1
|
Miao Q, Wang Z, Yin Z, Liu X, Li R, Zhang KQ, Li J. Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2663-2679. [PMID: 37233873 DOI: 10.1007/s11427-022-2300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.
Collapse
Affiliation(s)
- Qiao Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhengqi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ran Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Kelliher CM, Stevenson EL, Loros JJ, Dunlap JC. Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability. PLoS Biol 2023; 21:e3001961. [PMID: 36603054 PMCID: PMC9848017 DOI: 10.1371/journal.pbio.3001961] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/18/2023] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Compensation is a defining principle of a true circadian clock, where its approximately 24-hour period length is relatively unchanged across environmental conditions. Known compensation effectors directly regulate core clock factors to buffer the oscillator's period length from variables in the environment. Temperature Compensation mechanisms have been experimentally addressed across circadian model systems, but much less is known about the related process of Nutritional Compensation, where circadian period length is maintained across physiologically relevant nutrient levels. Using the filamentous fungus Neurospora crassa, we performed a genetic screen under glucose and amino acid starvation conditions to identify new regulators of Nutritional Compensation. Our screen uncovered 16 novel mutants, and together with 4 mutants characterized in prior work, a model emerges where Nutritional Compensation of the fungal clock is achieved at the levels of transcription, chromatin regulation, and mRNA stability. However, eukaryotic circadian Nutritional Compensation is completely unstudied outside of Neurospora. To test for conservation in cultured human cells, we selected top hits from our fungal genetic screen, performed siRNA knockdown experiments of the mammalian orthologs, and characterized the cell lines with respect to compensation. We find that the wild-type mammalian clock is also compensated across a large range of external glucose concentrations, as observed in Neurospora, and that knocking down the mammalian orthologs of the Neurospora compensation-associated genes CPSF6 or SETD2 in human cells also results in nutrient-dependent period length changes. We conclude that, like Temperature Compensation, Nutritional Compensation is a conserved circadian process in fungal and mammalian clocks and that it may share common molecular determinants.
Collapse
Affiliation(s)
- Christina M. Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Elizabeth-Lauren Stevenson
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
3
|
Phylogenomic and Evolutionary Analyses Reveal Diversifications of SET-Domain Proteins in Fungi. J Fungi (Basel) 2022; 8:jof8111159. [DOI: 10.3390/jof8111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, many publications have established histone lysine methylation as a central epigenetic modification in the regulation of chromatin and transcription. The histone lysine methyltransferases contain a conserved SET domain and are widely distributed in various organisms. However, a comprehensive study on the origin and diversification of the SET-domain-containing genes in fungi has not been conducted. In this study, a total of 3816 SET-domain-containing genes, which were identified and characterized using HmmSearch from 229 whole genomes sequenced fungal species, were used to ascertain their evolution and diversification in fungi. Using the CLANS program, all the SET-domain-containing genes were grouped into three main clusters, and each cluster contains several groups. Domain organization analysis showed that genes belonging to the same group have similar sequence structures. In contrast, different groups process domain organizations or locations differently, suggesting the SET-domain-containing genes belonging to different groups may have obtained distinctive regulatory mechanisms during their evolution. These genes that conduct the histone methylations (such as H3K4me, H3K9me, H3K27me, H4K20me, H3K36me) are mainly grouped into Cluster 1 while the other genes grouped into Clusters 2 and 3 are still functionally undetermined. Our results also showed that numerous gene duplication and loss events have happened during the evolution of those fungal SET-domain-containing proteins. Our results provide novel insights into the roles of SET-domain genes in fungal evolution and pave a fundamental path to further understanding the epigenetic basis of gene regulation in fungi.
