1
|
Hufft-Martinez BM, Wang HH, Saadi I, Tran PV. Actin cytoskeletal regulation of ciliogenesis in development and disease. Dev Dyn 2024; 253:1076-1093. [PMID: 38958410 PMCID: PMC11611694 DOI: 10.1002/dvdy.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.
Collapse
Affiliation(s)
| | - Henry H Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
2
|
Morita R, Shigeta Y, Harada R. Latrunculin resistance mechanism of non-conventional actin NAP1 uncovered by molecular dynamics simulations. Cytoskeleton (Hoboken) 2024; 81:143-150. [PMID: 37815120 DOI: 10.1002/cm.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Monomeric G-actin polymerizes into F-actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin-A (Lat-A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non-conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat-A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat-A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat-A due to substitutions. In conclusion, our binding-free-energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.
Collapse
Affiliation(s)
- Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Bigge BM, Rosenthal NE, Avasthi P. Initial ciliary assembly in Chlamydomonas requires Arp2/3 complex-dependent endocytosis. Mol Biol Cell 2023; 34:ar24. [PMID: 36753382 PMCID: PMC10092647 DOI: 10.1091/mbc.e22-09-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Ciliary assembly, trafficking, and regulation are dependent on microtubules, but the mechanisms of ciliary assembly also require the actin cytoskeleton. Here, we dissect subcellular roles of actin in ciliogenesis by focusing on actin networks nucleated by the Arp2/3 complex in the powerful ciliary model, Chlamydomonas. We find that the Arp2/3 complex is required for the initial stages of ciliary assembly when protein and membrane are in high demand but cannot yet be supplied from the Golgi complex. We provide evidence for Arp2/3 complex-dependent endocytosis of ciliary proteins, an increase in endocytic activity upon induction of ciliary growth, and relocalization of plasma membrane proteins to newly formed cilia.
Collapse
Affiliation(s)
- Brae M Bigge
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| | - Nicholas E Rosenthal
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755; Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS 66103
| |
Collapse
|
4
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Nawkarkar P, Chugh S, Sharma S, Jain M, Kajla S, Kumar S. Characterization of the Chloroplast Genome Facilitated the Transformation of Parachlorella kessleri-I, A Potential Marine Alga for Biofuel Production. Curr Genomics 2021; 21:610-623. [PMID: 33414682 PMCID: PMC7770631 DOI: 10.2174/1389202921999201102164754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector. Methods In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR. Results The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR. Conclusion The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.
Collapse
Affiliation(s)
- Prachi Nawkarkar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sagrika Chugh
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Surbhi Sharma
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Mukesh Jain
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Sachin Kajla
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| | - Shashi Kumar
- 1 International Centre for Genetic Engineering and Biotechnology, New Delhi110067, India; 2School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi110067, India; 3Tata Steel Limited, Research &
Development, P O Burmamines, Jamshedpur831007, India
| |
Collapse
|
6
|
Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biol 2020; 10:200157. [PMID: 32873155 PMCID: PMC7536088 DOI: 10.1098/rsob.200157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.
Collapse
Affiliation(s)
- Micaela Boiero Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Adrien Antkowiak
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
7
|
Abstract
It is widely believed that cleavage-furrow formation during cytokinesis is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green alga Chlamydomonas reinhardtii We found that although F-actin is associated with the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cytokinesis itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that microtubules are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.
Collapse
|
8
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
9
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
10
|
Christensen JR, Craig EW, Glista MJ, Mueller DM, Li Y, Sees JA, Huang S, Suarez C, Mets LJ, Kovar DR, Avasthi P. Chlamydomonas reinhardtii formin FOR1 and profilin PRF1 are optimized for acute rapid actin filament assembly. Mol Biol Cell 2019; 30:3123-3135. [PMID: 31664873 PMCID: PMC6938247 DOI: 10.1091/mbc.e19-08-0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
The regulated assembly of multiple filamentous actin (F-actin) networks from an actin monomer pool is important for a variety of cellular processes. Chlamydomonas reinhardtii is a unicellular green alga expressing a conventional and divergent actin that is an emerging system for investigating the complex regulation of actin polymerization. One actin network that contains exclusively conventional F-actin in Chlamydomonas is the fertilization tubule, a mating structure at the apical cell surface in gametes. In addition to two actin genes, Chlamydomonas expresses a profilin (PRF1) and four formin genes (FOR1-4), one of which (FOR1) we have characterized for the first time. We found that unlike typical profilins, PRF1 prevents unwanted actin assembly by strongly inhibiting both F-actin nucleation and barbed-end elongation at equimolar concentrations to actin. However, FOR1 stimulates the assembly of rapidly elongating actin filaments from PRF1-bound actin. Furthermore, for1 and prf1-1 mutants, as well as the small molecule formin inhibitor SMIFH2, prevent fertilization tubule formation in gametes, suggesting that polymerization of F-actin for fertilization tubule formation is a primary function of FOR1. Together, these findings indicate that FOR1 and PRF1 cooperate to selectively and rapidly assemble F-actin at the right time and place.
