation of less favourable composting conditions as short thermophilic phase, absence of moistening, and a combination of the two factors. The chemical nature and the morphology of the material and of its single components have been investigated before, during and at the end of the composting process, by means of different analytical techniques. ThermoGravimetric Analysis (TGA) allowed to obtain activation energy and weight loss; Fourier Transform InfraRed spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to study changes in the polymeric and morphological structure, and visual analysis provided information on the size of the Mater-Bi® particles. The results show that the biodegradation of PBAT is strongly influenced by the environmental conditions (temperature and moisture); on the contrary, in all the three replicates, both starch and additives are completely biodegraded within the first days of the process.
Collapse
Affiliation(s)
- Federica Ruggero
- Department of Civil and Environmental Engineering, University of Firenze, Italy.
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Firenze, Italy
| | - Riccardo Gori
- Department of Civil and Environmental Engineering, University of Firenze, Italy
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering, University of Firenze, Italy
| | - Claudio Lubello
- Department of Civil and Environmental Engineering, University of Firenze, Italy
| |
Collapse
|
8
|
Diao J, Song X, Cui J, Liu L, Shi M, Wang F, Zhang W. Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii. Metab Eng 2018; 51:88-98. [PMID: 30393203 DOI: 10.1016/j.ymben.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/16/2018] [Accepted: 10/21/2018] [Indexed: 12/01/2022]
Abstract
Dietary omega-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA, C22:6) can be synthesized in microalgae Crypthecodinium cohnii; however, its productivity is still low. Here, we established a new protocol termed as "chemical modulator based adaptive laboratory evolution" (CM-ALE) to enhance lipid and DHA productivity in C. cohnii. First, ACCase inhibitor sethoxydim based CM-ALE was applied to redirect carbon equivalents from starch to lipid. Second, CM-ALE using growth modulator sesamol as selection pressure was conducted to relive negative effects of sesamol on lipid biosynthesis in C. cohnii, which allows enhancement of biomass productivity by 30% without decreasing lipid content when sesamol was added. After two-step CM-ALE, the lipid and DHA productivity in C. cohnii was respectively doubled to a level of 0.046 g/L/h and 0.025 g/L/h in culture with addition of 1 mM sesamol, demonstrating that this two-step CM-ALE could be a valuable approach to maximize the properties of microalgae.
Collapse
Affiliation(s)
- Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Fangzhong Wang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China.
| |
Collapse
|
9
|
Kosa G, Vuoristo KS, Horn SJ, Zimmermann B, Afseth NK, Kohler A, Shapaval V. Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:4915-4925. [PMID: 29644428 PMCID: PMC5954000 DOI: 10.1007/s00253-018-8920-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 12/01/2022]
Abstract
Recent developments in molecular biology and metabolic engineering have resulted in a large increase in the number of strains that need to be tested, positioning high-throughput screening of microorganisms as an important step in bioprocess development. Scalability is crucial for performing reliable screening of microorganisms. Most of the scalability studies from microplate screening systems to controlled stirred-tank bioreactors have been performed so far with unicellular microorganisms. We have compared cultivation of industrially relevant oleaginous filamentous fungi and microalga in a Duetz-microtiter plate system to benchtop and pre-pilot bioreactors. Maximal glucose consumption rate, biomass concentration, lipid content of the biomass, biomass, and lipid yield values showed good scalability for Mucor circinelloides (less than 20% differences) and Mortierella alpina (less than 30% differences) filamentous fungi. Maximal glucose consumption and biomass production rates were identical for Crypthecodinium cohnii in microtiter plate and benchtop bioreactor. Most likely due to shear stress sensitivity of this microalga in stirred bioreactor, biomass concentration and lipid content of biomass were significantly higher in the microtiter plate system than in the benchtop bioreactor. Still, fermentation results obtained in the Duetz-microtiter plate system for Crypthecodinium cohnii are encouraging compared to what has been reported in literature. Good reproducibility (coefficient of variation less than 15% for biomass growth, glucose consumption, lipid content, and pH) were achieved in the Duetz-microtiter plate system for Mucor circinelloides and Crypthecodinium cohnii. Mortierella alpina cultivation reproducibility might be improved with inoculation optimization. In conclusion, we have presented suitability of the Duetz-microtiter plate system for the reproducible, scalable, and cost-efficient high-throughput screening of oleaginous microorganisms.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| | - Kiira S Vuoristo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | | | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| |
