1
|
Tan YP, Tsang CC, Chan KF, Fung SL, Kok KH, Lau SKP, Woo PCY. Differential innate immune responses of human macrophages and bronchial epithelial cells against Talaromyces marneffei. mSphere 2023; 8:e0025822. [PMID: 37695039 PMCID: PMC10597461 DOI: 10.1128/msphere.00258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2023] [Indexed: 09/12/2023] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.
Collapse
Affiliation(s)
- Yen-Pei Tan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong, China
| | - Ka-Fai Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Siu-Leung Fung
- Tuberculosis and Chest Medicine Unit, Grantham Hospital, Aberdeen, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Hu X, Zhang Y, Du M, Yang E. Efficient and specific DNA oligonucleotide rRNA probe-based rRNA removal in Talaromyces marneffei. Mycology 2022; 13:106-118. [PMID: 35711330 PMCID: PMC9196791 DOI: 10.1080/21501203.2021.2017045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Emerging evidence showed that lncRNAs play important roles in a wide range of biological processes of fungi such as Saccharomyces cerevisiae. However, systemic identification of lncRNAs in non-model fungi is a challenging task as the efficiency of rRNA removal has been proved to be affected by mismatches of universal rRNA-targeting probes of commercial kits, which forces deeper sequencing depth and increases costs. Here, we developed a low-cost and simple rRNA depletion method (rProbe) that could efficiently remove more than 99% rRNA in both yeast and mycelium samples of Talaromyces marneffei. The efficiency and robustness of rProbe were demonstrated to outperform the Illumina Ribo-Zero kit. Using rProbe RNA-seq, we identified 115 differentially expressed lncRNAs and constructed lncRNA-mRNA co-expression network related to dimorphic switch of T. marneffei. Our rRNA removal method has the potential to be a useful tool to explore non-coding transcriptomes of non-model fungi by adjusting rRNA probe sequences species specifically.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Zhang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Yin G, Zhao H, Pennerman KK, Jurick WM, Fu M, Bu L, Guo A, Bennett JW. Genomic Analyses of Penicillium Species Have Revealed Patulin and Citrinin Gene Clusters and Novel Loci Involved in Oxylipin Production. J Fungi (Basel) 2021; 7:743. [PMID: 34575780 PMCID: PMC8464941 DOI: 10.3390/jof7090743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Blue mold of apple is caused by several different Penicillium species, among which P. expansum and P. solitum are the most frequently isolated. P. expansum is the most aggressive species, and P. solitum is very weak when infecting apple fruit during storage. In this study, we report complete genomic analyses of three different Penicillium species: P. expansum R21 and P. crustosum NJ1, isolated from stored apple fruit; and P. maximae 113, isolated in 2013 from a flooded home in New Jersey, USA, in the aftermath of Hurricane Sandy. Patulin and citrinin gene cluster analyses explained the lack of patulin production in NJ1 compared to R21 and lack of citrinin production in all three strains. A Drosophila bioassay demonstrated that volatiles emitted by P. solitum SA and P. polonicum RS1 were more toxic than those from P. expansum and P. crustosum strains (R27, R11, R21, G10, and R19). The toxicity was hypothesized to be related to production of eight-carbon oxylipins. Putative lipoxygenase genes were identified in P. expansum and P. maximae strains, but not in P. crustosum. Our data will provide a better understanding of Penicillium spp. complex secondary metabolic capabilities, especially concerning the genetic bases of mycotoxins and toxic VOCs.
Collapse
Affiliation(s)
- Guohua Yin
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Hui Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Kayla K. Pennerman
- Toxicology and Mycotoxin Research Unit, U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), Athens, GA 30605, USA;
| | - Wayne M. Jurick
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD 20705, USA;
| | - Maojie Fu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Lijing Bu
- Center for Evolutionary & Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Anping Guo
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.Z.); (M.F.)
| | - Joan W. Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
4
|
Development of CRISPR-Cas9 genome editing system in Talaromyces marneffei. Microb Pathog 2021; 154:104822. [PMID: 33727171 DOI: 10.1016/j.micpath.2021.104822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
Talaromyces marneffei is an important pathogenic thermally dimorphic fungus causing systemic talaromycosis mainly prevalent in Southeast Asia. The dimorphic transition between mycelium and yeast is considered crucial for the pathogenicity of T. marneffei. However, the lack of genetic toolbox has been a major impediment for understanding its pathogenicity. Here a CRISPR-Cas9 system was developed to facilitate genetic manipulations in this organism. In this study, the CRISPR-Cas9 gene editing system uses a native U6 snRNA promoter from T. marneffei to drive the expression of sgRNA. Employing this system and PEG-mediated protoplast transformation, the sakA gene was mutated. Sanger sequencing confirmed nearly 40% site-directed mutation rate. The phenotype analysis confirmed the sakA gene function in T. marneffei dimorphic transition. Our study provided a powerful genome-manipulating tool, which could accelerate studies on T. marneffei for further revealing the mechanisms of its pathogenicity.
