1
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
2
|
Antolović V, Lenn T, Miermont A, Chubb JR. Transition state dynamics during a stochastic fate choice. Development 2019; 146:dev173740. [PMID: 30890571 PMCID: PMC6602359 DOI: 10.1242/dev.173740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
The generation of multiple fates from a uniform cell population via self-organisation is a recurring feature in development and regeneration. However, for most self-organising systems, we have little understanding of the processes that allow cells to become different. One of the clearest examples of developmental self-organisation is shown by Dictyostelium, with cells segregating into two major fates, stalk and spore, within multicellular aggregates. To characterise the gene expression decisions that underlie this cell fate bifurcation, we carried out single cell transcriptomics on Dictyostelium aggregates. Our data show the transition of progenitors into prespore and prestalk cells occurs via distinct developmental intermediates. Few cells were captured switching between states, with minimal overlap in fate marker expression between cell types, suggesting states are discrete and transitions rapid. Surprisingly, fate-specific transcript dynamics were a small proportion of overall gene expression changes, with transcript divergence coinciding precisely with large-scale remodelling of the transcriptome shared by prestalk and prespore cells. These observations suggest the stepwise separation of cell identity is temporally coupled to global expression transitions common to both fates.
Collapse
Affiliation(s)
- Vlatka Antolović
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Tchern Lenn
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Agnes Miermont
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan R Chubb
- Laboratory for Molecular Cell Biology and Division of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Loomis WF. Genetic control of morphogenesis in Dictyostelium. Dev Biol 2015; 402:146-61. [PMID: 25872182 PMCID: PMC4464777 DOI: 10.1016/j.ydbio.2015.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Cells grow, move, expand, shrink and die in the process of generating the characteristic shapes of organisms. Although the structures generated during development of the social amoeba Dictyostelium discoideum look nothing like the structures seen in metazoan embryogenesis, some of the morphogenetic processes used in their making are surprisingly similar. Recent advances in understanding the molecular basis for directed cell migration, cell type specific sorting, differential adhesion, secretion of matrix components, pattern formation, regulation and terminal differentiation are reviewed. Genes involved in Dictyostelium aggregation, slug formation, and culmination of fruiting bodies are discussed.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
4
|
Kawata T, Nakamura Y, Saga Y, Iwade Y, Ishikawa M, Sakurai A, Shimada N. Implications of expansin-like 3 gene in Dictyostelium morphogenesis. SPRINGERPLUS 2015; 4:190. [PMID: 25932374 PMCID: PMC4408306 DOI: 10.1186/s40064-015-0964-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/02/2015] [Indexed: 01/25/2023]
Abstract
Dictyostelium harbors multiple expansin-like genes with generally unknown functions. Thus, we analyzed the expansin-like 3 (expL3) gene and found that its expression was reduced in a null mutant for a STATa gene encoding a transcription factor. The expression of expL3 was developmentally regulated and its transcript was spliced only in the multicellular stages. The expL3 promoter was activated in the anterior prestalk region of the parental strain and downregulated in the STATa null slug, although the expL3 promoter was still expressed in the prestalk region. The expL3 overexpressing strain exhibited delayed development and occasionally formed an aberrant structure, i.e., a fruiting body-like structure with a short stalk. The ExpL3-myc protein bound cellulose.