Collapse
|
10
|
Barchiesi J, Velazquez MB, Palopoli N, Iglesias AA, Gomez-Casati DF, Ballicora MA, Busi MV. Starch Synthesis in Ostreococcus tauri: The Starch-Binding Domains of Starch Synthase III-B Are Essential for Catalytic Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:1541. [PMID: 30410499 PMCID: PMC6210743 DOI: 10.3389/fpls.2018.01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/02/2018] [Indexed: 05/06/2023]
Abstract
Starch is the major energy storage carbohydrate in photosynthetic eukaryotes. Several enzymes are involved in building highly organized semi-crystalline starch granules, including starch-synthase III (SSIII), which is widely conserved in photosynthetic organisms. This enzyme catalyzes the extension of the α-1,4 glucan chain and plays a regulatory role in the synthesis of starch. Interestingly, unlike most plants, the unicellular green alga Ostreococcus tauri has three SSIII isoforms. In the present study, we describe the structure and function of OsttaSSIII-B, which has a similar modular organization to SSIII in higher plants, comprising three putative starch-binding domains (SBDs) at the N-terminal region and a C-terminal catalytic domain (CD). Purified recombinant OsttaSSIII-B displayed a high affinity toward branched polysaccharides such as glycogen and amylopectin, and to ADP-glucose. Lower catalytic activity was detected for the CD lacking the associated SBDs, suggesting that they are necessary for enzyme function. Moreover, analysis of enzyme kinetic and polysaccharide-binding parameters of site-directed mutants with modified conserved aromatic amino acid residues W122, Y124, F138, Y147, W279, and W304, belonging to the SBDs, revealed their importance for polysaccharide binding and SS activity. Our results suggest that OT_ostta13g01200 encodes a functional SSIII comprising three SBD domains that are critical for enzyme function.
Collapse
Affiliation(s)
- Julieta Barchiesi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Maria Belen Velazquez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET- Universidad Nacional del Litoral) and Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Miguel Angel Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Maria Victoria Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Maria Victoria Busi,
| |
Collapse
|
11
|
Nielsen MM, Ruzanski C, Krucewicz K, Striebeck A, Cenci U, Ball SG, Palcic MM, Cuesta-Seijo JA. Crystal Structures of the Catalytic Domain of Arabidopsis thaliana Starch Synthase IV, of Granule Bound Starch Synthase From CLg1 and of Granule Bound Starch Synthase I of Cyanophora paradoxa Illustrate Substrate Recognition in Starch Synthases. FRONTIERS IN PLANT SCIENCE 2018; 9:1138. [PMID: 30123236 PMCID: PMC6086201 DOI: 10.3389/fpls.2018.01138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/13/2018] [Indexed: 05/20/2023]
Abstract
Starch synthases (SSs) are responsible for depositing the majority of glucoses in starch. Structural knowledge on these enzymes that is available from the crystal structures of rice granule bound starch synthase (GBSS) and barley SSI provides incomplete information on substrate binding and active site architecture. Here we report the crystal structures of the catalytic domains of SSIV from Arabidopsis thaliana, of GBSS from the cyanobacterium CLg1 and GBSSI from the glaucophyte Cyanophora paradoxa, with all three bound to ADP and the inhibitor acarbose. The SSIV structure illustrates in detail the modes of binding for both donor and acceptor in a plant SS. CLg1GBSS contains, in the same crystal structure, examples of molecules with and without bound acceptor, which illustrates the conformational changes induced upon acceptor binding that presumably precede catalytic activity. With structures available from several isoforms of plant and non-plant SSs, as well as the closely related bacterial glycogen synthases, we analyze, at the structural level, the common elements that define a SS, the elements that are necessary for substrate binding and singularities of the GBSS family that could underlie its processivity. While the phylogeny of the SSIII/IV/V has been recently discussed, we now further report the detailed evolutionary history of the GBSS/SSI/SSII type of SSs enlightening the origin of the GBSS enzymes used in our structural analysis.