Collapse
Affiliation(s)
- Jenna R. Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Evan W. Craig
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
| | - Michael J. Glista
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - David M. Mueller
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
| | - Yujie Li
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Jennifer A. Sees
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Shengping Huang
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66103
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Laurens J. Mets
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66103
| |
Collapse
|
11
|
Craig EW, Mueller DM, Bigge BM, Schaffer M, Engel BD, Avasthi P. The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins. Mol Biol Cell 2019; 30:2827-2837. [PMID: 31532705 PMCID: PMC6789165 DOI: 10.1091/mbc.e19-03-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
The green alga Chlamydomonas reinhardtii is a leading model system to study photosynthesis, cilia, and the generation of biological products. The cytoskeleton plays important roles in all of these cellular processes, but to date, the filamentous actin network within Chlamydomonas has remained elusive. By optimizing labeling conditions, we can now visualize distinct linear actin filaments at the posterior of the nucleus in both live and fixed vegetative cells. Using in situ cryo-electron tomography, we confirmed this localization by directly imaging actin filaments within the native cellular environment. The fluorescently labeled structures are sensitive to the depolymerizing agent latrunculin B (Lat B), demonstrating the specificity of our optimized labeling method. Interestingly, Lat B treatment resulted in the formation of a transient ring-like filamentous actin structure around the nucleus. The assembly of this perinuclear ring is dependent upon a second actin isoform, NAP1, which is strongly up-regulated upon Lat B treatment and is insensitive to Lat B-induced depolymerization. Our study combines orthogonal strategies to provide the first detailed visual characterization of filamentous actins in Chlamydomonas, allowing insights into the coordinated functions of two actin isoforms expressed within the same cell.
Collapse
Affiliation(s)
- Evan W. Craig
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - David M. Mueller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Brae M. Bigge
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin D. Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
12
|
Jack B, Mueller DM, Fee AC, Tetlow AL, Avasthi P. Partially Redundant Actin Genes in Chlamydomonas Control Transition Zone Organization and Flagellum-Directed Traffic. Cell Rep 2019; 27:2459-2467.e3. [PMID: 31116988 PMCID: PMC6541019 DOI: 10.1016/j.celrep.2019.04.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a biflagellated cell with two actin genes: one encoding a conventional actin (IDA5) and the other encoding a divergent novel actin-like protein (NAP1). Here, we probe how actin redundancy contributes to flagellar assembly. Disrupting a single actin allows complete flagellar assembly. However, when disrupting both actins using latrunculin B (LatB) treatment on the nap1 mutant background, we find that actins are necessary for flagellar growth from newly synthesized limiting flagellar proteins. Under total actin disruption, transmission electron microscopy identified an accumulation of Golgi-adjacent vesicles. We also find that there is a mislocalization of a key transition zone gating and ciliopathy protein, NPHP-4. Our experiments demonstrate that each stage of flagellar biogenesis requires redundant actin function to varying degrees, with an absolute requirement for these actins in transport of Golgi-adjacent vesicles and flagellar incorporation of newly synthesized proteins.
