1
|
Sepúlveda VE, Goldman WE, Matute DR. Genotypic diversity, virulence, and molecular genetic tools in Histoplasma. Microbiol Mol Biol Rev 2024; 88:e0007623. [PMID: 38819148 PMCID: PMC11332355 DOI: 10.1128/mmbr.00076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
SUMMARYHistoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. Histoplasma, the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed. The fungus has the ability to germinate from conidia into either hyphal (mold) or yeast form, depending on the environmental temperature. This transition also regulates virulence. Histoplasma and histoplasmosis have been classified as being of emergent importance, and in 2022, the World Health Organization included Histoplasma as 1 of the 19 most concerning human fungal pathogens. In this review, we synthesize the current understanding of the ecological niche, evolutionary history, and virulence strategies of Histoplasma. We also describe general patterns of the symptomatology and epidemiology of histoplasmosis. We underscore areas where research is sorely needed and highlight research avenues that have been productive.
Collapse
Affiliation(s)
- Victoria E. Sepúlveda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William E. Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Wang X, Wang M, Sun J, Qu X, Wang S, Sun T. Establishment of an Efficient Genetic Transformation System in Sanghuangporus baumii. J Fungi (Basel) 2024; 10:137. [PMID: 38392809 PMCID: PMC10890400 DOI: 10.3390/jof10020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: Sanghuangporus baumii, a valuable medicinal fungus, has limited studies on its gene function due to the lack of a genetic transformation system. (2) Methods: This study aimed to establish an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for S. baumii. This study involved cloning the promoter (glyceraldehyde-3-phosphate dehydrogenase, gpd) of S. baumii, reconstructing the transformation vector, optimizing the treatment of receptor tissues, and inventing a new method for screening positive transformants. (3) Results: The established ATMT system involved replacing the CaMV35S promoter of pCAMBIA-1301 with the gpd promoter of S. baumii to construct the pCAMBIA-SH-gpd transformation vector. The vectors were then transferred to A. tumefaciens (EHA105) for infection. This study found that the transformation efficiency was higher in the infection using pCAMBIA-SH-gpd vectors than using pCAMBIA-1301 vectors. The mycelia of S. baumii were homogenized for 20 s and collected as the genetic transformation receptor. After 20 min of co-culture and 48 h of incubation in 15 mL PDL medium at 25 °C, new colonies grew. (4) Conclusions: These colonies were transferred to PDA medium (hygromycin 4 μg/mL, cefotaxime 300 μg/mL), and the transformation efficiency was determined to be 33.7% using PCR.
Collapse
Affiliation(s)
- Xutong Wang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Mandi Wang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Jian Sun
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| | - Xiaolei Qu
- Department of Electrical Engineering, Daqing Normal University, Binxi Road, Daqing 163712, China
| | - Shixin Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| | - Tingting Sun
- Department of Food Engineering, Harbin University, Zhongxing Road 109, Nangang District, Harbin 150086, China
| |
Collapse
|
3
|
Rappleye CA. Targeted gene deletions in the dimorphic fungal pathogen Histoplasma using an optimized episomal CRISPR/Cas9 system. mSphere 2023; 8:e0017823. [PMID: 37389430 PMCID: PMC10449496 DOI: 10.1128/msphere.00178-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
The rapid development of CRISPR/CRISPR-associated (Cas) systems has revolutionized the ability to produce genetic mutations in a desired locus, particularly in organisms with low rates of homologous recombination. Histoplasma is an important respiratory and systemic fungal pathogen that has few reverse genetic options. We describe an optimized CRISPR/Cas system for the efficient generation of mutations in desired genes. The limited requirements for CRISPR/Cas, namely a gene-targeting guide RNA (gRNA) and expression of a Cas endonuclease, enabled both the gRNA and the Streptococcus pyogenes Cas9 gene to be expressed from a single episomal vector. The gRNAs are expressed from a strong Pol(II) promoter, a critical parameter for increasing the recovery of mutated genes, and processed into the mature gRNA by ribozymes in the mRNA. Expression of dual-tandem gRNAs facilitates the generation of gene deletions at a good frequency which can be detected by PCR-based screening of pooled isolates resulting in the isolation of marker-less deletion mutants. The CRISPR/Cas system is encoded on an episomal telomeric vector facilitating curing strains of the CRISPR/Cas vector upon generation of the mutant. We demonstrate the successful application of this CRISPR/Cas system in diverse Histoplasma species and applicable for multiple genes. The optimized system shows promise for accelerating reverse genetic studies in Histoplasma spp. IMPORTANCE The ability to eliminate gene product functions is central to understanding molecular mechanisms. In the fungal pathogen Histoplasma, methods to inactivate or deplete gene products are inefficient, which hampers progress in defining Histoplasma's virulence mechanisms. We describe an efficient CRISPR/Cas-based system for generating gene deletions in Histoplasma and show its validation on multiple genes with selectable and non-selectable phenotypes.
Collapse
Affiliation(s)
- Chad A. Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
5
|
Fu J, Brockman NE, Wickes BL. Optimizing Transformation Frequency of Cryptococcus neoformans and Cryptococcus gattii Using Agrobacterium tumefaciens. J Fungi (Basel) 2021; 7:jof7070520. [PMID: 34209781 PMCID: PMC8305055 DOI: 10.3390/jof7070520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
The transformation of Cryptococcus spp. by Agrobacterium tumefaciens has proven to be a useful genetic tool. A number of factors affect transformation frequency. These factors include acetosyringone concentration, bacterial cell to yeast cell ratio, cell wall damage, and agar concentration. Agar concentration was found to have a significant effect on the transformant number as transformants increased with agar concentration across all four serotypes. When infection time points were tested, higher agar concentrations were found to result in an earlier transfer of the Ti-plasmid to the yeast cell, with the earliest transformant appearing two h after A. tumefaciens contact with yeast cells. These results demonstrate that A. tumefaciens transformation efficiency can be affected by a variety of factors and continued investigation of these factors can lead to improvements in specific A. tumefaciens/fungus transformation systems.
Collapse
|
6
|
Kujoth GC, Sullivan TD, Klein BS. Gene Editing in Dimorphic Fungi Using CRISPR/Cas9. CURRENT PROTOCOLS IN MICROBIOLOGY 2020; 59:e132. [PMID: 33315302 PMCID: PMC7783865 DOI: 10.1002/cpmc.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dimorphic fungi in the genera Blastomyces, Histoplasma, Coccidioides, and Paracoccidioides are important human pathogens that affect human health in many countries throughout the world. Understanding the biology of these fungi is important for the development of effective treatments and vaccines. Gene editing is a critically important tool for research into these organisms. In recent years, gene targeting approaches employing RNA-guided DNA nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9), have exploded in popularity. Here, we provide a detailed description of the steps involved in applying CRISPR/Cas9 technology to dimorphic fungi, with Blastomyces dermatitidis in particular as our model fungal pathogen. We discuss the design and construction of single guide RNA and Cas9-expressing targeting vectors (including multiplexed vectors) as well as introduction of these plasmids into Blastomyces using Agrobacterium-mediated transformation. Finally, we cover the outcomes that may be expected in terms of gene-editing efficiency and types of gene alterations produced. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Construction of CRISPR/Cas9 targeting vectors Support Protocol 1: Choosing protospacers in the target gene Basic Protocol 2: Agrobacterium-mediated transformation of Blastomyces Support Protocol 2: Preparation of electrocompetent Agrobacterium Support Protocol 3: Preparation and recovery of Blastomyces frozen stocks.
Collapse
Affiliation(s)
- Gregory C. Kujoth
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas D. Sullivan
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| | - Bruce S. Klein
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
7
|
Mahyudin MM, Foster GD, Bailey AM. Optimising Agrobacterium-mediated transformation of Corynespora cassiicola to deliver DsRed. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sil A. Molecular regulation of Histoplasma dimorphism. Curr Opin Microbiol 2019; 52:151-157. [PMID: 31739263 PMCID: PMC6910920 DOI: 10.1016/j.mib.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/06/2023]
Abstract
Temperature serves as a fundamental signal in biological systems. In some microbial pathogens of humans, mammalian body temperature triggers establishment and maintenance of a developmental program that allows the microbe to survive and thrive in the host. Histoplasma capsulatum is one of a group of fungal pathogens called thermally dimorphic fungi, all of which respond to mammalian body temperature by converting from an environmental mold form that inhabits the soil into a parasitic form that causes disease in the host. It has been known for decades that temperature is a key signal that is sufficient to trigger the switch from the soil to host form (and vice versa) in the laboratory. Recent molecular studies have identified a number of key regulators that are required to specify each of the developmental forms in response to temperature. Here we review the regulatory circuits that govern temperature-dependent dimorphism in Histoplasma.