Collapse
Affiliation(s)
- Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Yuri Nakamura
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Yukika Saga
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Yumi Iwade
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Megumi Ishikawa
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Aya Sakurai
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Nao Shimada
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan ; Present Address: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 Japan
| |
Collapse
|
5
|
Pineda M, Weijer CJ, Eftimie R. Modelling cell movement, cell differentiation, cell sorting and proportion regulation in Dictyostelium discoideum aggregations. J Theor Biol 2015; 370:135-50. [PMID: 25665718 DOI: 10.1016/j.jtbi.2015.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/27/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
Understanding the mechanisms that control tissue morphogenesis and homeostasis is a central goal not only in developmental biology but also has great relevance for our understanding of various diseases, including cancer. A model organism that is widely used to study the control of tissue morphogenesis and proportioning is the Dictyostelium discoideum. While there are mathematical models describing the role of chemotactic cell motility in the Dictyostelium assembly and morphogenesis of multicellular tissues, as well as models addressing possible mechanisms of proportion regulation, there are no models incorporating both these key aspects of development. In this paper, we introduce a 1D hyperbolic model to investigate the role of two morphogens, DIF and cAMP, on cell movement, cell sorting, cell-type differentiation and proportioning in Dictyostelium discoideum. First, we use the non-spatial version of the model to study cell-type transdifferentiation. We perform a steady-state analysis of it and show that, depending on the shape of the differentiation rate functions, multiple steady-state solutions may occur. Then we incorporate spatial dynamics into the model, and investigate the transdifferentiation and spatial positioning of cells inside the newly formed structures, following the removal of prestalk or prespore regions of a Dictyostelium slug. We show that in isolated prespore fragments, a tipped mound-like aggregate can be formed after a transdifferentiation from prespore to prestalk cells and following the sorting of prestalk cells to the centre of the aggregate. For isolated prestalk fragments, we show the formation of a slug-like structure containing the usual anterior-posterior pattern of prestalk and prespore cells.
Collapse
Affiliation(s)
- M Pineda
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - C J Weijer
- School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - R Eftimie
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom.
| |
Collapse
|
6
|
Evolutionary reconstruction of pattern formation in 98 Dictyostelium species reveals that cell-type specialization by lateral inhibition is a derived trait. EvoDevo 2014; 5:34. [PMID: 25904998 PMCID: PMC4406040 DOI: 10.1186/2041-9139-5-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head. Phylogenetic inference subdivides Dictyostelia into four major groups, with the model organism D. discoideum residing in group 4. In D. discoideum differentiation of its five cell types is dominated by lateral inhibition-type mechanisms that trigger scattered cell differentiation, with tissue patterns being formed by cell sorting. Results To reconstruct the evolution of pattern formation in Dictyostelia, we used cell-type specific antibodies and promoter-reporter fusion constructs to investigate pattern formation in 98 species that represent all groupings. Our results indicate that in all early diverging Dictyostelia and most members of groups 1–3, cells differentiate into maximally two cell types, prestalk and prespore cells, with pattern formation being dominated by position-dependent transdifferentiation of prespore cells into prestalk cells. In clade 2A, prestalk and stalk cell differentiation are lost and the prespore cells construct an acellular stalk. Group 4 species set aside correct proportions of prestalk and prespore cells early in development, and differentiate into up to three more supporting cell types. Conclusions Our experiments show that positional transdifferentiation is the ancestral mode of pattern formation in Dictyostelia. The early specification of a prestalk population equal to the number of stalk cells is a derived trait that emerged in group 4 and a few late diverging species in the other groups. Group 4 spore masses are larger than those of other groups and the differentiation of supporting cell types by lateral inhibition may have facilitated this increase in size. The signal DIF-1, which is secreted by prespore cells, triggers differentiation of supporting cell types. The synthesis and degradation of DIF-1 were shown to be restricted to group 4. This suggests that the emergence of DIF-1 signalling caused increased cell-type specialization in this group. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-34) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Galardi-Castilla M, Fernandez-Aguado I, Suarez T, Sastre L. Mef2A, a homologue of animal Mef2 transcription factors, regulates cell differentiation in Dictyostelium discoideum. BMC DEVELOPMENTAL BIOLOGY 2013; 13:12. [PMID: 23577638 PMCID: PMC3640940 DOI: 10.1186/1471-213x-13-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/05/2013] [Indexed: 01/28/2023]
Abstract
Background Transcription factors from the MADS-box family play a relevant role in cell differentiation and development and include the animal SRF (serum response factor) and MEF2 (myocyte enhancer factor 2) proteins. The social amoeba Dictyostelium discoideum contains four genes coding for MADS-box transcription factors, two of these genes code for proteins that are more similar to SRF, and the other two code for proteins that are more similar to MEF2 animal factors. Results The biological function of one of the two genes that codes for MEF2-related proteins, a gene known as mef2A, is described in this article. This gene is expressed under the transcriptional control of two alternative promoters in growing cells, and its expression is induced during development in prespore cells. Mutant strains where the mef2A gene has been partially deleted were generated to study its biological function. The mutant strains showed reduced growth when feeding on bacteria and were able to develop and form fruiting bodies, but spore production was significantly reduced. A study of developmental markers showed that prespore cells differentiation was impaired in the mutant strains. When mutant and wild-type cells were set to develop in chimeras, mutant spores were underrepresented in the fruiting bodies. The mutant cells were also unable to form spores in vitro. In addition, mutant cells also showed a poor contribution to the formation of the tip-organizer and the upper region of slugs and culminant structures. In agreement with these observations, a comparison of the genes transcribed by mutant and wild-type strains during development indicated that prestalk gene expression was enhanced, while prespore gene expression decreased in the mef2A- strain. Conclusions Our data shows that mef2A plays a role in cell differentiation in D. discoideum and modulates the expression of prespore and prestalk genes.