Collapse
Affiliation(s)
- Brittany Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David M Mueller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ann C Fee
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64110, USA
| | - Ashley L Tetlow
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
13
|
Zhao L, Hou Y, Picariello T, Craige B, Witman GB. Proteome of the central apparatus of a ciliary axoneme. J Cell Biol 2019; 218:2051-2070. [PMID: 31092556 PMCID: PMC6548120 DOI: 10.1083/jcb.201902017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
The central apparatus is an essential component of “9+2” cilia. Zhao et al. identify more than 40 new potential components of the central apparatus of Chlamydomonas. Many are conserved and will facilitate genetic screening of patients with a form of primary ciliary dyskinesia that is difficult to diagnose. Nearly all motile cilia have a “9+2” axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Branch Craige
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
14
|
F-actin homeostasis through transcriptional regulation and proteasome-mediated proteolysis. Proc Natl Acad Sci U S A 2018; 115:E6487-E6496. [PMID: 29941587 DOI: 10.1073/pnas.1721935115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many organisms possess multiple and often divergent actins whose regulation and roles are not understood in detail. For example, Chlamydomonas reinhardtii has both a conventional actin (IDA5) and a highly divergent one (NAP1); only IDA5 is expressed in normal proliferating cells. We showed previously that the drug latrunculin B (LatB) causes loss of filamentous (F-) IDA5 and strong up-regulation of NAP1, which then provides essential actin function(s) by forming LatB-resistant F-NAP1. RNA-sequencing analyses now show that this up-regulation of NAP1 reflects a broad transcriptional response, much of which depends on three proteins (LAT1, LAT2, and LAT3) identified previously as essential for NAP1 transcription. Many of the LAT-regulated genes contain a putative cis-acting regulatory site, the "LRE motif." The LatB transcriptional program appears to be activated by loss of F-IDA5 and deactivated by formation of F-NAP1, thus forming an F-actin-dependent negative-feedback loop. Multiple genes encoding proteins of the ubiquitin-proteasome system are among those induced by LatB, resulting in rapid degradation of IDA5 (but not NAP1). Our results suggest that IDA5 degradation is functionally important because nonpolymerizable LatB-bound IDA5 interferes with the formation of F-NAP1. The genes for the actin-interacting proteins cofilin and profilin are also induced. Cofilin induction may further the clearance of IDA5 by promoting the scission of F-IDA5, whereas profilin appears to function in protecting monomeric IDA5 from degradation. This multifaceted regulatory system allows rapid and quantitative turnover of F-actin in response to cytoskeletal perturbations and probably also maintains F-actin homeostasis under normal growth conditions.
Collapse
|
15
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Kissmehl R, Sehring IM, Wagner E, Plattner H. Immunolocalization of Actin in Paramecium Cells. J Histochem Cytochem 2016; 52:1543-59. [PMID: 15557210 DOI: 10.1369/jhc.4a6379.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have selected a conserved immunogenic region from several actin genes of Paramecium, recently cloned in our laboratory, to prepare antibodies for Western blots and immunolocalization. According to cell fractionation analysis, most actin is structure-bound. Immunofluorescence shows signal enriched in the cell cortex, notably around ciliary basal bodies (identified by anti-centrin antibodies), as well as around the oral cavity, at the cytoproct and in association with vacuoles (phagosomes) up to several μm in size. Subtle strands run throughout the cell body. Postembedding immunogold labeling/EM analysis shows that actin in the cell cortex emanates, together with the infraciliary lattice, from basal bodies to around trichocyst tips. Label was also enriched around vacuoles and vesicles of different size including “discoidal” vesicles that serve the formation of new phagosomes. By all methods used, we show actin in cilia. Although none of the structurally well-defined filament systems in Paramecium are exclusively formed by actin, actin does display some ordered, though not very conspicuous, arrays throughout the cell. F-actin may somehow serve vesicle trafficking and as a cytoplasmic scaffold. This is particularly supported by the postembedding/EM labeling analysis we used, which would hardly allow for any large-scale redistribution during preparation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
17
|
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci 2016; 73:1787-802. [PMID: 26869233 PMCID: PMC11108551 DOI: 10.1007/s00018-016-2148-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Evidence That an Unconventional Actin Can Provide Essential F-Actin Function and That a Surveillance System Monitors F-Actin Integrity in Chlamydomonas. Genetics 2015; 202:977-96. [PMID: 26715672 DOI: 10.1534/genetics.115.184663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses.
Collapse
|
19
|
Avasthi P, Onishi M, Karpiak J, Yamamoto R, Mackinder L, Jonikas MC, Sale WS, Shoichet B, Pringle JR, Marshall WF. Actin is required for IFT regulation in Chlamydomonas reinhardtii. Curr Biol 2014; 24:2025-32. [PMID: 25155506 DOI: 10.1016/j.cub.2014.07.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/10/2014] [Accepted: 07/15/2014] [Indexed: 11/26/2022]
Abstract
Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.
Collapse
Affiliation(s)
- Prachee Avasthi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joel Karpiak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryosuke Yamamoto
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Luke Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Brian Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Min SK, Yoon GH, Joo JH, Sim SJ, Shin HS. Mechanosensitive physiology of Chlamydomonas reinhardtii under direct membrane distortion. Sci Rep 2014; 4:4675. [PMID: 24728350 PMCID: PMC3985077 DOI: 10.1038/srep04675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid metabolism. C. reinhardtii showed a prolonged G1 phase with an extended total cell cycle time, and upregulated Mat3 regulated a cell size and cell cycle. Additionally, increased TAG compensated for the loss of cell mass. Overall, this study suggest that cell biology that requires direct membrane distortion can be realized using this system, and the implication of cell cycle with Mat3 expression of C. reinhardtii was first demonstrated. Finally, membrane distortion can be an attractive inducer for biodiesel production since it is reliable and robust.