Collapse
|
5
|
Andrianopoulos A. Laboratory Maintenance and Growth of Talaromyces marneffei. ACTA ACUST UNITED AC 2020; 56:e97. [PMID: 32040264 DOI: 10.1002/cpmc.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Talaromyces marneffei is an important opportunistic human pathogen endemic to Southeast Asia. It is one of a number of pathogenic fungi that exhibits thermally controlled dimorphism. At 25°C, T. marneffei grows in a multicellular, filamentous hyphal form that can differentiate to produce dormant spores called conidia. These conidia are the likely infectious agent. At 37°C, T. marneffei grows as a uninucleate yeast that divides by fission. The yeast cells are the pathogenic form of this fungus. The protocols described here explain how to grow T. marneffei in the two vegetative growth forms in vitro, grow yeast cells inside mammalian macrophages, produce conidial stocks, and store strains both short and long term. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Growth of the vegetative hyphal form on solid medium Alternate Protocol 1: Growth of the vegetative hyphal form in liquid suspension Basic Protocol 2: Growth of the vegetative yeast form on solid medium Alternate Protocol 2: Growth of the vegetative yeast form in liquid suspension Basic Protocol 3: Growth for production of dormant conidia Support Protocol: Preparation of Miracloth filter tubes Basic Protocol 4: Growth of Talaromyces marneffei in mammalian macrophages Basic Protocol 5: Storage of Talaromyces marneffei strains Alternate Protocol 3: Lyophilization of Talaromyces marneffei strains.
Collapse
Affiliation(s)
- Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Cuomo CA, Shea T, Nguyen T, Ashton P, Perfect J, Le T. Complete Genome Sequences for Two Talaromyces marneffei Clinical Isolates from Northern and Southern Vietnam. Microbiol Resour Announc 2020; 9:e01367-19. [PMID: 31919177 PMCID: PMC6952663 DOI: 10.1128/mra.01367-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus endemic in China and Southeast Asia that causes fatal infections in immunocompromised individuals, particularly in patients with advanced HIV disease. Here, we report the complete genome sequences of two clinical isolates from northern and southern Vietnam.
Collapse
Affiliation(s)
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Thu Nguyen
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Philip Ashton
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - John Perfect
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thuy Le
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Tsang CC, Lau SKP, Woo PCY. Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei? Mycopathologia 2019; 184:721-729. [DOI: 10.1007/s11046-019-00395-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Genomic analysis provides insights into the transmission and pathogenicity of Talaromyces marneffei. Fungal Genet Biol 2019; 130:54-61. [DOI: 10.1016/j.fgb.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/20/2022]
|
9
|
Wang Q, Du M, Wang S, Liu L, Xiao L, Wang L, Li T, Zhuang H, Yang E. MADS-Box Transcription Factor MadsA Regulates Dimorphic Transition, Conidiation, and Germination of Talaromyces marneffei. Front Microbiol 2018; 9:1781. [PMID: 30131782 PMCID: PMC6090077 DOI: 10.3389/fmicb.2018.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
The opportunistic human pathogen Talaromyces marneffei exhibits a temperature-dependent dimorphic transition, which is closely related with its pathogenicity. This species grows as multinucleate mycelia that produce infectious conidia at 25°C, while undergoes a dimorphic transition to generate uninucleate yeast form cells at 37°C. The mechanisms of phenotype switching are not fully understood. The transcription factor madsA gene is a member of the MADS-box gene family. Previously, it was found that overexpression of madsA gene resulted in mycelial growth instead of yeast form at 37°C. In the current study, the madsA deletion mutant (ΔmadsA) and complemented strain (CMA) were constructed by genetic manipulation. We compared the phenotypes, growth, conidiation, conidial germination and susceptibility to stresses (including osmotic and oxidative) of the ΔmadsA with the wild-type (WT) and CMA strains. The results showed that the ΔmadsA displayed a faster process of the yeast-to-mycelium transition than the WT and CMA. In addition, the deletion of madsA led to a delay in conidia production and conidial germination. The tolerance of ΔmadsA conidia to hydrogen peroxide was better than that of the WT and CMA strains. Then, RNA-seq was performed to identify differences in gene expression between the ΔmadsA mutant and WT strain during the yeast phase, mycelium phase, yeast-to-mycelium transition and mycelium-to-yeast transition, respectively. Gene ontology functional enrichment analyses indicated that some important processes such as transmembrane transport, oxidation-reduction process, protein catabolic process and response to oxidative stress were affected by the madsA deletion. Together, our results suggest that madsA functions as a global regulator involved in the conidiation and germination, especially in the dimorphic transition of T. marneffei. Its roles in the survival, pathogenicity and transmission of T. marneffei require further investigation.