Collapse
Affiliation(s)
- María Galardi-Castilla
- Instituto de Investigaciones Biomédicas de Madrid (Biomedical Research Institute of Madrid), CSIC/UAM, C/Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Wu Y, Janetopoulos C. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum. J Biol Chem 2013; 288:15280-90. [PMID: 23548898 DOI: 10.1074/jbc.m112.427047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.
Collapse
Affiliation(s)
- Yuantai Wu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
9
|
Fey P, Dodson RJ, Basu S, Chisholm RL. One stop shop for everything Dictyostelium: dictyBase and the Dicty Stock Center in 2012. Methods Mol Biol 2013; 983:59-92. [PMID: 23494302 DOI: 10.1007/978-1-62703-302-2_4] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
dictyBase (http://dictybase.org), the model organism database for Dictyostelium discoideum, includes the complete genome sequence and expression data for this organism. Relevant literature is integrated into the database, and gene models and functional annotation are manually curated from experimental results and comparative multigenome analyses. dictyBase has recently expanded to include the genome sequences of three additional Dictyostelids and has added new software tools to facilitate multigenome comparisons. The Dicty Stock Center, a strain and plasmid repository for Dictyostelium research, has relocated to Northwestern University in 2009. This allowed us integrating all Dictyostelium resources to better serve the research community. In this chapter, we will describe how to navigate the Web site and highlight some of our newer improvements.
Collapse
Affiliation(s)
- Petra Fey
- dictyBase and the Dicty Stock Center, Center for Genetic Medicine, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Transcriptional control of developmental genes is important for cell differentiation and pattern formation. Developing Dictyostelium discoideum cells form a multicellular structure in which individual cells differentiate into either stalk cells or spores. This simplicity makes the organism an attractive model for studying fundamental problems in developmental biology. However, the morphogenetic process of forming a stalked fruiting body conceals a certain degree of complexity. This is reflected in the presence of multiple prestalk subtypes that have individual roles to generate the fruiting body. This review describes recent advances in understanding the molecular mechanisms, mediated by transcription factors that generate prestalk-cell heterogeneity.
Collapse
Affiliation(s)
- Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
11
|
Blagg SL, Battom SE, Annesley SJ, Keller T, Parkinson K, Wu JMF, Fisher PR, Thompson CRL. Cell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning. Development 2011; 138:1583-93. [PMID: 21389049 PMCID: PMC3062426 DOI: 10.1242/dev.063800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and 'salt and pepper' patterning. How differential gene expression results in cell sorting is poorly defined. Here we describe a novel gene (hfnA) that provides the first mechanistic link between cell signalling, differential gene expression and cell type-specific sorting in Dictyostelium. HfnA defines a novel group of evolutionarily conserved HECT ubiquitin ligases with an N-terminal filamin domain (HFNs). HfnA expression is induced by the stalk differentiation-inducing factor DIF-1 and is restricted to a subset of prestalk cells (pstO). hfnA(-) pstO cells differentiate but their sorting out is delayed. Genetic interactions suggest that this is due to misregulation of filamin complex activity. Overexpression of filamin complex members phenocopies the hfnA(-) pstO cell sorting defect, whereas disruption of filamin complex function in a wild-type background results in pstO cells sorting more strongly. Filamin disruption in an hfnA(-) background rescues pstO cell localisation. hfnA(-) cells exhibit altered slug phototaxis phenotypes consistent with filamin complex hyperactivity. We propose that HfnA regulates filamin complex activity and cell type-specific motility through the breakdown of filamin complexes. These findings provide a novel mechanism for filamin regulation and demonstrate that filamin is a crucial mechanistic link between responses to differentiation signals and cell movement in patterning based on 'salt and pepper' differentiation and sorting out.