Collapse
Affiliation(s)
| | - Christian Ruzanski
- Carlsberg Research Laboratory, Copenhagen, Denmark
- † Present address: Christian Ruzanski, Novo Nordisk A/S, Måløv, Denmark Monica M. Palcic, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | | | - Ugo Cenci
- UMR8576 CNRS-USTL, Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Villeneuve-d’Ascq, France
| | - Steven G. Ball
- UMR8576 CNRS-USTL, Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Villeneuve-d’Ascq, France
| | - Monica M. Palcic
- Carlsberg Research Laboratory, Copenhagen, Denmark
- † Present address: Christian Ruzanski, Novo Nordisk A/S, Måløv, Denmark Monica M. Palcic, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jose A. Cuesta-Seijo
- Carlsberg Research Laboratory, Copenhagen, Denmark
- *Correspondence: Jose A. Cuesta-Seijo,
| |
Collapse
|
12
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sun D, Zhang Z, Mao X, Wu T, Jiang Y, Liu J, Chen F. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN. BIORESOURCE TECHNOLOGY 2017; 228:227-234. [PMID: 28064135 DOI: 10.1016/j.biortech.2016.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg-1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition.
Collapse
Affiliation(s)
- Dongzhe Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- Runke Bioengineering Co. Ltd., Zhangzhou, Fujian, China
| | - Jin Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Cooper JT, Sinclair GA, Wawrik B. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion. Front Microbiol 2016; 7:639. [PMID: 27242681 PMCID: PMC4860509 DOI: 10.3389/fmicb.2016.00639] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 01/25/2023] Open
Abstract
Dinoflagellates are a major component of marine phytoplankton and many species are recognized for their ability to produce harmful algal blooms (HABs). Scrippsiella trochoidea is a non-toxic, marine dinoflagellate that can be found in both cold and tropic waters where it is known to produce “red tide” events. Little is known about the genomic makeup of S. trochoidea and a transcriptome study was conducted to shed light on the biochemical and physiological adaptations related to nutrient depletion. Cultures were grown under N and P limiting conditions and transcriptomes were generated via RNAseq technology. De novo assembly reconstructed 107,415 putative transcripts of which only 41% could be annotated. No significant transcriptomic response was observed in response to initial P depletion, however, a strong transcriptional response to N depletion was detected. Among the down-regulated pathways were those for glutamine/glutamate metabolism as well as urea and nitrate/nitrite transporters. Transcripts for ammonia transporters displayed both up- and down-regulation, perhaps related to a shift to higher affinity transporters. Genes for the utilization of DON compounds were up-regulated. These included transcripts for amino acids transporters, polyamine oxidase, and extracellular proteinase and peptidases. N depletion also triggered down regulation of transcripts related to the production of Photosystems I & II and related proteins. These data are consistent with a metabolic strategy that conserves N while maximizing sustained metabolism by emphasizing the relative contribution of organic N sources. Surprisingly, the transcriptome also contained transcripts potentially related to secondary metabolite production, including a homolog to the Short Isoform Saxitoxin gene (sxtA) from Alexandrium fundyense, which was significantly up-regulated under N-depletion. A total of 113 unique hits to Sxt genes, covering 17 of the 34 genes found in C. raciborskii were detected, indicating that S. trochoidea has previously unrecognized potential for the production of secondary metabolites with potential toxicity.
Collapse
Affiliation(s)
- Joshua T Cooper
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Geoffrey A Sinclair
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University Raleigh, NC, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| |
Collapse
|
15
|
Cold ER, Freyria NJ, Martínez Martínez J, Fernández Robledo JA. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus. PLoS One 2016; 11:e0155015. [PMID: 27149378 PMCID: PMC4858233 DOI: 10.1371/journal.pone.0155015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/22/2016] [Indexed: 11/18/2022] Open
Abstract
The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham's F12-5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham's F12-5% FBS- 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham's F12-5% FBS- 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications.
Collapse
Affiliation(s)
- Emma R. Cold
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- Research Experiences for Undergraduates (REU) NSF Program - 2015 - Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, United States of America
| | - Nastasia J. Freyria
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
- Université de Toulon, Toulon, France
| | | | | |
Collapse
|
16
|
Convergent Evolution of Starch Metabolism in Cyanobacteria and Archaeplastida. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Hérault J, Pencréac'h G, Marchand J, Gordon R, Schoefs B. Diatom milking: a review and new approaches. Mar Drugs 2015; 13:2629-65. [PMID: 25939034 PMCID: PMC4446598 DOI: 10.3390/md13052629] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors;
Collapse
Affiliation(s)
- Vandana Vinayak
- Department of Criminology & Forensic Science, School of Applied Sciences, Dr. H.S. Gour University (Central University), Sagar Madhya Pradesh, India.
| | - Kalina M Manoylov
- Department of Biological & Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Hélène Gateau
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Vincent Blanckaert
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Josiane Hérault
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Gaëlle Pencréac'h
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Justine Marchand
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Richard Gordon
- Gulf Specimen Aquarium & Marine Laboratory, Panacea, FL 32346, USA.
- Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA.
| | - Benoît Schoefs
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| |
Collapse
|
18
|
The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies. PLoS One 2014; 9:e111067. [PMID: 25368991 PMCID: PMC4219697 DOI: 10.1371/journal.pone.0111067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/19/2014] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.
Collapse
|
19
|
Bischof S, Umhang M, Eicke S, Streb S, Qi W, Zeeman SC. Cecropia peltata accumulates starch or soluble glycogen by differentially regulating starch biosynthetic genes. THE PLANT CELL 2013; 25:1400-15. [PMID: 23632447 PMCID: PMC3663276 DOI: 10.1105/tpc.113.109793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/08/2013] [Indexed: 05/08/2023]
Abstract
The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches--factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans.
Collapse
Affiliation(s)
| | - Martin Umhang
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Simona Eicke
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Weihong Qi
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland
| | | |
Collapse
|
20
|
Affiliation(s)
- María V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
- IIB - Universidad Nacional de General San Martín (UNSAM); San Martín Buenos Aires Argentina
| | - Julieta Barchiesi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Suipacha Rosario Argentina
- IIB - Universidad Nacional de General San Martín (UNSAM); San Martín Buenos Aires Argentina
| |
Collapse
|
21
|
Butterfield ER, Howe CJ, Nisbet RER. An analysis of dinoflagellate metabolism using EST data. Protist 2012; 164:218-36. [PMID: 23085481 DOI: 10.1016/j.protis.2012.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 01/03/2023]
Abstract
The dinoflagellates are an important group of eukaryotic, single celled algae. They are the sister group of the Apicomplexa, a group of intracellular parasites and photosynthetic algae including the malaria parasite Plasmodium. Many apicomplexan mitochondria have a number of unusual features, including the lack of a pyruvate dehydrogenase and the existence of a branched TCA cycle. Here, we analyse dinoflagellate EST (expressed sequence tag) data to determine whether these features are apicomplexan-specific, or if they are more widespread. We show that dinoflagellates have replaced a key subunit (E1) of pyruvate dehydrogenase with a subunit of bacterial origin and that transcripts encoding many of the proteins that are essential in a conventional ATP synthase/Complex V are absent, as is the case in Apicomplexa. There is a pathway for synthesis of starch or glycogen as a storage carbohydrate. Transcripts encoding isocitrate lyase and malate synthase are present, consistent with ultrastructural reports of a glyoxysome. Finally, evidence for a conventional haem biosynthesis pathway is found, in contrast to the Apicomplexa, Chromera and early branching dinoflagellates (Perkinsus, Oxyrrhis).
Collapse
Affiliation(s)
- Erin R Butterfield
- Sansom Institute for Health Research, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
22
|
Pleissner D, Eriksen NT. Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol Bioeng 2012; 109:2005-16. [DOI: 10.1002/bit.24470] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/10/2012] [Accepted: 02/06/2012] [Indexed: 11/09/2022]
|
23
|
Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1775-801. [PMID: 21220783 DOI: 10.1093/jxb/erq411] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.
Collapse
Affiliation(s)
- Steven Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Bâtiment C9, Cité Scientifique, F-59655 Villeneuve d'Ascq, France.