Collapse
Affiliation(s)
- Qiangyi Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Liming Xiao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tong Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Novel Partitivirus Enhances Virulence of and Causes Aberrant Gene Expression in Talaromyces marneffei. mBio 2018; 9:mBio.00947-18. [PMID: 29895639 PMCID: PMC6016240 DOI: 10.1128/mbio.00947-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Talaromyces marneffei is the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia. We report the discovery of a novel partitivirus, Talaromyces marneffeipartitivirus-1 (TmPV1). TmPV1 was detected in 7 (12.7%) of 55 clinical T. marneffei isolates. Complete genome sequencing of the seven TmPV1 isolates revealed two double-stranded RNA (dsRNA) segments encoding RNA-dependent RNA polymerase (RdRp) and capsid protein, respectively. Phylogenetic analysis showed that TmPV1 occupied a distinct clade among the members of the genus Gammapartitivirus Transmission electron microscopy confirmed the presence of isometric, nonenveloped viral particles of 30 to 45 nm in diameter, compatible with partitiviruses, in TmPV1-infected T. marneffei Quantitative reverse transcription-PCR (qRT-PCR) demonstrated higher viral load of TmPV1 in the yeast phase than in the mycelial phase of T. marneffei Two virus-free isolates, PM1 and PM41, were successfully infected by purified TmPV1 using protoplast transfection. Mice challenged with TmPV1-infected T. marneffei isolates showed significantly shortened survival time (P < 0.0001) and higher fungal burden in organs than mice challenged with isogenic TmPV1-free isolates. Transcriptomic analysis showed that TmPV1 causes aberrant expression of various genes in T. marneffei, with upregulation of potential virulence factors and suppression of RNA interference (RNAi)-related genes. This is the first report of a mycovirus in a thermally dimorphic fungus. Further studies are required to ascertain the mechanism whereby TmPV1 enhances the virulence of T. marneffei in mice and the potential role of RNAi-related genes in antiviral defense in T. marneffeiIMPORTANCETalaromyces marneffei (formerly Penicillium marneffei) is the most important thermal dimorphic fungus in Southeast Asia, causing highly fatal systemic penicilliosis in HIV-infected and immunocompromised patients. We discovered a novel mycovirus, TmPV1, in seven clinical isolates of T. marneffei TmPV1 belongs to the genus Gammapartitivirus of the family Partitiviridae We showed that TmPV1 enhanced the virulence of T. marneffei in mice, with shortened survival time and higher fungal burden in the organs of mice challenged with TmPV1-infected T. marneffei isolates than in those of mice challenged with virus-free isogenic isolates. Transcriptomics analysis showed that TmPV1 altered the expression of genes involved in various cellular processes in T. marneffei, with upregulation of potential virulence factors and suppression of RNAi machinery which may be involved in antiviral defense. This is the first report of a mycovirus in a thermal dimorphic fungus. The present results offer insights into mycovirus-fungus interactions and pathogenesis of thermal dimorphic fungi.
Collapse
|
11
|
Tsang CC, Tang JY, Lau SK, Woo PC. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - Past, present and future. Comput Struct Biotechnol J 2018; 16:197-210. [PMID: 30002790 PMCID: PMC6039702 DOI: 10.1016/j.csbj.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species important to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxonomic studies on these fungi are essential since they could provide invaluable information on their evolutionary relationships and define criteria for species recognition. With the advancement of various biological, biochemical and computational technologies, different approaches have been adopted for the taxonomy of Aspergillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different taxonomic approaches focus on different sets of characters of the organisms, various classification and identification schemes would result. In view of this, the consolidated species concept, which takes into account different types of characters, is recently accepted for taxonomic purposes and, together with the lately implemented 'One Fungus - One Name' policy, is expected to bring a more stable taxonomy for Aspergillus, Penicillium and Talaromyces, which could facilitate their evolutionary studies. The most significant taxonomic change for the three genera was the transfer of Penicillium subgenus Biverticillium to Talaromyces (e.g. the medically important thermally dimorphic 'P. marneffei' endemic in Southeast Asia is now named T. marneffei), leaving both Penicillium and Talaromyces as monophyletic genera. Several distantly related Aspergillus-like fungi were also segregated from Aspergillus, making this genus, containing members of both sexual and asexual morphs, monophyletic as well. In the current omics era, application of various state-of-the-art omics technologies is likely to provide comprehensive information on the evolution of Aspergillus, Penicillium and Talaromyces and a stable taxonomy will hopefully be achieved.