Collapse
Affiliation(s)
- Simone L. Blagg
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Suzanne E. Battom
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sarah J. Annesley
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Thomas Keller
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jasmine M. F. Wu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Paul R. Fisher
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Kay RR, Thompson CRL. Forming patterns in development without morphogen gradients: scattered differentiation and sorting out. Cold Spring Harb Perspect Biol 2009; 1:a001503. [PMID: 20457561 PMCID: PMC2882119 DOI: 10.1101/cshperspect.a001503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Few mechanisms provide alternatives to morphogen gradients for producing spatial patterns of cells in development. One possibility is based on the sorting out of cells that initially differentiate in a salt and pepper mixture and then physically move to create coherent tissues. Here, we describe the evidence suggesting this is the major mode of patterning in Dictyostelium. In addition, we discuss whether convergent evolution could have produced a conceptually similar mechanism in other organisms.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge
| | | |
Collapse
|
13
|
Acidic Ca2+ stores, excitability, and cell patterning in Dictyostelium discoideum. EUKARYOTIC CELL 2009; 8:696-702. [PMID: 19252125 DOI: 10.1128/ec.00360-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Parkinson K, Bolourani P, Traynor D, Aldren NL, Kay RR, Weeks G, Thompson CRL. Regulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium. J Cell Sci 2009; 122:335-44. [PMID: 19126673 PMCID: PMC2724730 DOI: 10.1242/jcs.036822] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2008] [Indexed: 12/19/2022] Open
Abstract
Regulated cell adhesion and motility have important roles during growth, development and tissue homeostasis. Consequently, great efforts have been made to identify genes that control these processes. One candidate is Rap1, as it has been implicated in the regulation of adhesion and motility in cell culture. To further study the role of Rap1 during multicellular development, we generated a mutant in a potential Rap1 GTPase activating protein (RapGAPB) in Dictyostelium. rapGAPB(-) cells have increased levels of active Rap1 compared with wild-type cells, indicating that RapGAPB regulates Rap1 activity. Furthermore, rapGAPB(-) cells exhibit hallmark phenotypes of other known mutants with hyperactivated Rap1, including increased substrate adhesion and abnormal F-actin distribution. However, unlike these other mutants, rapGAPB(-) cells do not exhibit impaired motility or chemotaxis, indicating that RapGAPB might only regulate specific roles of Rap1. Importantly, we also found that RapGAPB regulates Rap1 activity during multicellular development and is required for normal morphogenesis. First, streams of aggregating rapGAPB(-) cells break up as a result of decreased cell-cell adhesion. Second, rapGAPB(-) cells exhibit cell-autonomous defects in prestalk cell patterning. Using cell-type-specific markers, we demonstrate that RapGAPB is required for the correct sorting behaviour of different cell types. Finally, we show that inactivation of RapGAPB affects prestalk and prespore cell adhesion. We therefore propose that a possible mechanism for RapGAPB-regulated cell sorting is through differential adhesion.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Núñez-Corcuera B, Serafimidis I, Arias-Palomo E, Rivera-Calzada A, Suarez T. A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 2008; 321:331-42. [PMID: 18638468 DOI: 10.1016/j.ydbio.2008.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/15/2022]
Abstract
We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.