Collapse
Affiliation(s)
- Anita Sil
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Global identification of alternative splicing in Shiraia bambusicola and analysis of its regulation in hypocrellin biosynthesis. Appl Microbiol Biotechnol 2019; 104:211-223. [PMID: 31768612 DOI: 10.1007/s00253-019-10189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 01/24/2023]
Abstract
Hypocrellins, as natural pigments from Shiraia bambusicola, have extensive applications in the agricultural, cosmetic, food, and feed industries, and play a vital role in photodynamic therapy for anticancer and antiviral treatments. However, environmental stresses are always the bottlenecks for increasing hypocrellin yield during the process of fermentation. Pre-mRNA alternative splicing (AS) is an essential mechanism in the defense of abiotic stresses in the animal and plant kingdom, but is seldom involved in fungi. In this study, AS from genome-wide sequencing and RNA-seq data for S. bambusicola was analyzed for the first time. Interestingly, the proportion of AS in S. bambusicola was 38.44% (most of them participated in metabolic processes, covering pigmentation and response to stimulus), a much higher ratio than seen in that of other fungal species (1.3-18%). Here, we identified the relationship of AS and secondary metabolic (SM) biosynthesis under a series of abiotic stresses. Suitable fungicides suppressed hypocrellin production significantly, and AS occurred in key functional genes (sbFLO, sbMFS, sbPKS) of hypocrellin biosynthesis. In contrast, H2O2 improved the yield of hypocrellins, but AS were not found in the corresponding gene cluster. A further study showed that overexpressing an isoform of sbPKS (sbPKSa) in Shiraia bambusicola could dramatically down-regulate the expression of the original gene sbPKS and nearly inhibit the production of hypocrellins. Altogether, our study strongly supported the hypothesis that AS had a vital role in the regulation of hypocrellin biosynthesis under stresses, and initially explored whether SM functional genes were relevant for fungi.
Collapse
|
10
|
Sayari M, van der Nest MA, Steenkamp ET, Adegeye OO, Marincowitz S, Wingfield BD. Agrobacterium-mediated transformation of Ceratocystis albifundus. Microbiol Res 2019; 226:55-64. [PMID: 31284945 DOI: 10.1016/j.micres.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022]
Abstract
Functional association between genomic loci and specific biological traits remains lacking in many fungi, including the African tree pathogen Ceratocystis albifundus. This is mainly because of the absence of suitable transformation systems for allowing genetic manipulation of this and other fungi. Here, we present an optimized protocol for Agrobacterium tumefaciens-mediated transformation of C. albifundus. Strain AGL-1 of A. tumefaciens and four binary T-DNA vectors (conferring hygromycin B or geneticin resistance and/or expressing the green fluorescent protein [GFP]) were used for transforming germinated conidia of three isolates of C. albifundus. Stable expression of these T-DNA-encoded traits was confirmed through sequential sub-culturing of fungal transformants on selective and non-selective media and by using PCR and sequence analysis. Single-copy integration of the respective T-DNAs into the genomes of these fungi was confirmed using Southern hybridization analysis. The range of experimental parameters determined and optimised included: (i) concentrations of hygromycin B and geneticin required for inhibiting growth of the wild type fungus and (ii) the dependence of transformation on acetosyringone for inducing the bacterium's virulence genes, as well as (iii) the duration of fungus-bacterium co-cultivation periods and (iv) the concentrations of fungal conidia and bacterial cells used for the latter. The system developed in this study is stable with a high-efficiency, yielding up to 400 transformants per 106 conidia. This is the first report of a transformation protocol for C. albifundus and its availability will be invaluable for functional studies in this important fungus.
Collapse
Affiliation(s)
- M Sayari
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa; Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Pretoria, South Africa
| | - E T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - O O Adegeye
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - S Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
11
|
Optimization of Agrobacterium tumefaciens-mediated transformation method of oleaginous filamentous fungus Mortierella alpina on co-cultivation materials choice. J Microbiol Methods 2018; 152:179-185. [DOI: 10.1016/j.mimet.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 11/24/2022]
|
12
|
Kujoth GC, Sullivan TD, Merkhofer R, Lee TJ, Wang H, Brandhorst T, Wüthrich M, Klein BS. CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis. mBio 2018; 9:e00412-18. [PMID: 29615501 PMCID: PMC5885028 DOI: 10.1128/mbio.00412-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
Blastomyces dermatitidis is a human fungal pathogen of the lung that can lead to disseminated disease in healthy and immunocompromised individuals. Genetic analysis of this fungus is hampered by the relative inefficiency of traditional recombination-based gene-targeting approaches. Here, we demonstrate the feasibility of applying CRISPR/Cas9-mediated gene editing to Blastomyces, including to simultaneously target multiple genes. We created targeting plasmid vectors expressing Cas9 and either one or two single guide RNAs and introduced these plasmids into Blastomyces via Agrobacterium gene transfer. We succeeded in disrupting several fungal genes, including PRA1 and ZRT1, which are involved in scavenging and uptake of zinc from the extracellular environment. Single-gene-targeting efficiencies varied by locus (median, 60% across four loci) but were approximately 100-fold greater than traditional methods of Blastomyces gene disruption. Simultaneous dual-gene targeting proceeded with efficiencies similar to those of single-gene-targeting frequencies for the respective targets. CRISPR/Cas9 disruption of PRA1 or ZRT1 had a variable impact on growth under zinc-limiting conditions, showing reduced growth at early time points in low-passage-number cultures and growth similar to wild-type levels by later passage. Individual impairment of PRA1 or ZRT1 resulted in a reduction of the fungal burden in a mouse model of Blastomyces infection by a factor of ~1 log (range, up to 3 logs), and combined disruption of both genes had no additional impact on the fungal burden. These results underscore the utility of CRISPR/Cas9 for efficient gene disruption in dimorphic fungi and reveal a role for zinc metabolism in Blastomyces fitness in vivo IMPORTANCE Blastomyces is a human fungal pathogen that can cause serious, even fatal, lung infections. Genetic analysis of this fungus is possible but inefficient. We applied a recently developed gene editing technology, CRISPR/Cas9, to dramatically improve the efficiency with which gene disruptions are introduced into Blastomyces We used this system to disrupt genes involved in zinc uptake and found that this reduced the fitness of the fungus upon infection.
Collapse
Affiliation(s)
- Gregory C Kujoth
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas D Sullivan
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard Merkhofer
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Taek-Jin Lee
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Huafeng Wang
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tristan Brandhorst
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Coradetti ST, Pinel D, Geiselman GM, Ito M, Mondo SJ, Reilly MC, Cheng YF, Bauer S, Grigoriev IV, Gladden JM, Simmons BA, Brem RB, Arkin AP, Skerker JM. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. eLife 2018. [PMID: 29521624 PMCID: PMC5922974 DOI: 10.7554/elife.32110] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. The fungus Rhodosporidium toruloides can grow on substances extracted from plant matter that is inedible to humans such as corn stalks, wood pulp, and grasses. Under some growth conditions, the fungus can accumulate massive stores of hydrocarbon-rich fats and pigments. A community of scientists and engineers has begun genetically modifying R. toruloides to convert these naturally produced fats and pigments into fuels, chemicals and medicines. These could form sustainable replacements for products made from petroleum or harvested from threatened animal and plant species. Fungi, plants, animals and other eukaryotes store fat in specialized compartments called lipid droplets. The genes that control the metabolism – the production, use and storage – of fat in lipid bodies have been studied in certain eukaryotes, including species of yeast. However, R. toruloides is only distantly related to the most well-studied of these species. This means that we cannot be certain that a gene will play the same role in R. toruloides as in those species. To assemble the most comprehensive list possible of the genes in R. toruloides that affect the production, use, or storage of fat in lipid bodies, Coradetti, Pinel et al. constructed a population of hundreds of thousands of mutant fungal strains, each with its own unique DNA ‘barcode’. The effects that mutations in over 6,000 genes had on growth and fat accumulation in these fungi were measured simultaneously in several experiments. This general approach is not new, but technical limitations had, until now, restricted its use in fungi to a few species. Coradetti, Pinel et al. identified hundreds of genes that affected the ability of R. toruloides to metabolise fat. Many of these genes were related to genes with known roles in fat metabolism in other eukaryotes. Other genes are involved in different cell processes, such as the recycling of waste products in the cell. Their identification adds weight to the view that the links between these cellular processes and fat metabolism are deep and widespread amongst eukaryotes. Finally, some of the genes identified by Coradetti, Pinel et al. are not closely related to any well-studied genes. Further study of these genes could help us to understand why R. toruloides can accumulate much larger amounts of fat than most other fungi. The methods developed by Coradetti, Pinel et al. should be possible to implement in many species of fungi. As a result these techniques may eventually contribute to the development of new treatments for human fungal diseases, the protection of important food crops, and a deeper understanding of the roles various fungi play in the broader ecosystem.