| | | | | | | | | |
Collapse
|
24
|
Izumo A, Fujiwara S, Sakurai T, Ball SG, Ishii Y, Ono H, Yoshida M, Fujita N, Nakamura Y, Buléon A, Tsuzuki M. Effects of granule-bound starch synthase I-defective mutation on the morphology and structure of pyrenoidal starch in Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:238-45. [PMID: 21421366 DOI: 10.1016/j.plantsci.2010.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/03/2010] [Accepted: 08/21/2010] [Indexed: 05/04/2023]
Abstract
Lowering of the CO₂ concentration in the environment induces development of a pyrenoidal starch sheath, as well as that of pyrenoid and CO₂-concentrating mechanisms, in many microalgae. In the green algae Chlamydomonas and Chlorella, activity of granule-bound starch synthase (GBSS) concomitantly increases under these conditions. In this study, effects of the GBSS-defective mutation (sta2) on the development of pyrenoidal starch were investigated in Chlamydomonas. Stroma starch- and pyrenoid starch-enriched samples were obtained from log-phase cells grown with air containing 5% CO₂ (high-CO₂ conditions favouring stromal starch synthesis) and from those transferred to low-CO₂ conditions (air level, 0.04% CO₂, favouring pyrenoidal starch synthesis) for 6h, respectively. In the wild type, total starch content per culture volume did not increase during the low-CO₂ conditions, in spite of the development of pyrenoidal starch, suggesting that degradation of some part of stroma starch and synthesis of pyrenoid starch simultaneously occur under these conditions. Even in the GBSS-deficient mutants, pyrenoid and pyrenoid starch enlarged after lowering of the CO₂ concentration. However, the morphology of the pyrenoid starch was thinner and more fragile than the wild type, suggesting that GBSS does affect the morphology of pyrenoidal starch. Surprisingly normal GBSS activity is shown to be required to obtain the high A-type crystallinity levels that we now report for pyrenoidal starch. A model is presented explaining how GBSS-induced starch granule fusion may facilitate the formation of the pyrenoidal starch sheath.
Collapse
Affiliation(s)
- Asako Izumo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu AC, Gilbert RG. Molecular Weight Distributions of Starch Branches Reveal Genetic Constraints on Biosynthesis. Biomacromolecules 2010; 11:3539-47. [DOI: 10.1021/bm1010189] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alex Chi Wu
- University of Queensland, Centre for Nutrition and Food Sciences and LCAFS, Hartley Teakle Building, Brisbane, Qld 4072, Australia
| | - Robert G. Gilbert
- University of Queensland, Centre for Nutrition and Food Sciences and LCAFS, Hartley Teakle Building, Brisbane, Qld 4072, Australia
| |
Collapse
|
26
|
Zeeman SC, Kossmann J, Smith AM. Starch: its metabolism, evolution, and biotechnological modification in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:209-34. [PMID: 20192737 DOI: 10.1146/annurev-arplant-042809-112301] [Citation(s) in RCA: 577] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Starch is the most widespread and abundant storage carbohydrate in plants. We depend upon starch for our nutrition, exploit its unique properties in industry, and use it as a feedstock for bioethanol production. Here, we review recent advances in research in three key areas. First, we assess progress in identifying the enzymatic machinery required for the synthesis of amylopectin, the glucose polymer responsible for the insoluble nature of starch. Second, we discuss the pathways of starch degradation, focusing on the emerging role of transient glucan phosphorylation in plastids as a mechanism for solubilizing the surface of the starch granule. We contrast this pathway in leaves with the degradation of starch in the endosperm of germinated cereal seeds. Third, we consider the evolution of starch biosynthesis in plants from the ancestral ability to make glycogen. Finally, we discuss how this basic knowledge has been utilized to improve and diversify starch crops.
Collapse
|
27
|
Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii. Proc Natl Acad Sci U S A 2009; 106:21126-30. [PMID: 19940244 DOI: 10.1073/pnas.0907424106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Starch defines an insoluble semicrystalline form of storage polysaccharides restricted to Archaeplastida (red and green algae, land plants, and glaucophytes) and some secondary endosymbiosis derivatives of the latter. While green algae and land-plants store starch in plastids by using an ADP-glucose-based pathway related to that of cyanobacteria, red algae, glaucophytes, cryptophytes, dinoflagellates, and apicomplexa parasites store a similar type of polysaccharide named floridean starch in their cytosol or periplast. These organisms are suspected to store their floridean starch from UDP-glucose in a fashion similar to heterotrophic eukaryotes. However, experimental proof of this suspicion has never been produced. Dinoflagellates define an important group of both photoautotrophic and heterotrophic protists. We now report the selection and characterization of a low starch mutant of the heterotrophic dinoflagellate Crypthecodinium cohnii. We show that the sta1-1 mutation of C. cohnii leads to a modification of the UDP-glucose-specific soluble starch synthase activity that correlates with a decrease in starch content and an alteration of amylopectin structure. These experimental results validate the UDP-glucose-based pathway proposed for floridean starch synthesis.
Collapse
|