Collapse
Affiliation(s)
- Beatriz Núñez-Corcuera
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas (CSIC), 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Saito T, Kato A, Kay RR. DIF-1 induces the basal disc of the Dictyostelium fruiting body. Dev Biol 2008; 317:444-53. [PMID: 18402932 PMCID: PMC2726288 DOI: 10.1016/j.ydbio.2008.02.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/29/2008] [Accepted: 02/14/2008] [Indexed: 01/05/2023]
Abstract
The polyketide DIF-1 induces Dictyostelium amoebae to form stalk cells in culture. To better define its role in normal development, we examined the phenotype of a mutant blocking the first step of DIF-1 synthesis, which lacks both DIF-1 and its biosynthetic intermediate, dM-DIF-1 (des-methyl-DIF-1). Slugs of this polyketide synthase mutant (stlB(-)) are long and thin and rapidly break up, leaving an immotile prespore mass. They have approximately 30% fewer prestalk cells than their wild-type parent and lack a subset of anterior-like cells, which later form the outer basal disc. This structure is missing from the fruiting body, which perhaps in consequence initiates culmination along the substratum. The lower cup is rudimentary at best and the spore mass, lacking support, slips down the stalk. The dmtA(-) methyltransferase mutant, blocked in the last step of DIF-1 synthesis, resembles the stlB(-) mutant but has delayed tip formation and fewer prestalk-O cells. This difference may be due to accumulation of dM-DIF-1 in the dmtA(-) mutant, since dM-DIF-1 inhibits prestalk-O differentiation. Thus, DIF-1 is required for slug migration and specifies the anterior-like cells forming the basal disc and much of the lower cup; significantly the DIF-1 biosynthetic pathway may supply a second signal - dM-DIF-1.
Collapse
Affiliation(s)
- Tamao Saito
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Kato
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
17
|
Keller T, Thompson CRL. Cell type specificity of a diffusible inducer is determined by a GATA family transcription factor. Development 2008; 135:1635-45. [PMID: 18367552 PMCID: PMC3942654 DOI: 10.1242/dev.020883] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One poorly understood mechanism of developmental patterning involves the intermingled differentiation of different cell types that then sort out to generate pattern. Examples of this are known in nematodes and vertebrates, and in Dictyostelium it is the major mechanism. However, a general problem with this mechanism is the possibility that different inducers are required for each cell type that arises independently of positional information. Consistent with this idea, in Dictyostelium the signalling molecule DIF acts as a position-independent signal and was thought only to regulate the differentiation of a single cell type (pstO). The results presented here challenge this idea. In a novel genetic selection to isolate genes required for DIF signal transduction, we found a mutant (dimC(-)) that is a hypomorphic allele of a GATA family transcription factor (gtaC). gtaC expression is directly regulated by DIF, and GtaC rapidly translocates to the nucleus in response to DIF. gtaC(-) null cells showed some hallmark DIF signalling defects. Surprisingly, other aspects of the mutant were distinct from those of other DIF signalling mutants, suggesting that gtaC regulates a subset of DIF responses. For example, pstO cell differentiation appeared normal. However, we found that pstB cells were mislocalised and the pstB-derived basal disc was much reduced or missing. These defects are due to a failure to respond to DIF as they are phenocopied in other DIF signalling mutants. These findings therefore identify a novel small-molecule-activated GATA factor that is required to regulate the cell type-specific effects of DIF. They also reveal that a non-positional signal can regulate the differentiation of multiple cell types through differential interpretation in receiving cells.
Collapse
Affiliation(s)
- Thomas Keller
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT
| |
Collapse
|
18
|
Shimada N, Kanno-Tanabe N, Minemura K, Kawata T. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain. Dev Genes Evol 2008; 218:55-68. [PMID: 18204858 DOI: 10.1007/s00427-008-0202-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/01/2008] [Indexed: 02/01/2023]
Abstract
Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.
Collapse
Affiliation(s)
- Nao Shimada
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | | | | | | |
Collapse
|
19
|
Hinas A, Söderbom F. Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum. Curr Genet 2007; 51:141-59. [PMID: 17171561 DOI: 10.1007/s00294-006-0112-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 12/20/2022]
Abstract
The traditional view of RNA being merely an intermediate in the transfer of genetic information, as mRNA, spliceosomal RNA, tRNA, and rRNA, has become outdated. The recent discovery of numerous regulatory RNAs with a plethora of functions in biological processes has truly revolutionized our understanding of gene regulation. Tiny RNAs such as microRNAs and small interfering RNAs play vital roles at different levels of gene control. Small nucleolar RNAs are much more abundant than previously recognized, and new functions beyond processing and modification of rRNA have recently emerged. Longer non-coding RNAs (ncRNAs) can also have important regulatory roles in the cell, e.g., antisense RNAs that control their target mRNAs. The majority of these important findings arose from analyses in various model organisms. In this review, we focus on ncRNAs in the social amoeba Dictyostelium discoideum. This important genetically tractable model organism has recently received renewed attention in terms of discovery, regulation and functional studies of ncRNAs. Old and recent findings are discussed and put in context of what we today know about ncRNAs in other organisms.