Collapse
Affiliation(s)
| | - Dominic Pinel
- Energy Biosciences Institute, Berkeley, United States
| | | | - Masakazu Ito
- Energy Biosciences Institute, Berkeley, United States
| | - Stephen J Mondo
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Morgann C Reilly
- Joint BioEnergy Institute, Emeryville, United States.,Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, United States
| | - Ya-Fang Cheng
- Energy Biosciences Institute, Berkeley, United States
| | - Stefan Bauer
- Energy Biosciences Institute, Berkeley, United States
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Rachel B Brem
- The Buck Institute for Research on Aging, Novato, United States.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Adam P Arkin
- Energy Biosciences Institute, Berkeley, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, United States
| | - Jeffrey M Skerker
- Energy Biosciences Institute, Berkeley, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
15
|
Hooykaas PJJ, van Heusden GPH, Niu X, Reza Roushan M, Soltani J, Zhang X, van der Zaal BJ. Agrobacterium-Mediated Transformation of Yeast and Fungi. Curr Top Microbiol Immunol 2018; 418:349-374. [PMID: 29770864 DOI: 10.1007/82_2018_90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two decades ago, it was discovered that the well-known plant vector Agrobacterium tumefaciens can also transform yeasts and fungi when these microorganisms are co-cultivated on a solid substrate in the presence of a phenolic inducer such as acetosyringone. It is important that the medium has a low pH (5-6) and that the temperature is kept at room temperature (20-25 °C) during co-cultivation. Nowadays, Agrobacterium-mediated transformation (AMT) is the method of choice for the transformation of many fungal species; as the method is simple, the transformation efficiencies are much higher than with other methods, and AMT leads to single-copy integration much more frequently than do other methods. Integration of T-DNA in fungi occurs by non-homologous end-joining (NHEJ), but also targeted integration of the T-DNA by homologous recombination (HR) is possible. In contrast to AMT of plants, which relies on the assistance of a number of translocated virulence (effector) proteins, none of these (VirE2, VirE3, VirD5, VirF) are necessary for AMT of yeast or fungi. This is in line with the idea that some of these proteins help to overcome plant defense. Importantly, it also showed that VirE2 is not necessary for the transport of the T-strand into the nucleus. The yeast Saccharomyces cerevisiae is a fast-growing organism with a relatively simple genome with reduced genetic redundancy. This yeast species has therefore been used to unravel basic molecular processes in eukaryotic cells as well as to elucidate the function of virulence factors of pathogenic microorganisms acting in plants or animals. Translocation of Agrobacterium virulence proteins into yeast was recently visualized in real time by confocal microscopy. In addition, the yeast 2-hybrid system, one of many tools that have been developed for use in this yeast, was used to identify plant and yeast proteins interacting with the translocated Agrobacterium virulence proteins. Dedicated mutant libraries, containing for each gene a mutant with a precise deletion, have been used to unravel the mode of action of some of the Agrobacterium virulence proteins. Yeast deletion mutant collections were also helpful in identifying host factors promoting or inhibiting AMT, including factors involved in T-DNA integration. Thus, the homologous recombination (HR) factor Rad52 was found to be essential for targeted integration of T-DNA by HR in yeast. Proteins mediating double-strand break (DSB) repair by end-joining (Ku70, Ku80, Lig4) turned out to be essential for non-homologous integration. Inactivation of any one of the genes encoding these end-joining factors in other yeasts and fungi was employed to reduce or totally eliminate non-homologous integration and promote efficient targeted integration at the homologous locus by HR. In plants, however, their inactivation did not prevent non-homologous integration, indicating that T-DNA is captured by different DNA repair pathways in plants and fungi.
Collapse
Affiliation(s)
- Paul J J Hooykaas
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - G Paul H van Heusden
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaolei Niu
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - M Reza Roushan
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jalal Soltani
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaorong Zhang
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Bert J van der Zaal
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
16
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
17
|
The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome. Appl Environ Microbiol 2017; 83:AEM.00207-17. [PMID: 28411218 DOI: 10.1128/aem.00207-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery.IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination.
Collapse
|
18
|
Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrob Agents Chemother 2017; 61:AAC.01414-16. [PMID: 27872062 DOI: 10.1128/aac.01414-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
Novel antifungal drugs and targets are urgently needed. Group III hybrid histidine kinases (HHKs) represent an appealing new therapeutic drug target because they are widely expressed in fungi but absent from humans. We investigated the mode of action of the widely utilized, effective fungicide fludioxonil. The drug acts in an HHK-dependent manner by constitutive activation of the HOG (high-osmolarity glycerol) pathway, but its mechanism of action is poorly understood. Here, we report a new mode of drug action that entails conversion of the HHK from a kinase into a phosphatase. We expressed Drk1 (dimorphism-regulating kinase), which is an intracellular group III HHK from the fungal pathogen Blastomyces dermatitidis, in Saccharomyces cerevisiae Drk1 engendered drug sensitivity in B. dermatitidis and conferred sensitivity upon S. cerevisiae In response to fludioxonil, Drk1 behaved as a phosphatase rather than as a kinase, leading to dephosphorylation of its downstream target, Ypd1, constitutive activation of the HOG pathway, and yeast cell death. Aspartic acid residue 1140 in the Drk1 receiver domain was required for in vivo phosphatase activity on Ypd1, and Hog1 was required for drug effect, indicating fidelity in HHK-dependent drug action. In in vitro assays with purified protein, intact Drk1 demonstrated intrinsic kinase activity, and the Drk1 receiver domain exhibited intrinsic phosphatase activity. However, fludioxonil failed to induce intact Drk1 to dephosphorylate Ypd1. We conclude that fludioxonil treatment in vivo likely acts on an upstream target that triggers HHK to become a phosphatase, which dephosphorylates its downstream target, Ypd1.
Collapse
|
19
|
Revisiting old friends: Developments in understanding Histoplasma capsulatum pathogenesis. J Microbiol 2016; 54:265-76. [DOI: 10.1007/s12275-016-6044-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/27/2022]
|
20
|
Sterkel AK, Lorenzini JL, Fites JS, Subramanian Vignesh K, Sullivan TD, Wuthrich M, Brandhorst T, Hernandez-Santos N, Deepe GS, Klein BS. Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity. Cell Host Microbe 2016; 19:361-74. [PMID: 26922990 DOI: 10.1016/j.chom.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/29/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022]
Abstract
Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis.