Collapse
Affiliation(s)
- Seul Ki Min
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Gwang Heum Yoon
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Jung Hyun Joo
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, Korea
| | - Hwa Sung Shin
- Department of Biological Engineering, Inha University, Incheon, 402-751, Korea
| |
Collapse
|
21
|
Kuribara S, Kato M, Kato-Minoura T, Numata O. Identification of a novel actin-related protein in Tetrahymena cilia. ACTA ACUST UNITED AC 2006; 63:437-46. [PMID: 16732560 DOI: 10.1002/cm.20136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Actin is an ancient cytoskeletal protein that plays many essential roles in cell motility. In eukaryotes, its gene belongs to a highly conserved gene family, while the protein is also a member of an actin superfamily comprising various kinds of actin-related proteins (Arps). A ciliate, Tetrahymena, has a unique conventional actin. Data from the TIGR Tetrahymena genome project and our own research suggest the existence of 12 actin-like sequences: four conventional actins, two of Arp4, one each of Arp1, Arp2, Arp3, Arp5, and Arp6, and a novel actin-related protein, tArp. We cloned the entire cDNA sequences of Tetrahymena Arp2 (tArp2), Tetrahymena Arp3 (tArp3), and tArp for the work described herein. In phylogenetic analyses, tArp was not included in any Arp subfamily. Unlike other known Arps, tArp localizes in cilia, and its expression was upregulated after deciliation. To see the precise localization of tArp, cilia were fractionated and analyzed using specific antibodies. tArp was observed preferentially in the "outer-doublet" fraction, while actin was found in the "crude-dynein" fraction. In immunoelectron microscopy, most of the gold particles were found either on the outer-doublet or central-pair microtubules. These results suggest that tArp is a ciliary component and that it has a unique function in the formation and maintenance of cilia.
Collapse
Affiliation(s)
- Sayaka Kuribara
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | |
Collapse
|
22
|
Kato-Minoura T. Impaired flagellar regeneration due to uncoordinated expression of two divergent actin genes in Chlamydomonas. Zoolog Sci 2005; 22:571-7. [PMID: 15930830 DOI: 10.2108/zsj.22.571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlamydomonas has two actin genes: one encoding a conventional actin (90% amino acid identity with mammalian actin) and the other a highly divergent actin (NAP; 64% identity). The expression of the two genes is regulated in a mutually exclusive manner. Thus, ida5, a mutant that lacks the conventional actin (CrA) gene, expresses NAP abundantly, whereas wild-type cells express NAP only negligibly under normal conditions. To explore the physiological significance of the two actins, chimeric genes with the 5' upstream region of one gene replaced by that of the other were constructed and used to transform ida5. The transformant (TF5) with a chimeric clone comprising the 5'-untranslated region from the NAP gene and the CrA-encoding sequence recovered the dyneins missing in ida5 and showed almost normal motility. After deflagellation of this transformant, however, only about 30% of cells grew flagella, unlike wild-type cells, >80% of which displayed reflagellation. Transformant TF10, which contains the CrA upstream region and NAP coding region, underwent reflagellation normally, as did the parent strain, ida5. In TF5, the mRNA level of both CrA and NAP was increased greatly during reflagellation. In light of the recent finding that NAP mRNA is expressed transiently upon reflagellation in wild-type cells, the described results suggest that 1) the expression of NAP mRNA is indispensable for flagellation and 2) robust expression of CrA may inhibit proper flagellation by interfering with the function of NAP in the early stages of reflagellation.
Collapse
|
23
|
Kato-Minoura T, Okumura M, Hirono M, Kamiya R. A novel family of unconventional actins in volvocalean algae. J Mol Evol 2004; 57:555-61. [PMID: 14738314 DOI: 10.1007/s00239-003-2509-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2002] [Accepted: 06/03/2003] [Indexed: 10/26/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has two actin genes, one encoding a conventional actin (90% amino acid identity with mammalian actin), the other a highly divergent actin (64% identity) named novel actin-like protein (NAP). To see whether the presence of conventional and unconventional actins in a single organism is unique to C. reinhardtii, we searched for genomic sequences related to the NAP sequence in several other species of volvocalean algae. Here we show that Chlamydomonas moewusii and Volvox carteri also have, in addition to a conventional actin, an unconventional actin similar to the C. reinhardtii NAP. Analyses of the deduced protein sequences indicated that the NAP homologues form a distinct group derived from conventional actin.
Collapse
Affiliation(s)
- Takako Kato-Minoura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|