Collapse
|
4
|
James SW, Palmer J, Keller NP, Brown ML, Dunworth MR, Francisco SG, Watson KG, Titchen B, Achimovich A, Mahoney A, Artemiou JP, Buettner KG, Class M, Sydenstricker AL, Anglin SL. A reciprocal translocation involving Aspergillus nidulans snxAHrb1/Gbp2 and gyfA uncovers a new regulator of the G2-M transition and reveals a role in transcriptional repression for the setBSet2 histone H3-lysine-36 methyltransferase. Genetics 2022; 222:iyac130. [PMID: 36005881 PMCID: PMC9526064 DOI: 10.1093/genetics/iyac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein. Here, we show that snxA1/A2 mutations resulted from an identical chromosome I-II reciprocal translocation with breakpoints in the snxA first intron and the fourth exon of a GYF-domain gene, gyfA. Surprisingly, a gyfA deletion and a reconstructed gyfA translocation allele suppressed the heat sensitivity of CDK1 pathway mutants in a snxA+ background, demonstrating that 2 unrelated genes, snxA and gyfA, act through the CDK1-CyclinB axis to restrain the G2-M transition, and for the first time identifying a role in G2-M regulation for a GYF-domain protein. To better understand snxA1/A2-reduced expression, we generated suppressors of snxA cold sensitivity in 2 genes: (1) loss of the abundant nucleolar protein Nsr1/nucleolin bypassed the requirement for snxA and (2) loss of the Set2 histone H3 lysine36 (H3K36) methyltransferase or a nonmethylatable histone H3K36L mutant rescued hypomorphic snxA mutants by restoring full transcriptional proficiency, indicating that methylation of H3K36 acts normally to repress snxA transcription. These observations are in line with known Set2 functions in preventing excessive and cryptic transcription of active genes.
Collapse
Affiliation(s)
- Steven W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Jonathan Palmer
- Data Analytics, Genencor Technology Center, IFF, Palo Alto, CA, 94306, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Morgan L Brown
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Dunworth
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Sarah G Francisco
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine G Watson
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Breanna Titchen
- Department of Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alecia Achimovich
- Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA
| | - Andrew Mahoney
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Kyra G Buettner
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Madelyn Class
- School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
5
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Ament-Velásquez SL, Vogan AA, Granger-Farbos A, Bastiaans E, Martinossi-Allibert I, Saupe SJ, de Groot S, Lascoux M, Debets AJM, Clavé C, Johannesson H. Allorecognition genes drive reproductive isolation in Podospora anserina. Nat Ecol Evol 2022; 6:910-923. [PMID: 35551248 PMCID: PMC9262711 DOI: 10.1038/s41559-022-01734-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Granger-Farbos
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Suzette de Groot
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Rodriguez S, Ward A, Reckard AT, Shtanko Y, Hull-Crew C, Klocko AD. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. G3 (BETHESDA, MD.) 2022; 12:jkac053. [PMID: 35244156 PMCID: PMC9073679 DOI: 10.1093/g3journal/jkac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 01/17/2023]
Abstract
The eukaryotic genome must be precisely organized for its proper function, as genome topology impacts transcriptional regulation, cell division, replication, and repair, among other essential processes. Disruptions to human genome topology can lead to diseases, including cancer. The advent of chromosome conformation capture with high-throughput sequencing (Hi-C) to assess genome organization has revolutionized the study of nuclear genome topology; Hi-C has elucidated numerous genomic structures, including chromosomal territories, active/silent chromatin compartments, Topologically Associated Domains, and chromatin loops. While low-resolution heatmaps can provide important insights into chromosomal level contacts, high-resolution Hi-C datasets are required to reveal folding principles of individual genes. Of particular interest are high-resolution chromosome conformation datasets of organisms modeling the human genome. Here, we report the genome topology of the fungal model organism Neurospora crassa at a high resolution. Our composite Hi-C dataset, which merges 2 independent datasets generated with restriction enzymes that monitor euchromatin (DpnII) and heterochromatin (MseI), along with our DpnII/MseI double digest dataset, provide exquisite detail for both the conformation of entire chromosomes and the folding of chromatin at the resolution of individual genes. Within constitutive heterochromatin, we observe strong yet stochastic internal contacts, while euchromatin enriched with either activating or repressive histone post-translational modifications associates with constitutive heterochromatic regions, suggesting intercompartment contacts form to regulate transcription. Consistent with this, a strain with compromised heterochromatin experiences numerous changes in gene expression. Our high-resolution Neurospora Hi-C datasets are outstanding resources to the fungal community and provide valuable insights into higher organism genome topology.