Collapse
Affiliation(s)
- Alana K Sterkel
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jenna L Lorenzini
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - J Scott Fites
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kavitha Subramanian Vignesh
- Division of Infectious Disease, University of Cincinnati College of Medicine and Veterans Affairs Hospital, Cincinnati, OH 45220, USA
| | - Thomas D Sullivan
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Marcel Wuthrich
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Tristan Brandhorst
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Nydiaris Hernandez-Santos
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - George S Deepe
- Division of Infectious Disease, University of Cincinnati College of Medicine and Veterans Affairs Hospital, Cincinnati, OH 45220, USA
| | - Bruce S Klein
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA.
| |
Collapse
|
21
|
Muñoz JF, Gauthier GM, Desjardins CA, Gallo JE, Holder J, Sullivan TD, Marty AJ, Carmen JC, Chen Z, Ding L, Gujja S, Magrini V, Misas E, Mitreva M, Priest M, Saif S, Whiston EA, Young S, Zeng Q, Goldman WE, Mardis ER, Taylor JW, McEwen JG, Clay OK, Klein BS, Cuomo CA. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. PLoS Genet 2015; 11:e1005493. [PMID: 26439490 PMCID: PMC4595289 DOI: 10.1371/journal.pgen.1005493] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces. Dimorphic fungal pathogens including Blastomyces are the cause of major fungal diseases in North and South America. The genus Emmonsia includes species infecting small mammals as well as a newly emerging pathogenic species recently reported in HIV-positive patients in South Africa. Here, we synthesize both genome sequencing of four isolates of Blastomyces and two species of Emmonsia as well as deep sequencing of Blastomyces RNA to draw major new insights into the evolution of this group and the pathogen response to infection. We investigate the trajectory of genome evolution of this group, characterizing the phylogenetic relationships of these species, a remarkable genome expansion that formed large isochore-like regions of low GC content in Blastomyces, and variation of gene content, related to host interaction, among the dimorphic fungal pathogens. Using RNA-Seq, we profile the response of Blastomyces to macrophage and mouse pulmonary infection, identifying key pathways and novel virulence factors. The identification of key fungal genes involved in adaptation to the host suggests targets for further study and therapeutic intervention in Blastomyces and related dimorphic fungal pathogens.
Collapse
Affiliation(s)
- José F. Muñoz
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | | | - Juan E. Gallo
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Jason Holder
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Thomas D. Sullivan
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - John C. Carmen
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Li Ding
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret Priest
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sakina Saif
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Emily A. Whiston
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - William E. Goldman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine R. Mardis
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Bruce S. Klein
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Marty AJ, Broman AT, Zarnowski R, Dwyer TG, Bond LM, Lounes-Hadj Sahraoui A, Fontaine J, Ntambi JM, Keleş S, Kendziorski C, Gauthier GM. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis. PLoS Pathog 2015; 11:e1004959. [PMID: 26114571 PMCID: PMC4482641 DOI: 10.1371/journal.ppat.1004959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. Blastomyces dermatitidis belongs to a group of human pathogenic fungi that convert between two forms, mold and yeast, in response to temperature. Growth as yeast (37°C) in tissue facilitates immune evasion, whereas growth as mold (22°C) promotes environmental survival, sexual reproduction, and generation of transmissible spores. Despite the importance of dimorphism, how fungi regulate temperature adaptation is poorly understood. We identified SREB, a transcription factor that regulates disparate processes including dimorphism. SREB null mutants, which lack SREB, fail to fully complete the conversion to mold at 22°C. The goal of our research was to characterize how SREB regulates transcription during the switch to mold. Gene expression microarray along with chromatin binding and biochemical analyses indicated that SREB affected several processes including iron homeostasis, lipid biosynthesis, and lipid droplet formation. In vivo, SREB directly bound and regulated genes involved with iron uptake, lipid biosynthesis, and transcription. Functional analysis suggested that lipid metabolism may influence filamentous growth at 22°C. In addition, SREB interacted with another transcription factor, HAPX.
Collapse
Affiliation(s)
- Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Aimee T. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Teigan G. Dwyer
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Laura M. Bond
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Anissa Lounes-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - James M. Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Statistics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
23
|
Esher SK, Granek JA, Alspaugh JA. Rapid mapping of insertional mutations to probe cell wall regulation in Cryptococcus neoformans. Fungal Genet Biol 2015; 82:9-21. [PMID: 26112692 DOI: 10.1016/j.fgb.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
Random insertional mutagenesis screens are important tools in microbial genetics studies. Investigators in fungal systems have used the plant pathogen Agrobacterium tumefaciens to create tagged, random mutations for genetic screens in their fungal species of interest through a unique process of trans-kingdom cellular transconjugation. However, identifying the locations of insertion has traditionally required tedious PCR-based methods, limiting the effective throughput of this system. We have developed an efficient genomic sequencing and analysis method (AIM-Seq) to facilitate identification of randomly generated genomic insertions in microorganisms. AIM-Seq combines batch sampling, whole genome sequencing, and a novel bioinformatics pipeline, AIM-HII, to rapidly identify sites of genomic insertion. We have specifically applied this technique to Agrobacterium-mediated transconjugation in the human fungal pathogen Cryptococcus neoformans. With this approach, we have screened a library of C. neoformans cell wall mutants, selecting twenty-seven mutants of interest for analysis by AIM-Seq. We identified thirty-five putative genomic insertions in known and previously unknown regulators of cell wall processes in this pathogenic fungus. We confirmed the relevance of a subset of these by creating independent mutant strains and analyzing resulting cell wall phenotypes. Through our sequence-based analysis of these mutations, we observed "typical" insertions of the Agrobacterium transfer DNA as well as atypical insertion events, including large deletions and chromosomal rearrangements. Initially applied to C. neoformans, this mutant analysis tool can be applied to a wide range of experimental systems and methods of mutagenesis, facilitating future microbial genetic screens.
Collapse
Affiliation(s)
- Shannon K Esher
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua A Granek
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Bioinformatics and Biostatistics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for the Genomics of Microbial Systems, Duke University School of Medicine, Durham, NC 27710, USA.
| | - J Andrew Alspaugh
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Sil A, Andrianopoulos A. Thermally Dimorphic Human Fungal Pathogens--Polyphyletic Pathogens with a Convergent Pathogenicity Trait. Cold Spring Harb Perspect Med 2014; 5:a019794. [PMID: 25384771 PMCID: PMC4526722 DOI: 10.1101/cshperspect.a019794] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fungi are adept at changing their cell shape and developmental program in response to signals in their surroundings. Here we focus on a group of evolutionarily related fungal pathogens of humans known as the thermally dimorphic fungi. These organisms grow in a hyphal form in the environment but shift their morphology drastically within a mammalian host. Temperature is one of the main host signals that initiates their conversion to the "host" form and is sufficient in the laboratory to trigger establishment of this host-adapted developmental program. Here we discuss the major human pathogens in this group, which are Blastomyces dermatiditis, Coccidioides immitis/posadasii, Histoplasma capsulatum, Paracoccidioides brasiliensis/lutzii, Sporothrix schenckii, and Talaromyces marneffei (formerly known as Penicillium marneffei). The majority of these organisms are primary pathogens, with the ability to cause disease in healthy humans who encounter them in endemic areas.
Collapse
Affiliation(s)
- Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Alex Andrianopoulos
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
25
|
New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics. PLoS Negl Trop Dis 2014; 8:e3173. [PMID: 25275433 PMCID: PMC4183473 DOI: 10.1371/journal.pntd.0003173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/06/2014] [Indexed: 01/11/2023] Open
Abstract
Background The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1), Pb03 (PS2) and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis. Methodology/Principal Findings In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble) and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA) from a Gateway-adapted cassette (cALf) which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach. Conclusions/Significance We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research. Diverse eukaryotes, including various fungi, utilize RNA interference (RNAi) pathways to regulate genome-wide gene expression. Since the initial characterization of these pathways and the demonstration of its artificial induction in the filamentous ascomycete Neurospora crassa, RNAi has emerged as the most robust reverse-genetic technique to scrutinize the function of genes and has been increasingly adopted in high-throughput functional genomics in search of new insights into fungal pathobiology. Herein, we have developed appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes for the human-pathogen Paracoccidioides brasiliensis, which is phylogenetically related to Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum. Likewise these thermo-dimorphic fungi, P. brasiliensis infection in immunocompetent or immunocompromised individuals ensue in a life-threatening systemic mycosis known as Paracoccidioidomycosis.