Collapse
Affiliation(s)
- Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - James Y.M. Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Lau SKP, Tsang CC, Woo PCY. Talaromyces marneffei Genomic, Transcriptomic, Proteomic and Metabolomic Studies Reveal Mechanisms for Environmental Adaptations and Virulence. Toxins (Basel) 2017; 9:E192. [PMID: 28608842 PMCID: PMC5488042 DOI: 10.3390/toxins9060192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/22/2022] Open
Abstract
Talaromycesmarneffei is a thermally dimorphic fungus causing systemic infections in patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors, enzymes which process pheromones, and proteins involved in pheromone response pathway are present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs (milRNAs) and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells. Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in yeast phase, generating protein polymorphism among cells, evading host's immunity. Comparative proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase, up-regulated in hyphal cells, is an adhesion factor for conidial attachment.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
13
|
Abstract
Purpose of Review Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Recent Findings Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Summary Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.
Collapse
|
14
|
Large-scale genomic analyses of in vitro yeast-mycelium dimorphism in human, insect and plant pathogenic fungi: From ESTs to RNAseq experiments. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
16
|
Li J, Gu F, Wu R, Yang J, Zhang KQ. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci Rep 2017; 7:45456. [PMID: 28358043 PMCID: PMC5371821 DOI: 10.1038/srep45456] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Fei Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Runian Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - JinKui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| |
Collapse
|
17
|
Tam EWT, Tsang CC, Lau SKP, Woo PCY. Comparative mitogenomic and phylogenetic characterization on the complete mitogenomes of Talaromyces ( Penicillium) marneffei. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 1:941-942. [PMID: 33473685 PMCID: PMC7800151 DOI: 10.1080/23802359.2016.1261610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the complete mitochondrial DNA (mtDNA) sequences of four Talaromyces marneffei strains and performed comparative genomic and phylogenetic analyses. The gene orders of the four mtDNAs are identical to the previously published mtDNA of strain PM1 (nad4l, nad5, nad2, atp9, cob, nad1, nad4, atp8, atp6, nad6, cox3, rps, cox1, nad3, cox2). Phylogenetic analysis showed that the four mtDNAs were clustered with that of PM1 with high bootstrap support. Compared to mtDNA of PM1, the only non-synonymous mutation was located in nad2 (T505M) of strain PM26. Synonymous single nucleotide polymorphisms were observed at eight positions in the four mtDNAs.
Collapse
Affiliation(s)
- Emily W T Tam
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Chi-Ching Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Woo PCY, Lau SKP, Lau CCY, Tung ETK, Chong KTK, Yang F, Zhang H, Lo RKC, Cai JP, Au-Yeung RKH, Ng WF, Tse H, Wong SSY, Xu S, Lam WH, Tse MK, Sze KH, Kao RY, Reiner NE, Hao Q, Yuen KY. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei. PLoS Negl Trop Dis 2016; 10:e0004907. [PMID: 27560160 PMCID: PMC4999278 DOI: 10.1371/journal.pntd.0004907] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background Talaromyces marneffei is an opportunistic dimorphic fungus prevalent in Southeast Asia. We previously demonstrated that Mp1p is an immunogenic surface and secretory mannoprotein of T. marneffei. Since Mp1p is a surface protein that can generate protective immunity, we hypothesized that Mp1p and/or its homologs are virulence factors. Methodology/Principal Findings We examined the pathogenic roles of Mp1p and its homologs in a mouse model. All mice died 21 and 30 days after challenge with wild-type T. marneffei PM1 and MP1 complemented mutant respectively. None of the mice died 60 days after challenge with MP1 knockout mutant (P<0.0001). Seventy percent of mice died 60 days after challenge with MP1 knockdown mutant (P<0.0001). All mice died after challenge with MPLP1 to MPLP13 knockdown mutants, suggesting that only Mp1p plays a significant role in virulence. The mean fungal loads of PM1 and MP1 complemented mutant in the liver, lung, kidney and spleen were significantly higher than those of the MP1 knockout mutant. Similarly, the mean load of PM1 in the liver, lung and spleen were significantly higher than that of the MP1 knockdown mutant. Histopathological studies showed an abundance of yeast in the kidney, spleen, liver and lung with more marked hepatic and splenic necrosis in mice challenged with PM1 compared to MP1 knockout and MP1 knockdown mutants. Likewise, a higher abundance of yeast was observed in the liver and spleen of mice challenged with MP1 complemented mutant compared to MP1 knockout mutant. PM1 and MP1 complemented mutant survived significantly better than MP1 knockout mutant in macrophages at 48 hours (P<0.01) post-infection. The mean fungal counts of Pichia pastoris GS115-MP1 in the liver (P<0.001) and spleen (P<0.05) of mice were significantly higher than those of GS115 at 24 hours post-challenge. Conclusions/Significance Mp1p is a key virulence factor of T. marneffei. Mp1p mediates virulence by improving the survival of T. marneffei in macrophages. Talaromyces (Penicillium) marneffei is an opportunistic thermal dimorphic fungus most prevalent in Southeast Asia. Our team has previously shown that Mp1p, a protein encoded by the MP1 gene, is an immunogenic surface and secretory protein of T. marneffei. In this study, we showed that mice challenged with T. marneffei with the MP1 gene died but those challenged with T. marneffei without the MP1 gene did not die. There was also significantly higher fungal load and more necrosis in organs of mice challenged with T. marneffei with the MP1 gene than T. marneffei without the MP1 gene. Furthermore, T. marneffei with the MP1 gene survived better in macrophages than T. marneffei without the MP1 gene and Pichia pastoris with the MP1 gene survived in mice better than P. pastoris without the MP1 gene. Our data support that Mp1p is a key virulence factor of T. marneffei and Mp1p mediates virulence by improving the survival of T. marneffei in macrophages.