Collapse
Affiliation(s)
- Sara Rodriguez
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Ashley Ward
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew T Reckard
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Yulia Shtanko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Clayton Hull-Crew
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Andrew D Klocko
- Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
8
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
9
|
Colabardini AC, Wang F, Miao Z, Pardeshi L, Valero C, de Castro PA, Akiyama DY, Tan K, Nora LC, Silva-Rocha R, Marcet-Houben M, Gabaldón T, Fill T, Wong KH, Goldman GH. Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genet 2022; 18:e1010001. [PMID: 35007279 PMCID: PMC8782537 DOI: 10.1371/journal.pgen.1010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Yuri Akiyama
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Luisa Czamanski Nora
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR of China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR of China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci U S A 2021; 118:2022590118. [PMID: 33526697 DOI: 10.1073/pnas.2022590118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Codon usage bias is a fundamental feature of all genomes and plays an important role in determining gene expression levels. The codon usage was thought to influence gene expression mainly due to its impact on translation. Recently, however, codon usage was shown to affect transcription of fungal and mammalian genes, indicating the existence of a gene regulatory phenomenon with unknown mechanism. In Neurospora, codon usage biases strongly correlate with mRNA levels genome-wide, and here we show that the correlation between codon usage and RNA levels is maintained in the nucleus. In addition, codon optimality is tightly correlated with both total and nuclear RNA levels, suggesting that codon usage broadly influences mRNA levels through transcription in a translation-independent manner. A large-scale RNA sequencing-based genetic screen in Neurospora identified 18 candidate factors that when deleted decreased the genome-wide correlation between codon usage and RNA levels and reduced the codon usage effect on gene expression. Most of these factors, such as the H3K36 methyltransferase, are chromatin regulators or transcription factors. Together, our results suggest that the transcriptional effect of codon usage is mediated by multiple transcriptional regulatory mechanisms.
Collapse
|
11
|
Ferraro AR, Ameri AJ, Lu Z, Kamei M, Schmitz RJ, Lewis ZA. Chromatin accessibility profiling in Neurospora crassa reveals molecular features associated with accessible and inaccessible chromatin. BMC Genomics 2021; 22:459. [PMID: 34147068 PMCID: PMC8214302 DOI: 10.1186/s12864-021-07774-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regulation of chromatin accessibility and transcription are tightly coordinated processes. Studies in yeast and higher eukaryotes have described accessible chromatin regions, but little work has been done in filamentous fungi. RESULTS Here we present a genome-scale characterization of accessible chromatin regions in Neurospora crassa, which revealed characteristic molecular features of accessible and inaccessible chromatin. We present experimental evidence of inaccessibility within heterochromatin regions in Neurospora, and we examine features of both accessible and inaccessible chromatin, including the presence of histone modifications, types of transcription, transcription factor binding, and relative nucleosome turnover rates. Chromatin accessibility is not strictly correlated with expression level. Accessible chromatin regions in the model filamentous fungus Neurospora are characterized the presence of H3K27 acetylation and commonly associated with pervasive non-coding transcription. Conversely, methylation of H3 lysine-36 catalyzed by ASH1 is correlated with inaccessible chromatin within promoter regions. CONCLUSIONS In N. crassa, H3K27 acetylation is the most predictive histone modification for open chromatin. Conversely, our data show that H3K36 methylation is a key marker of inaccessible chromatin in gene-rich regions of the genome. Our data are consistent with an expanded role for H3K36 methylation in intergenic regions of filamentous fungi compared to the model yeasts, S. cerevisiae and S. pombe, which lack homologs of the ASH1 methyltransferase.
Collapse
Affiliation(s)
- Aileen R Ferraro
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Abigail J Ameri
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Lukito Y, Lee K, Noorifar N, Green KA, Winter DJ, Ram A, Hale TK, Chujo T, Cox MP, Johnson LJ, Scott B. Regulation of host-infection ability in the grass-symbiotic fungus Epichloë festucae by histone H3K9 and H3K36 methyltransferases. Environ Microbiol 2020; 23:2116-2131. [PMID: 33350014 DOI: 10.1111/1462-2920.15370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 01/30/2023]
Abstract
Recent studies have identified key genes that control the symbiotic interaction between Epichloë festucae and Lolium perenne. Here we report on the identification of specific E. festucae genes that control host infection. Deletion of setB, which encodes a homologue of the H3K36 histone methyltransferase Set2/KMT3, reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae ΔclrD mutant, which lacks the gene encoding the homologue of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect L. perenne. Alleles that complement the culture and plant phenotypes of both mutants also complement the histone methylation defects. Co-inoculation of either ΔsetB or ΔclrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild type. Deletion of crbA, which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae.