Collapse
|
26
|
Newman SL, Smulian AG. Iron uptake and virulence in Histoplasma capsulatum. Curr Opin Microbiol 2013; 16:700-7. [DOI: 10.1016/j.mib.2013.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
27
|
Gilmore SA, Naseem S, Konopka JB, Sil A. N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. PLoS Genet 2013; 9:e1003799. [PMID: 24068964 PMCID: PMC3778022 DOI: 10.1371/journal.pgen.1003799] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/30/2013] [Indexed: 01/24/2023] Open
Abstract
The monosaccharide N-acetylglucosamine (GlcNAc) is a major component of microbial cell walls and is ubiquitous in the environment. GlcNAc stimulates developmental pathways in the fungal pathogen Candida albicans, which is a commensal organism that colonizes the mammalian gut and causes disease in the setting of host immunodeficiency. Here we investigate GlcNAc signaling in thermally dimorphic human fungal pathogens, a group of fungi that are highly evolutionarily diverged from C. albicans and cause disease even in healthy individuals. These soil organisms grow as polarized, multicellular hyphal filaments that transition into a unicellular, pathogenic yeast form when inhaled by a human host. Temperature is the primary environmental cue that promotes reversible cellular differentiation into either yeast or filaments; however, a shift to a lower temperature in vitro induces filamentous growth in an inefficient and asynchronous manner. We found GlcNAc to be a potent and specific inducer of the yeast-to-filament transition in two thermally dimorphic fungi, Histoplasma capsulatum and Blastomyces dermatitidis. In addition to increasing the rate of filamentous growth, micromolar concentrations of GlcNAc induced a robust morphological transition of H. capsulatum after temperature shift that was independent of GlcNAc catabolism, indicating that fungal cells sense GlcNAc to promote filamentation. Whole-genome expression profiling to identify candidate genes involved in establishing the filamentous growth program uncovered two genes encoding GlcNAc transporters, NGT1 and NGT2, that were necessary for H. capsulatum cells to robustly filament in response to GlcNAc. Unexpectedly, NGT1 and NGT2 were important for efficient H. capsulatum yeast-to-filament conversion in standard glucose medium, suggesting that Ngt1 and Ngt2 monitor endogenous levels of GlcNAc to control multicellular filamentous growth in response to temperature. Overall, our work indicates that GlcNAc functions as a highly conserved cue of morphogenesis in fungi, which further enhances the significance of this ubiquitous sugar in cellular signaling in eukaryotes.
Collapse
Affiliation(s)
- Sarah A. Gilmore
- Department of Microbiology and Immunology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Marty AJ, Gauthier GM. Blastomyces dermatitidis septins CDC3, CDC10, and CDC12 impact the morphology of yeast and hyphae, but are not required for the phase transition. Med Mycol 2013; 51:93-102. [PMID: 22783804 PMCID: PMC3607453 DOI: 10.3109/13693786.2012.699685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blastomyces dermatitidis, the etiologic agent of blastomycosis, belongs to a group of thermally dimorphic fungi that change between mold (22°C) and yeast (37°C) in response to temperature. The contribution of structural proteins such as septins to this phase transition in these fungi remains poorly understood. Septins are GTPases that serve as a scaffold for proteins involved with cytokinesis, cell polarity, and cell morphology. In this study, we use a GFP sentinel RNA interference system to investigate the impact of CDC3, CDC10, CDC12, and ASPE on the morphology and phase transition of B. dermatitidis. Targeting CDC3, CDC10, and CDC12 by RNA interference resulted in yeast with aberrant morphology at 37°C with defects in cytokinesis. Downshifting the temperature to 22°C promoted the conversion to the mold phase, but did not abrogate the morphologic defects. CDC3, CDC10, and CDC12 knockdown strains grew as mold with curved, thickened hyphae. Knocking down ASPE transcript did not alter morphology of yeast at 37°C or mold at 22°C. Following an increase in temperature from 22°C to 37°C, all septin knockdown strains were able to revert to yeast. In conclusion, CDC3, CDC10, and CDC12 septin- encoding genes are required for proper morphology of yeast and hyphae, but are dispensable for the phase transition.
Collapse
Affiliation(s)
- Amber J Marty
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
29
|
Kemski MM, Stevens B, Rappleye CA. Spectrum of T-DNA integrations for insertional mutagenesis of Histoplasma capsulatum. Fungal Biol 2012; 117:41-51. [PMID: 23332832 DOI: 10.1016/j.funbio.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.
Collapse
Affiliation(s)
- Megan M Kemski
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
30
|
The 3-hydroxy-methylglutaryl coenzyme A lyase HCL1 is required for macrophage colonization by human fungal pathogen Histoplasma capsulatum. Infect Immun 2012. [PMID: 23184522 DOI: 10.1128/iai.00833-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histoplasma capsulatum is a fungal respiratory pathogen that survives and replicates within the phagolysosome of macrophages. The molecular factors it utilizes to subvert macrophage antimicrobial defenses are largely unknown. Although the ability of H. capsulatum to prevent acidification of the macrophage phagolysosome is thought to be critical for intracellular survival, this hypothesis has not been tested since H. capsulatum mutants that experience decreased phagosomal pH have not been identified. In a screen to identify H. capsulatum genes required for lysis of bone marrow-derived macrophages (BMDMs), we identified an insertion mutation disrupting the H. capsulatum homolog of 3-hydroxy-methylglutaryl coenzyme A (HMG CoA) lyase (HCL1). In addition to its inability to lyse macrophages, the hcl1 mutant had a severe growth defect in BMDMs, indicating that HMG CoA lyase gene function is critical for macrophage colonization. In other organisms, HMG CoA lyase catalyzes the last step in the leucine catabolism pathway. In addition, both fungi and humans deficient in HMG CoA lyase accumulate acidic intermediates as a consequence of their inability to catabolize leucine. Consistent with observations in other organisms, the H. capsulatum hcl1 mutant was unable to grow on leucine as the major carbon source, caused acidification of its growth medium in vitro, and resided in an acidified vacuole within macrophages. Mice infected with the hcl1 mutant took significantly longer to succumb to infection than mice infected with the wild-type strain. Taken together, these data indicate the importance of Hcl1 function in H. capsulatum replication in the harsh growth environment of the macrophage phagosome.
Collapse
|
31
|
Abstract
Genome-wide mutagenesis is a powerful method for identifying new genes that contribute to a phenotype of interest. For many fungal pathogens of plants and animals, Agrobacterium tumefaciens-mediated transformation (ATMT) serves as an efficient insertional mutagen. In Histoplasma capsulatum, the T-DNA element transferred by Agrobacterium stably integrates into the genome, and the majority of mutants contain single copies of the inserted sequence. The T-DNA sequence facilitates the determination of the genomic sequence flanking the insertion through hemi-specific PCR techniques, plasmid rescue, or inverse PCR. We present optimized procedures for generating insertional mutants in H. capsulatum using Agrobacterium-mediated transformation and using this for forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Olga Zemska
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
32
|
Nanjappa SG, Heninger E, Wüthrich M, Sullivan T, Klein B. Protective antifungal memory CD8(+) T cells are maintained in the absence of CD4(+) T cell help and cognate antigen in mice. J Clin Invest 2012; 122:987-99. [PMID: 22354169 DOI: 10.1172/jci58762] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 01/04/2012] [Indexed: 12/11/2022] Open
Abstract
Individuals who are immunocompromised, including AIDS patients with few CD4(+) T cells, are at increased risk for opportunistic fungal infections. The incidence of such infections is increasing worldwide, meaning that the need for antifungal vaccines is increasing. Although CD4(+) T cells play a dominant role in resistance to many pathogenic fungal infections, we have previously shown that vaccination can induce protective antifungal CD8(+) T cell immunity in the absence of CD4(+) T cells. However, it has not been determined whether vaccine-induced antifungal CD8(+) T cell memory can be maintained in the absence of CD4(+) T cell help. Here, we have shown in a mouse model of vaccination against blastomycosis that antifungal memory CD8(+) T cells are maintained in the absence of CD4(+) T cells without loss of numbers or function for at least 6 months and that the cells protect against infection. Using a system that enabled us to induce and track antigen-specific, antifungal CD8(+) T cells, we found that such cells were maintained for at least 5 months upon transfer into naive mice lacking both CD4(+) T cells and persistent fungal antigen. Additionally, fungal vaccination induced a profile of transcription factors functionally linked with persistent memory in CD8(+) T cells. Thus, unlike bacteria and viruses, fungi elicit long-term CD8(+) T cell memory that is maintained without CD4(+) T cell help or persistent antigen. This has implications for the development of novel antifungal vaccine strategies effective in immunocompromised patients.