Collapse
Affiliation(s)
- Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Susanna K. P. Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Candy C. Y. Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Ken T. K. Chong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Fengjuan Yang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Hongmin Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Raymond K. C. Lo
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jian-Pao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | | | - Wing-Fung Ng
- Department of Pathology, United Christian Hospital and Tseung Kwan O Hospital, Hong Kong
| | - Herman Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Samson S. Y. Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Simin Xu
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Wai Hei Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Man-Kit Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Richard Y. Kao
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Neil E. Reiner
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
19
|
Chan JFW, Lau SKP, Yuen KY, Woo PCY. Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerg Microbes Infect 2016; 5:e19. [PMID: 26956447 PMCID: PMC4820671 DOI: 10.1038/emi.2016.18] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
Talaromyces (Penicillium) marneffei is an important pathogenic thermally dimorphic fungus causing systemic mycosis in Southeast Asia. The clinical significance of T. marneffei became evident when the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome epidemic arrived in Southeast Asia in 1988. Subsequently, a decline in the incidence of T. marneffei infection among HIV-infected patients was seen in regions with access to highly active antiretroviral therapy and other control measures for HIV. Since the 1990s, an increasing number of T. marneffei infections have been reported among non-HIV-infected patients with impaired cell-mediated immunity. Their comorbidities included primary adult-onset immunodeficiency due to anti-interferon-gamma autoantibodies and secondary immunosuppressive conditions including other autoimmune diseases, solid organ and hematopoietic stem cell transplantations, T-lymphocyte-depleting immunsuppressive drugs and novel anti-cancer targeted therapies such as anti-CD20 monoclonal antibodies and kinase inhibitors. Moreover, improved immunological diagnostics identified more primary immunodeficiency syndromes associated with T. marneffei infection in children. The higher case-fatality rate of T. marneffei infection in non-HIV-infected than HIV-infected patients might be related to delayed diagnosis due to the lack of clinical suspicion. Correction of the underlying immune defects and early use of antifungals are important treatment strategies. Clinicians should be familiar with the changing epidemiology and clinical management of T. marneffei infection among non-HIV-infected patients.
Collapse
Affiliation(s)
- Jasper FW Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Susanna KP Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Patrick CY Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Panapruksachat S, Iwatani S, Oura T, Vanittanakom N, Chindamporn A, Niimi K, Niimi M, Lamping E, Cannon RD, Kajiwara S. Identification and functional characterization of Penicillium marneffei pleiotropic drug resistance transporters ABC1 and ABC2. Med Mycol 2016; 54:478-91. [PMID: 26782644 DOI: 10.1093/mmy/myv117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
Abstract
Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump.
Collapse
Affiliation(s)
| | - Shun Iwatani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | - Takahiro Oura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | | | - Kyoko Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Masakazu Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, New Zealand
| | - Susumu Kajiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| |
Collapse
|
21
|
Li B, Zong Y, Du Z, Chen Y, Zhang Z, Qin G, Zhao W, Tian S. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:635-47. [PMID: 25625822 DOI: 10.1094/mpmi-12-14-0398-fi] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species.
Collapse
Affiliation(s)
- Boqiang Li
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zong
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhenglin Du
- 2 Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Yong Chen
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhanquan Zhang
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenming Zhao
- 2 Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Shiping Tian
- 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci Rep 2014; 4:6728. [PMID: 25335861 PMCID: PMC4205486 DOI: 10.1038/srep06728] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/08/2014] [Indexed: 12/17/2022] Open
Abstract
Monascorubrin and its derivatives are polyketides used as natural colorants for a wide range of food for more than one thousand years. Since the biosynthetic pathway for this ancient chemical compound is unknown and genome sequence unavailable for any Monascus species, monascorubrin production has relied on extraction from fungal cultures of Monascus species. In vitro synthesis and genetic manipulation are not possible. Here we report the polyketide gene cluster and pathway for monascorubrin biosynthesis in Penicillium marneffei, a diffusible red pigment-producing, thermal dimorphic fungus, taking advantage of available genome sequence and faster growth rate than Monascus species. We also documented that the red pigment of P. marneffei is a mixture of more than 16 chemical compounds, which are amino acid conjugates of monascorubrin and rubropunctatin, and showed that this polyketide gene cluster and pathway are also responsible for biosynthesis of ankaflavin and citrinin, a mycotoxin with nephrotoxic activity in mammals. The present study on elucidation of the biosynthetic pathway of monascorubrin is a proof-of-the-concept study that serves as a cornerstone for future studies on monascorubrin biosynthesis pathway dissection in Monascus species.