Collapse
Affiliation(s)
- Andrea Hinas
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, 75124 Uppsala, Sweden
| | | |
Collapse
|
20
|
Anjard C, Loomis WF. GABA induces terminal differentiation of Dictyostelium through a GABAB receptor. Development 2006; 133:2253-61. [PMID: 16672332 DOI: 10.1242/dev.02399] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When prespore cells approach the top of the stalk in a Dictyostelium fruiting body, they rapidly encapsulate in response to the signalling peptide SDF-2. Glutamate decarboxylase, the product of the gadA gene, generates GABA from glutamate. gadA is expressed exclusively in prespore cells late in development. We have found that GABA induces the release of the precursor of SDF-2, AcbA, from prespore cells. GABA also induces exposure of the protease domain of TagC on the surface of prestalk cells where it can convert AcbA to SDF-2. The receptor for GABA in Dictyostelium, GrlE, is a seven-transmembrane G-protein-coupled receptor that is most similar to GABA(B) receptors. The signal transduction pathway from GABA/GrlE appears to be mediated by PI3 kinase and the PKB-related protein kinase PkbR1. Glutamate acts as a competitive inhibitor of GABA functions in Dictyostelium and is also able to inhibit induction of sporulation by SDF-2. The signal transduction pathway from SDF-2 is independent of the GABA/glutamate signal transduction pathway, but the two appear to converge to control release of AcbA and exposure of TagC protease. These results indicate that GABA is not only a neurotransmitter but also an ancient intercellular signal.
Collapse
Affiliation(s)
- Christophe Anjard
- Center for Molecular Genetics, Division of Biological Sciences, University of California San Diego, La Jolla, 92093-0368, USA
| | | |
Collapse
|
21
|
Iranfar N, Fuller D, Loomis WF. Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC. Dev Biol 2006; 290:460-9. [PMID: 16386729 DOI: 10.1016/j.ydbio.2005.11.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/24/2005] [Accepted: 11/16/2005] [Indexed: 11/28/2022]
Abstract
Expression profiles of developmental genes in Dictyostelium were determined on microarrays during development of wild type cells and mutant cells lacking either the DNA binding protein GBF or the signaling protein LagC. We found that the mutant strains developed in suspension with added cAMP expressed the pulse-induced and early adenylyl cyclase (ACA)-dependent genes, but not the later ACA-dependent, post-aggregation genes. Since expression of lagC itself is dependent on GBF, expression of the post-aggregation genes might be controlled only by signaling from LagC. However, expression of lagC in a GBF-independent manner in a gbfA- null strain did not result in expression of the post-aggregation genes. Since GBF is necessary for accumulation of LagC and both the DNA binding protein and the LagC signal transduction pathway are necessary for expression of post-aggregation genes, GBF and LagC form a feed-forward loop. Such network architecture is a common motif in diverse organisms and can act as a filter for noisy inputs. Breaking the feed-forward loop by expressing lagC in a GBF-independent manner in a gbfA+ strain does not significantly affect the patterns of gene expression for cells developed in suspension with added cAMP, but results in a significant delay at the mound stage and asynchronous development on solid supports. This feed-forward loop can integrate temporal information with morphological signals to ensure that post-aggregation genes are only expressed after cell contacts have been made.