Collapse
Affiliation(s)
- Som G Nanjappa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
33
|
Kunitake E, Tani S, Sumitani JI, Kawaguchi T. Agrobacterium tumefaciens-mediated transformation of Aspergillus aculeatus for insertional mutagenesis. AMB Express 2011; 1:46. [PMID: 22166586 PMCID: PMC3292464 DOI: 10.1186/2191-0855-1-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/14/2011] [Indexed: 11/10/2022] Open
Abstract
Agrobacterium tumefaciens-mediated transformation (AMT) was applied to Aspergillus aculeatus. Transformants carrying the T-DNA from a binary vector pBIG2RHPH2 were sufficiently mitotically stable to allow functional genomic analyses. The AMT technique was optimized by altering the concentration of acetosyringone, the ratio and concentration of A. tumefaciens and A. aculeatus cells, the duration of co-cultivation, and the status of A. aculeatus cells when using conidia, protoplasts, or germlings. On average, 30 transformants per 104 conidia or 217 transformants per 107 conidia were obtained under the optimized conditions when A. tumefaciens co-cultured with fungi using solid or liquid induction media (IM). Although the transformation frequency in liquid IM was 100-fold lower than that on solid IM, the AMT method using liquid IM is better suited for high-throughput insertional mutagenesis because the transformants can be isolated on fewer selection media plates by concentrating the transformed germlings. The production of two albino A. aculeatus mutants by AMT confirmed that the inserted T-DNA disrupted the polyketide synthase gene AapksP, which is involved in pigment production. Considering the efficiency of AMT and the correlation between the phenotypes and genotypes of the transformants, the established AMT technique offers a highly efficient means for characterizing the gene function in A. aculeatus.
Collapse
|
34
|
Limited model antigen expression by transgenic fungi induces disparate fates during differentiation of adoptively transferred T cell receptor transgenic CD4+ T cells: robust activation and proliferation with weak effector function during recall. Infect Immun 2011; 80:787-97. [PMID: 22124658 DOI: 10.1128/iai.05326-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CD4(+) T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4(+) T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4(+) T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4(+) T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4(+) T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells.
Collapse
|
35
|
SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. EUKARYOTIC CELL 2011; 11:16-25. [PMID: 22117028 DOI: 10.1128/ec.05274-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of iron acquisition genes is critical for microbial survival under both iron-limiting conditions (to acquire essential iron) and iron-replete conditions (to limit iron toxicity). In fungi, iron acquisition genes are repressed under iron-replete conditions by a conserved GATA transcriptional regulator. Here we investigate the role of this transcription factor, Sre1, in the cellular responses of the fungal pathogen Histoplasma capsulatum to iron. We showed that cells in which SRE1 levels were diminished by RNA interference were unable to repress siderophore biosynthesis and utilization genes in the presence of abundant iron and thus produced siderophores even under iron-replete conditions. Mutation of a GATA-containing consensus site found in the promoters of these genes also resulted in inappropriate gene expression under iron-replete conditions. Microarray analysis comparing control and SRE1-depleted strains under conditions of iron limitation or abundance revealed both iron-responsive genes and Sre1-dependent genes, which comprised distinct but overlapping sets. Iron-responsive genes included those encoding putative oxidoreductases, metabolic and mitochondrial enzymes, superoxide dismutase, and nitrosative-stress-response genes; Sre1-dependent genes were of diverse functions. Genes regulated by iron levels and Sre1 included all of the siderophore biosynthesis genes, a gene involved in reductive iron acquisition, an iron-responsive transcription factor, and two catalases. Based on transcriptional profiling and phenotypic analyses, we conclude that Sre1 plays a critical role in the regulation of both traditional iron-responsive genes and iron-independent pathways such as regulation of cell morphology. These data highlight the evolving realization that the effect of Sre1 orthologs on fungal biology extends beyond the iron regulon.
Collapse
|
36
|
|
37
|
Discovery of a role for Hsp82 in Histoplasma virulence through a quantitative screen for macrophage lethality. Infect Immun 2011; 79:3348-57. [PMID: 21606189 DOI: 10.1128/iai.05124-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of forward genetics can reveal new factors required for the virulence of intracellular pathogens. To facilitate such virulence screens, we developed macrophage cell lines with which the number of intact host cells following infection with intracellular pathogens can be rapidly and easily ascertained through the expression of a constitutive lacZ transgene. Using known virulence mutants of Francisella novicida and Histoplasma capsulatum, we confirmed the applicability of these host cells for the quantitative assessment of bacterial and fungal virulence, respectively. To identify new genes required for Histoplasma virulence, we employed these transgenic macrophage cells to screen a collection of individual transfer DNA (T-DNA) insertion mutants. Among the mutants showing decreased virulence in macrophages, we identified an insertion in the locus encoding the Histoplasma Hsp82 homolog. The lesion caused by the T-DNA insertion localizes to the promoter region, resulting in significantly decreased HSP82 expression. Reduced HSP82 expression markedly attenuates the virulence of Histoplasma yeast in vivo. While the HSP82 hypomorph grows normally in vitro at 37°C and under acid and salinity stresses, its ability to recover from high-temperature stress is impaired. These results provide genetic proof of the role of stress chaperones in the virulence of a thermally dimorphic fungal pathogen.
Collapse
|
38
|
Krajaejun T, Wüthrich M, Gauthier GM, Warner TF, Sullivan TD, Klein BS. Discordant influence of Blastomyces dermatitidis yeast-phase-specific gene BYS1 on morphogenesis and virulence. Infect Immun 2010; 78:2522-8. [PMID: 20368350 PMCID: PMC2876565 DOI: 10.1128/iai.01328-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/01/2010] [Accepted: 03/23/2010] [Indexed: 11/20/2022] Open
Abstract
Blastomyces dermatitidis is a thermally induced dimorphic fungus capable of causing lung and systemic infections in immunocompetent animal hosts. With the publication of genomic sequences from three different strains of B. dermatitidis and the development of RNA interference as a gene-silencing tool, it has become possible to easily ascertain the virulence and morphological effects of knocking down the expression of candidate genes of interest. BYS1 (Blastomyces yeast-phase-specific 1), first identified by Burg and Smith, is expressed at high levels in yeast cells and is undetectable in mold. The deduced protein sequence of BYS1 has a putative signal sequence at its N terminus, opening the possibility that the BYS1-encoded protein is associated with the yeast cell wall. Herein, strains of B. dermatitidis with silenced expression of BYS1 were engineered and tested for morphology and virulence. The silenced strains produced rough-surfaced cultures on agar medium and demonstrated a propensity to form pseudohyphal cells on prolonged culture in vitro and in vivo, as measured in the mouse lung. Tests using a mouse model of blastomycosis with either yeast or spore inocula showed that the bys1-silenced strains were as virulent as control strains. Thus, although silencing of BYS1 alters morphology at 37 degrees C, it does not appear to impair the pathogenicity of B. dermatitidis.