Collapse
|
23
|
Yang E, Chow WN, Wang G, Woo PCY, Lau SKP, Yuen KY, Lin X, Cai JJ. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei. PLoS Genet 2014; 10:e1004662. [PMID: 25330172 PMCID: PMC4199489 DOI: 10.1371/journal.pgen.1004662] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/11/2014] [Indexed: 12/16/2022] Open
Abstract
Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition in P. marneffei, providing a powerful foundation for identifying molecular targets for mechanism-based interventions. Penicillium marneffei is a significant dimorphic fungal pathogen capable of causing lethal systemic infections. It grows in a yeast-like form at mammalian body temperature and a mold-like form at ambient temperature. The thermal dimorphism of P. marneffei is closely related to its virulence. In the present study, we re-sequenced the genome of P. marneffei using Illumina and PacBio sequencing technologies, and simultaneously assembled these newly sequenced reads in different lengths with previously obtained Sanger sequences. This hybrid assembly greatly improved the quality of the genome sequences. Next, we used RNA-seq to measure the global gene expression of P. marneffei at different phases and during dimorphic phase transitions. We found that 27% of genes showed signature expression patterns, suggesting that these genes function at different stages in the life cycle of P. marneffei. Moreover, genes with same expression patterns tend to be clustered together as neighbors to each other in the genome, suggesting an orchestrated transcriptional regulation for multiple neighboring genes. Over-expression of the MADS-box transcription factor, madsA, located in one of these clusters, confirms the function of this gene in driving the yeast-to-mycelia phase transition irrespective of the temperature cues. Our data also implies diverse roles of secreted proteins and non-coding RNAs in dimorphic transition in P. marneffei.
Collapse
Affiliation(s)
- Ence Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Wang-Ngai Chow
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Gang Wang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Patrick C. Y. Woo
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Houbraken J, de Vries RP, Samson RA. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:199-249. [PMID: 24377856 DOI: 10.1016/b978-0-12-800262-9.00004-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are commonly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion. Misidentification of strains used in biotechnology can be traced back to (1) recent changes in nomenclature, (2) new taxonomic insights, including description of new species, and/or (3) incorrect identifications. Changes in the recent published International Code of Nomenclature for Algae, Fungi and Plants will lead to numerous name changes of existing Aspergillus and Penicillium species and an overview of the current names of biotechnological important species is given. Furthermore, in (biotechnological) literature old and invalid names are still used, such as Aspergillus awamori, A. foetidus, A. kawachii, Talaromyces emersonii, Acremonium cellulolyticus, and Penicillium funiculosum. An overview of these and other species with their correct names is presented. Furthermore, the biotechnologically important species Talaromyces thermophilus is here combined in Thermomyces as Th. dupontii. The importance of Aspergillus, Penicillium, and related genera is also illustrated by the high number of undertaken genome sequencing projects. A number of these strains are incorrectly identified or atypical strains are selected for these projects. Recommendations for correct strain selection are given here. Phylogenetic analysis shows a close relationship between the genome-sequenced strains of Aspergillus, Penicillium, and Monascus. Talaromyces stipitatus and T. marneffei (syn. Penicillium marneffei) are closely related to Thermomyces lanuginosus and Th. dupontii (syn. Talaromyces thermophilus), and these species appear to be distantly related to Aspergillus and Penicillium. In the last part of this review, an overview of heterothallic reproduction in Aspergillus and Penicillium is given. The new insights in the taxonomy of Aspergillus, Penicillium, and related genera will help to interpret the results generated with comparative genomics studies or other studies dealing with evolution of, for example, enzymes, mating-type loci, virulence genes, and secondary metabolite biosynthetic gene clusters.
Collapse
Affiliation(s)
- Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.
| | | | - Robert A Samson
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| |
Collapse
|
25
|
Fujii T, Hoshino T, Inoue H, Yano S. Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiol Lett 2013; 351:32-41. [PMID: 24313660 DOI: 10.1111/1574-6968.12352] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 12/25/2022] Open
Abstract
The cellulase-producing fungal strain Y-94, isolated in Japan and invalidly described as Acremonium cellulolyticus nom. nud. strain Y-94, seldom forms enteroarthric conidia under nutrient starvation conditions. Phylogenetic analysis using ITS1-5.8S-ITS2 and RNA polymerase II large subunit gene sequences revealed that strain Y-94 is closely related to Talaromyces, given that these Y-94 sequences showed 100% identity with those of Talaromyces pinophilus NBRC 100533T . By contrast, the identity between β-tubulin-encoding genes from strain Y-94 and T. pinophilus NBRC 100533T was 98.1%. Morphological and phenotypic differences between these strains in colony color, conidiophore formation, and cellulase productivity were observed. Together, these data indicated that strain Y-94 belonged to the genus Talaromyces. We propose that strain Y-94 is a new species, Talaromyces cellulolyticus, on the basis of morphology and molecular evidence. The ex-holotype is Y-94 (= FERM BP-5826, CBS 136886 [holotype] TNS-F-48752).