Collapse
Affiliation(s)
- Negin Iranfar
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
22
|
Huang E, Blagg SL, Keller T, Katoh M, Shaulsky G, Thompson CRL. bZIP transcription factor interactions regulate DIF responses in Dictyostelium. Development 2006; 133:449-58. [PMID: 16410410 PMCID: PMC3531922 DOI: 10.1242/dev.02240] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The signalling molecule DIF-1 is required for normal cell fate choice and patterning in Dictyostelium. To understand how these developmental processes are regulated will require knowledge of how cells receive and respond to the DIF-1 signal. Previously, we have described a bZIP transcription factor, DimA, which is required for cells to respond to DIF-1. However, it was unknown whether DimA activity is required to activate the DIF response pathway in certain cells or is a component of the response pathway itself. In this study, we describe the identification of a DimA-related bZIP transcription factor, DimB. Rapid changes in the subcellular localisation of both DimA and DimB in response to DIF-1 suggest that they are directly downstream of the DIF-1 signal. Genetic and biochemical interactions between DimA and DimB provides evidence that their ability to regulate diverse targets in response to DIF-1 is partly due to their ability to form homo- and heterodimeric complexes. DimA and DimB are therefore direct regulators of cellular responses to DIF-1.
Collapse
Affiliation(s)
- Eryong Huang
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Simone L. Blagg
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas Keller
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mariko Katoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
23
|
Strmecki L, Greene DM, Pears CJ. Developmental decisions in Dictyostelium discoideum. Dev Biol 2005; 284:25-36. [PMID: 15964562 DOI: 10.1016/j.ydbio.2005.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/14/2005] [Accepted: 05/06/2005] [Indexed: 11/28/2022]
Abstract
Dictyostelium discoideum is an excellent system in which to study developmental decisions. Synchronous development is triggered by starvation and rapidly generates a limited number of cell types. Genetic and image analyses have revealed the elegant intricacies associated with this simple development system. Key signaling pathways identified as regulating cell fate decisions are likely to be conserved with metazoa and are providing insight into differentiation decisions under circumstances where considerable cell movement takes place during development.
Collapse
Affiliation(s)
- Lana Strmecki
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
24
|
Yamada Y, Sakamoto H, Ogihara S, Maeda M. Novel patterns of the gene expression regulation in the prestalk region along the antero-posterior axis during multicellular development of Dictyostelium. Gene Expr Patterns 2005; 6:63-8. [PMID: 16024295 DOI: 10.1016/j.modgep.2005.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Simultaneous hybridization with differentially labeled fluorescent probes for in situ hybridization analysis revealed several novel expression patterns of prestalk genes during multicellular development of Dictyostelium. Seven prestalk genes and one prespore gene (pspA) were analyzed in this study. The patterns identified here indicate that prestalk cells are more heterogeneous than previously thought. Heterogeneity was observed in peripheral prestalk tissues such as the pstAO domain of a slug and the prestalk region surrounding a stalk tube of a culminant. Heterogeneity was also observed in the core pstAB cells of the slug and immature stalk cells within the stalk tube. The upper- and lower-cups of a late culminant were also composed of several subdomains.
Collapse
Affiliation(s)
- Yoko Yamada
- Biological Science, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
25
|
Serafimidis I, Kay RR. New prestalk and prespore inducing signals in Dictyostelium. Dev Biol 2005; 282:432-41. [PMID: 15950608 DOI: 10.1016/j.ydbio.2005.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/11/2005] [Accepted: 03/20/2005] [Indexed: 10/25/2022]
Abstract
The differentiation-inducing signals (DIFs) currently known in Dictyostelium appear unable to account for the full diversity of cell types produced in development. To search for new signals, we analyzed the differentiation in monolayers of cells expressing prestalk (ecmAO, ecmA, ecmO, ecmB and cAR2) and prespore (psA) markers. Expression of each marker drops off as the cell density is reduced, suggesting that cell interaction is required. Expression of each marker is inhibited by cerulenin, an inhibitor of polyketide synthesis, and can be restored by conditioned medium. However, the known stalk-inducing polyketide, DIF-1, could not replace conditioned medium and induce the ecmA or cAR2 prestalk markers, suggesting that they require different polyketide inducers. Polyketide production by fungi is stimulated by cadmium ions, which also dramatically stimulates differentiation in Dictyostelium cell cultures and the accumulation of medium factors. Factors produced with cadmium present were extracted from conditioned medium and fractionated by HPLC. A new factor inducing prespore cell differentiation, called PSI-2, and two inducing stalk cell differentiation (DIFs 6 and 7) were resolved. All are distinct from currently identified factors. DIF-6, but not DIF-7 or PSI-2, appears to have an essential carbonyl group. Thus Dictyostelium may use extensive polyketide signaling in its development.
Collapse
|