Collapse
Affiliation(s)
- Theerapong Krajaejun
- Departments of Pediatrics, Medicine, Pathology and Laboratory Medicine, Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Marcel Wüthrich
- Departments of Pediatrics, Medicine, Pathology and Laboratory Medicine, Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Gregory M. Gauthier
- Departments of Pediatrics, Medicine, Pathology and Laboratory Medicine, Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Thomas F. Warner
- Departments of Pediatrics, Medicine, Pathology and Laboratory Medicine, Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Thomas D. Sullivan
- Departments of Pediatrics, Medicine, Pathology and Laboratory Medicine, Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Bruce S. Klein
- Departments of Pediatrics, Medicine, Pathology and Laboratory Medicine, Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
39
|
Gauthier GM, Sullivan TD, Gallardo SS, Brandhorst TT, Vanden Wymelenberg AJ, Cuomo CA, Suen G, Currie CR, Klein BS. SREB, a GATA transcription factor that directs disparate fates in Blastomyces dermatitidis including morphogenesis and siderophore biosynthesis. PLoS Pathog 2010; 6:e1000846. [PMID: 20368971 PMCID: PMC2848559 DOI: 10.1371/journal.ppat.1000846] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 03/04/2010] [Indexed: 11/19/2022] Open
Abstract
Blastomyces dermatitidis belongs to a group of human pathogenic fungi that exhibit thermal dimorphism. At 22 degrees C, these fungi grow as mold that produce conidia or infectious particles, whereas at 37 degrees C they convert to budding yeast. The ability to switch between these forms is essential for virulence in mammals and may enable these organisms to survive in the soil. To identify genes that regulate this phase transition, we used Agrobacterium tumefaciens to mutagenize B. dermatitidis conidia and screened transformants for defects in morphogenesis. We found that the GATA transcription factor SREB governs multiple fates in B. dermatitidis: phase transition from yeast to mold, cell growth at 22 degrees C, and biosynthesis of siderophores under iron-replete conditions. Insertional and null mutants fail to convert to mold, do not accumulate significant biomass at 22 degrees C, and are unable to suppress siderophore biosynthesis under iron-replete conditions. The defect in morphogenesis in the SREB mutant was independent of exogenous iron concentration, suggesting that SREB promotes the phase transition by altering the expression of genes that are unrelated to siderophore biosynthesis. Using bioinformatic and gene expression analyses, we identified candidate genes with upstream GATA sites whose expression is altered in the null mutant that may be direct or indirect targets of SREB and promote the phase transition. We conclude that SREB functions as a transcription factor that promotes morphogenesis and regulates siderophore biosynthesis. To our knowledge, this is the first gene identified that promotes the conversion from yeast to mold in the dimorphic fungi, and may shed light on environmental persistence of these pathogens.
Collapse
Affiliation(s)
- Gregory M Gauthier
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Insertional mutagenesis enables cleistothecial formation in a non-mating strain of Histoplasma capsulatum. BMC Microbiol 2010; 10:49. [PMID: 20158914 PMCID: PMC2834667 DOI: 10.1186/1471-2180-10-49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/16/2010] [Indexed: 12/30/2022] Open
Abstract
Background Histoplasma capsulatum is a pathogenic ascomycete fungus that rapidly loses mating ability in culture. Loss of mating ability, as well as the organism's low rate of targeted gene replacement, limits techniques available for genetic studies in H. capsulatum. Understanding molecular mechanisms regulating mating in this organism may allow us to reverse or prevent loss of mating in H. capsulatum strains, introducing a variety of classical genetics techniques to the field. We generated a strain, UC1, by insertional mutagenesis of the laboratory strain G217B, and found that UC1 acquired the ability to form mating structures called cleistothecia. The aim of this study was to determine the mechanism by which UC1 gained the ability to form cleistothecia. We also present initial studies demonstrating that UC1 can be used as a tool to determine molecular correlates of mating in H. capsulatum. Results The strain UC1 was found to have increased RNA levels of the mating locus transcription factor (MAT1-1-1), and the putative alpha pheromone (PPG1) compared to G217B. Agrobacterium-mediated transformation and integration of T-DNA from the vector pCB301-GFP-HYG were found to be partially responsible for the increased RNA levels of these genes; however, the site of integration appeared to play the largest role in the strain's ability to form cleistothecia. Silencing HMK1, a putative FUS3/KSS1 homolog, had no effect on cleistothecial production by UC1. Protein kinase C (PKC1) RNA and protein levels were increased in UC1 compared to G217B, and pheromone production was found to be linked with Pkc1 activity in H. capsulatum. Conclusions The site of the T-DNA integration event appears to play the largest role in UC1's ability to form cleistothecia. We show that the UC1 strain can be used as a tool to study cleistothecia production in H. capsulatum by manipulating the strain, or by identifying differences between UC1 and G217B. Using these approaches, we were able to link Pkc1 activity with pheromone production in H. capsulatum; however, further studies are required to determine molecular mechanisms behind this. These studies may reveal regulatory mechanisms that can be manipulated to restore mating ability in H. capsulatum laboratory strains.
Collapse
|
41
|
Youseff BH, Dougherty JA, Rappleye CA. Reverse genetics through random mutagenesis in Histoplasma capsulatum. BMC Microbiol 2009; 9:236. [PMID: 19919692 PMCID: PMC2781022 DOI: 10.1186/1471-2180-9-236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 11/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background The dimorphic fungal pathogen Histoplasma capsulatum causes respiratory and systemic disease in humans and other mammals. Progress in understanding the mechanisms underlying the biology and the pathogenesis of Histoplasma has been hindered by a shortage of methodologies for mutating a gene of interest. Results We describe a reverse genetics process that combines the random mutagenesis of Agrobacterium-mediated transformation with screening techniques to identify targeted gene disruptions in a collection of insertion mutants. Isolation of the desired mutant is accomplished by arraying individual clones from a pool and employing a PCR-addressing method. Application of this procedure facilitated the isolation of a cbp1 mutant in a North American type 2 strain, a Histoplasma strain recalcitrant to gene knock-outs through homologous recombination. Optimization of cryopreservation conditions allows pools of mutants to be banked for later analysis and recovery of targeted mutants. Conclusion This methodology improves our ability to isolate mutants in targeted genes, thereby facilitating the molecular genetic analysis of Histoplasma biology. The procedures described are widely applicable to many fungal systems and will be of particular interest to those for which homologous recombination techniques are inefficient or do not currently exist.
Collapse
Affiliation(s)
- Brian H Youseff
- Departments of Microbiology and Internal Medicine, The Center for Microbial Interface Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
42
|
Agrobacterium tumefaciens-mediated transformation of antifungal lipopeptide producing fungus Coleophoma empetri F-11899. Curr Genet 2009; 55:623-30. [DOI: 10.1007/s00294-009-0275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
|
43
|
Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci U S A 2008; 105:14573-8. [PMID: 18791067 DOI: 10.1073/pnas.0806221105] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human fungal pathogen Histoplasma capsulatum grows in a sporulating filamentous form in the soil and, after inhalation of infectious spores, converts to a pathogenic yeast form inside host macrophages in response to temperature. Here we report the identification of two genes (RYP2 and RYP3) required for yeast-phase growth. Ryp2 and Ryp3 are homologous to each other and to the Velvet A family of regulatory proteins in Aspergillus species and other filamentous fungi. Wild-type H. capsulatum grows as filaments at room temperature and as yeast cells at 37 degrees C, but ryp2 and ryp3 mutants constitutively grow as filaments independent of temperature. RYP2 and RYP3 transcripts accumulate to higher levels at 37 degrees C than at room temperature. This differential expression is similar to the previously identified RYP1 transcript, which encodes a transcriptional regulator required for the yeast-phase expression program. Ryp1 associates with the upstream region of RYP2, and each of the three RYP genes is required for the differential expression of the others at 37 degrees C. In addition to responding to the elevated temperature of the mammalian host, RYP2 and RYP3 are essential for viable spore production and regulation of sporulation at room temperature. This regulatory function is strikingly similar to the role of the Aspergillus Velvet A protein family in spore development in response to light, with the notable distinction that the H. capsulatum circuit responds to temperature.
Collapse
|
44
|
Hilty J, Smulian AG, Newman SL. The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol 2008; 70:127-39. [PMID: 18699866 DOI: 10.1111/j.1365-2958.2008.06395.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mphi). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mphi. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron-replete medium, but not on iron-deficient media. On iron-deficient medium, the growth of the vma1 mutant was restored in the presence of wild-type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mphi was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28 degrees C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mphi, grow on iron-poor medium and grow as a mold at 28 degrees C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis and in fungal dimorphism.