Collapse
Affiliation(s)
- Tatsuya Fujii
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Hiroshima, Japan
| | | | | | | |
Collapse
|
26
|
Lau SKP, Tse H, Chan JSY, Zhou AC, Curreem SOT, Lau CCY, Yuen KY, Woo PCY. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment. FEBS J 2013; 280:6613-26. [PMID: 24128375 DOI: 10.1111/febs.12566] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
Despite being the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia, the pathogenic mechanisms of Penicillium marneffei remain largely unknown. By comparing the extracellular proteomes of P. marneffei in mycelial and yeast phases, we identified 12 differentially expressed proteins among which glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and heat shock protein 60 (HSP60) were found to be upregulated in mycelial and yeast phases respectively. Based on previous findings in other pathogens, we hypothesized that these two extracellular proteins may be involved in adherence during P. marneffei-host interaction. Using inhibition assays with recombinant GAPDH (rGAPDH) proteins and anti-rGAPDH sera, we demonstrated that adhesion of P. marneffei conidia to fibronectin and laminin was inhibited by rGAPDH or rabbit anti-rGAPDH serum in a dose-dependent manner. Similarly, a dose-dependent inhibition of conidial adherence to A549 pneumocytes by rGAPDH or rabbit anti-rGAPDH serum was observed, suggesting that P. marneffei GAPDH can mediate binding of conidia to human extracellular matrix proteins and pneumocytes. However, HSP60 did not exhibit similar inhibition on conidia adherence, and neither GAPDH norHSP60 exhibited inhibition on adherence to J774 or THP-1 macrophage cell lines. This report demonstrates GAPDH as an adherence factor in P. marneffei by mediating conidia adherence to host bronchoalveolar epithelium during the early establishment phase of infection.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, University of Hong Kong, China; Department of Microbiology, University of Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lau SKP, Chow WN, Wong AYP, Yeung JMY, Bao J, Zhang N, Lok S, Woo PCY, Yuen KY. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl Trop Dis 2013; 7:e2398. [PMID: 23991243 PMCID: PMC3749987 DOI: 10.1371/journal.pntd.0002398] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023] Open
Abstract
Background Penicillium marneffei is the most important thermal dimorphic fungus causing systemic mycosis in China and Southeast Asia. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less well studied and their potential roles in fungal dimorphism were largely unknown. Based on P. marneffei genome sequence, we hypothesize that miRNA-like RNAs (milRNAs) may be expressed in the dimorphic fungus. Methodology/Principal Findings We attempted to identify milRNAs in P. marneffei in both mycelial and yeast phase using high-throughput sequencing technology. Small RNAs were more abundantly expressed in mycelial than yeast phase. Sequence analysis revealed 24 potential milRNA candidates, including 17 candidates in mycelial and seven in yeast phase. Two genes, dcl-1 and dcl-2, encoding putative Dicer-like proteins and the gene, qde-2, encoding Argonaute-like protein, were identified in P. marneffei. Phylogenetic analysis showed that dcl-2 of P. marneffei was more closely related to the homologues in other thermal dimorphic pathogenic fungi than to Penicillium chrysogenum and Aspergillus spp., suggesting the co-evolution of dcl-2 among the thermal dimorphic fungi. Moreover, dcl-2 demonstrated higher mRNA expression levels in mycelial than yeast phase by 7 folds (P<0.001). Northern blot analysis confirmed the expression of two milRNAs, PM-milR-M1 and PM-milR-M2, only in mycelial phase. Using dcl-1KO, dcl-2KO, dclDKO and qde-2KO deletion mutants, we showed that the biogenesis of both milRNAs were dependent on dcl-2 but not dcl-1 or qde-2. The mRNA expression levels of three predicted targets of PM-milR-M1 were upregulated in knockdown strain PM-milR-M1KD, supporting regulatory function of milRNAs. Conclusions/Significance Our findings provided the first evidence for differential expression of milRNAs in different growth phases of thermal dimorphic fungi and shed light on the evolution of fungal proteins involved in milRNA biogenesis and possible role of post-transcriptional control in governing thermal dimorphism. Penicillium marneffei is the most important thermal dimorphic pathogenic fungus in Southeast Asia. Despite findings on diverse genes and mechanisms involved in dimorphic switching, the key to signally pathways governing the switch is still unknown. Since miRNAs are important regulatory molecules in eukaryotes, we attempt to define if miRNAs are expressed in different growth phases of P. marneffei. Using high-throughput sequencing, we identified 24 potential milRNA candidates in P. marneffei, which were more abundantly expressed in mycelial than yeast phase. Two genes, dcl-1 and dcl-2, encoding Dicer-like proteins and the gene, qde-2, encoding Argonaute-like protein, were also identified. Phylogenetic analysis showed that dcl-2 of P. marneffei was more closely related to the homologues in other thermal dimorphic pathogenic fungi than to Penicillium chrysogenum and Aspergillus spp.. dcl-2 demonstrated higher mRNA levels in mycelial than yeast phase. Northern blot analysis confirmed expression of two milRNAs, PM-milR-M1 and PM-milR-M2, only in mycelial phase, whose expression was dependent on dcl-2 but not dcl-1 or qde-2. The mRNA levels of three predicted targets of PM-milR-M1 were upregulated in knockdown strain PM-milR-M1KD, supporting its regulatory function. This study represents the first discovery of milRNAs in thermal dimorphic fungi, with differential expression in different growth phases.