Collapse
Affiliation(s)
- Jeremy Hilty
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
45
|
Abstract
Histoplasma capsulatum is the most common cause of invasive fungal pulmonary disease worldwide. The interaction of H. capsulatum with a host is a complex, dynamic process. Severe disease most commonly occurs in individuals with compromised immunity, and the increasing utilization of immunomodulators in medicine has revealed significant risks for reactivation disease in patients with latent histoplasmosis. Fortunately, there are well developed molecular tools and excellent animal models for studying H. capsulatum virulence and numerous recent advances have been made regarding the pathogenesis of this fungus that will improve our capacity to combat disease.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
46
|
Holbrook ED, Rappleye CA. Histoplasma capsulatum pathogenesis: making a lifestyle switch. Curr Opin Microbiol 2008; 11:318-24. [PMID: 18573684 DOI: 10.1016/j.mib.2008.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 05/09/2008] [Indexed: 01/14/2023]
Abstract
The dimorphism of Histoplasma reflects a developmental switch in morphology and lifestyle that is necessary for virulence. The dimorphism regulating kinase DRK1 and the Histoplasma WOR1 homolog RYP1 mediate the thermally induced transition to the pathogenic yeast-phase program. The genes expressed as part of this regulon influence the host-pathogen interaction to favor Histoplasma virulence. While surface localized HSP60 supports yeast attachment to host macrophages, yeast alpha-glucan polysaccharides conceal immunostimulatory cell wall beta-glucans from detection by macrophage receptors. Intramacrophage growth of yeast cells is facilitated by CBP a secreted, protease-resistant calcium-binding protein tailored to function within the phagolysosomal environment. In some Histoplasma strains, YPS3 promotes dissemination of yeast from pulmonary infection sites. The Histoplasma yeast-phase program includes additional cell surface and extracellular molecules that potentially function in further aspects of Histoplasma virulence.
Collapse
Affiliation(s)
- Eric D Holbrook
- Department of Microbiology, Ohio State University, Columbus, OH 43210, United States
| | | |
Collapse
|
47
|
Hwang LH, Mayfield JA, Rine J, Sil A. Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog 2008; 4:e1000044. [PMID: 18404210 PMCID: PMC2275787 DOI: 10.1371/journal.ppat.1000044] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/13/2008] [Indexed: 11/26/2022] Open
Abstract
The macrophage is the primary host cell for the fungal pathogen Histoplasma capsulatum during mammalian infections, yet little is known about fungal genes required for intracellular replication in the host. Since the ability to scavenge iron from the host is important for the virulence of most pathogens, we investigated the role of iron acquisition in H. capsulatum pathogenesis. H. capsulatum acquires iron through the action of ferric reductases and the production of siderophores, but the genes responsible for these activities and their role in virulence have not been determined. We identified a discrete set of co-regulated genes whose transcription is induced under low iron conditions. These genes all appeared to be involved in the synthesis, secretion, and utilization of siderophores. Surprisingly, the majority of these transcriptionally co-regulated genes were found clustered adjacent to each other in the genome of the three sequenced strains of H. capsulatum, suggesting that their proximity might foster coordinate gene regulation. Additionally, we identified a consensus sequence in the promoters of all of these genes that may contribute to iron-regulated gene expression. The gene set included L-ornithine monooxygenase (SID1), the enzyme that catalyzes the first committed step in siderophore production in other fungi. Disruption of SID1 by allelic replacement resulted in poor growth under low iron conditions, as well as a loss of siderophore production. Strains deficient in SID1 showed a significant growth defect in murine bone-marrow-derived macrophages and attenuation in the mouse model of infection. These data indicated that H. capsulatum utilizes siderophores in addition to other iron acquisition mechanisms for optimal growth during infection. Fungal infections are a growing public health threat, particularly for immunocompromised individuals such as people with AIDS, organ transplant recipients, and cancer patients. Present antifungal therapies are often highly toxic and resistance to these therapies continues to rise. Histoplasma capsulatum is a pathogenic fungus that infects humans, causing pulmonary and systemic disease. It is the most common cause of fungal respiratory infection in the world, and is endemic to the Mississippi and Ohio River valleys of the United States. H. capsulatum produces small molecules, called siderophores, to acquire iron, an essential nutrient. We have identified genes that are involved in the synthesis of siderophores in this fungus and have found that siderophore production in H. capsulatum is important for its virulence. Since siderophore production is confined to microbes and plays no role in human biology, it is an excellent target for rational drug design.
Collapse
Affiliation(s)
- Lena H. Hwang
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Jacob A. Mayfield
- Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci U S A 2008; 105:4880-5. [PMID: 18339808 DOI: 10.1073/pnas.0710448105] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histoplasma capsulatum, a fungal pathogen of humans, switches from a filamentous spore-forming mold in the soil to a pathogenic budding-yeast form in the human host. This morphologic switch, which is exhibited by H. capsulatum and a group of evolutionarily related fungal pathogens, is regulated by temperature. Using insertional mutagenesis, we identified a gene, RYP1 (required for yeast phase growth), which is required for yeast-form growth at 37 degrees C. ryp1 mutants are constitutively filamentous irrespective of temperature. Ryp1 is a member of a family of fungal proteins that includes Wor1, a master transcriptional regulator of the white-opaque transition required for mating in Candida albicans. Ryp1 associates with its own upstream regulatory region, consistent with a direct role in transcriptional control, and both the protein and its transcript accumulate to high levels in wild-type yeast-phase cells. Microarray analysis demonstrated that Ryp1 is required for the expression of the vast majority of yeast-specific genes, including two genes linked to virulence. Thus, Ryp1 appears to be a critical transcriptional regulator of a temperature-regulated morphologic switch in H. capsulatum.
Collapse
|
49
|
Zhang P, Xu B, Wang Y, Li Y, Qian Z, Tang S, Huan S, Ren S. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungus Penicillium marneffei. ACTA ACUST UNITED AC 2008; 112:943-9. [PMID: 18555677 DOI: 10.1016/j.mycres.2008.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 12/19/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen of humans, causing respiratory, skin, and systemic mycosis in south-east Asia. Here we describe the transformation of P. marneffei with Agrobacterium tumefaciens, and the optimization of the transformation procedure. Transformations in different combinations between A. tumefaciens stains (LBA4404 and EHA105) and binary vectors (pCB309A, pBI129A, and pCaMBIA1312A) showed that EHA105/pBI129A were the most efficient partners. Southern blot analysis suggested that 87.5% of transformants obtained with this protocol displayed single hybridization bands, indicating a single insert of T-DNA in each of the transformants. Unique hybridization patterns, along with thermal asymmetric interlaced PCR (TAIL-PCR) analysis of T-DNA insertion sites, suggested that A. tumefaciens-mediated transformation may be a powerful tool for insertional mutagenesis in P. marneffei. Several mutants with altered phenotypes were obtained during the construction of the mutant library, indicating the usefulness of the approach for functional genetic analysis in this important fungal pathogen.
Collapse
Affiliation(s)
- Piyan Zhang
- Radiation Oncology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Krajaejun T, Gauthier GM, Rappleye CA, Sullivan TD, Klein BS. Development and application of a green fluorescent protein sentinel system for identification of RNA interference in Blastomyces dermatitidis illuminates the role of septin in morphogenesis and sporulation. EUKARYOTIC CELL 2007; 6:1299-309. [PMID: 17496124 PMCID: PMC1951135 DOI: 10.1128/ec.00401-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 05/01/2007] [Indexed: 11/20/2022]
Abstract
A high-throughput strategy for testing gene function would accelerate progress in our understanding of disease pathogenesis for the dimorphic fungus Blastomyces dermatitidis, whose genome is being completed. We developed a green fluorescent protein (GFP) sentinel system of gene silencing to rapidly study genes of unknown function. Using Gateway technology to efficiently generate RNA interference plasmids, we cloned a target gene, "X," next to GFP to create one hairpin to knock down the expression of both genes so that diminished GFP reports target gene expression. To test this approach in B. dermatitidis, we first used LACZ and the virulence gene BAD1 as targets. The level of GFP reliably reported interference of their expression, leading to rapid detection of gene-silenced transformants. We next investigated a previously unstudied gene encoding septin and explored its possible role in morphogenesis and sporulation. A CDC11 septin homolog in B. dermatitidis localized to the neck of budding yeast cells. CDC11-silenced transformants identified with the sentinel system grew slowly as flat or rough colonies on agar. Microscopically, they formed ballooned, distorted yeast cells that failed to bud, and they sporulated poorly as mold. Hence, this GFP sentinel system enables rapid detection of gene silencing and has revealed a pronounced role for septin in morphogenesis, budding, and sporulation of B. dermatitidis.
Collapse
Affiliation(s)
- T Krajaejun
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Univaersity of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | | | | | | | | |
Collapse
|