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Annette Y. P. Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Julian M. Y. Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jessie Bao
- Genome Research Centre, The University of Hong Kong, Hong Kong, China
| | - Na Zhang
- Genome Research Centre, The University of Hong Kong, Hong Kong, China
| | - Si Lok
- Genome Research Centre, The University of Hong Kong, Hong Kong, China
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- * E-mail: (PCYW); (KYY)
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- * E-mail: (PCYW); (KYY)
| |
Collapse
|
28
|
Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei. EUKARYOTIC CELL 2013; 12:1214-24. [PMID: 23851338 DOI: 10.1128/ec.00159-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen endemic in Southeast Asia, causing lethal systemic infections in immunocompromised patients. P. marneffei grows in a mycelial form at the ambient temperature of 25°C and transitions to a yeast form at 37°C. The ability to alternate between the mycelial and yeast forms at different temperatures, namely, thermal dimorphism, has long been considered critical for the pathogenicity of P. marneffei, yet the underlying genetic mechanisms remain elusive. Here we employed high-throughput sequencing to unravel global transcriptional profiles of P. marneffei PM1 grown at 25 and 37°C. Among ∼11,000 protein-coding genes, 1,447 were overexpressed and 1,414 were underexpressed at 37°C. Counterintuitively, heat-responsive genes, predicted in P. marneffei through sequence comparison, did not tend to be overexpressed at 37°C. These results suggest that P. marneffei may take a distinct strategy of genetic regulation at the elevated temperature; the current knowledge concerning fungal heat response, based on studies of model fungal organisms, may not be applicable to P. marneffei. Our results further showed that the tandem repeat sequences (TRSs) are overrepresented in coding regions of P. marneffei genes, and TRS-containing genes tend to be overexpressed at 37°C. Furthermore, genomic sequences and expression data were integrated to characterize gene clusters, multigene families, and species-specific genes of P. marneffei. In sum, we present an integrated analysis and a comprehensive resource toward a better understanding of temperature-dependent genetic regulation in P. marneffei.
Collapse
|
29
|
Chitasombat M, Supparatpinyo K. Penicillium marneffei Infection in Immunocompromised Host. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0119-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Woo PCY, Lam CW, Tam EWT, Leung CKF, Wong SSY, Lau SKP, Yuen KY. First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei. PLoS Negl Trop Dis 2012; 6:e1871. [PMID: 23094121 PMCID: PMC3475676 DOI: 10.1371/journal.pntd.0001871] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/02/2012] [Indexed: 11/20/2022] Open
Abstract
Background The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS) genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS) genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes. Methodology/Principal Findings All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS) and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05). There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05). Conclusions/Significance The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid. Mitorubrinol and mitorubrinic acid are virulence factors of P. marneffei by improving its intracellular survival in macrophages. Penicillium marneffei is the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia. Its genome possesses a large number of polyketide synthase (PKS) genes, which should be responsible for synthesis of secondary metabolites such as pigments, antibiotics and mycotoxins. Using state-of-the-art gene knockdown and ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry technologies, we discovered that the yellow pigment of P. marneffei was composed of mitorubrinol and mitorubrinic acid and was synthesized by two PKS genes, named pks12 and pks11. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis, in which pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid. Using a mouse model and human and mouse macrophage cell line models for P. marneffei infection, we also discovered that mitorubrinol and mitorubrinic acid are virulence factors of P. marneffei by improving its intracellular survival in macrophages.
Collapse
Affiliation(s)
- Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
31
|
Genome sequences published outside of Standards in Genomic Sciences, December 2011. Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2495686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|