Collapse
Affiliation(s)
- Yonathan Lukito
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Kate Lee
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Nazanin Noorifar
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Arvina Ram
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tetsuya Chujo
- Research and Development Center, Mayekawa Mfg. Co., Ltd, Tokyo, Japan
| | - Murray P Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Linda J Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Prakash H, Karuppiah P, A Al-Dhabi N, Prasad GS, Badapanda C, Chakrabarti A, Rudramurthy SM. Comparative genomics of Sporothrix species and identification of putative pathogenic-gene determinants. Future Microbiol 2020; 15:1465-1481. [PMID: 33179528 DOI: 10.2217/fmb-2019-0302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To understand the phylogenomics, pathogenic/virulence-associated genes and genomic evolution of pathogenic Sporothrix species. Materials & methods: We performed in silico comparative genome analysis of Sporothrix species using ab initio tools and in-house scripts. We predicted genes and repeats, compared genomes based on synteny, identified orthologous clusters, assessed genes family expansion/contraction, predicted secretory proteins and finally searched for similar sequences from various databases. Results: The phylogenomics revealed that Sporothrix species are closely related to Ophiostoma species. The gene family evolutionary analysis revealed the expansion of genes related to virulence (CFEM domain, iron acquisition genes, lysin motif domain), stress response (Su[var]3-9, Enhancer-of-zeste and Trithorax domain and Domain of unknown function 1996), proteases (aspartic protease, x-pro dipeptidyl-peptidase), cell wall composition associated genes (chitin deacetylase, chitinase) and transporters (major facilitator superfamily transporter, oligo-peptide transporter family) in Sporothrix species. Conclusion: The present study documents the putative pathogenic/virulence-associated genes in the Sporothrix species.
Collapse
Affiliation(s)
- Hariprasath Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Ponmurugan Karuppiah
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif A Al-Dhabi
- Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gandham S Prasad
- Technology, Industrial Liaison & Entrepreneurship Unit, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Chandan Badapanda
- Bioinformatics Division, Xcelris Labs Limited, Ahmedabad 380015, Gujarat, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
14
|
Yong M, Yu J, Pan X, Yu M, Cao H, Qi Z, Du Y, Zhang R, Song T, Yin X, Chen Z, Liu W, Liu Y. MAT1-1-3, a Mating Type Gene in the Villosiclava virens, Is Required for Fruiting Bodies and Sclerotia Formation, Asexual Development and Pathogenicity. Front Microbiol 2020; 11:1337. [PMID: 32714294 PMCID: PMC7344243 DOI: 10.3389/fmicb.2020.01337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Villosiclava virens is the prevalent causative pathogen of rice false smut, a destructive rice disease. Mating-type genes play a vital role in the evolution of mating systems in fungi. Some fungi have lost MAT1-1-3, one of the mating-type genes, during evolution, whereas others still retain MAT1-1-3. However, how MAT1-1-3 regulates the sexual development of heterothallic V. virens remains unknown. Here, we generated the MAT1-1-3 mutants, which exhibited defects in vegetative growth, stress response, pathogenicity, sclerotia formation and fruiting body maturation. An artificial outcrossing inoculation assay showed that the Δmat1-1-3 mutant was unable to produce sclerotia. Unexpectedly, the Δmat1-1-3 mutant could form immature fruiting bodies without mating on potato sucrose agar medium (PSA) compared with the wild-type strain, most likely by activating the truncated MAT1-2-1 transcription to regulate the sexual development. Moreover, RNA-seq data showed that knockout of MAT1-1-3 results in misregulation of a subset of genes involved in sexual development, MAPK signaling, cell wall integrity, autophagy, epigenetic modification, and transcriptional regulation. Collectively, this study reveals that MAT1-1-3 is required for asexual and sexual development, and pathogenicity of V. virens, thereby provides new insights into the function of mating-type genes in the fungi life cycle and infection process.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
15
|
Ridenour JB, Möller M, Freitag M. Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes (Basel) 2020; 11:E638. [PMID: 32527036 PMCID: PMC7348808 DOI: 10.3390/genes11060638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genome integrity is essential to maintain cellular function and viability. Consequently, genome instability is frequently associated with dysfunction in cells and associated with plant, animal, and human diseases. One consequence of relaxed genome maintenance that may be less appreciated is an increased potential for rapid adaptation to changing environments in all organisms. Here, we discuss evidence for the control and function of facultative heterochromatin, which is delineated by methylation of histone H3 lysine 27 (H3K27me) in many fungi. Aside from its relatively well understood role in transcriptional repression, accumulating evidence suggests that H3K27 methylation has an important role in controlling the balance between maintenance and generation of novelty in fungal genomes. We present a working model for a minimal repressive network mediated by H3K27 methylation in fungi and outline challenges for future research.
Collapse
Affiliation(s)
| | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis OR 97331, USA; (J.B.R.); (M.M.)
| |
Collapse
|
16
|
Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76:2899-2916. [PMID: 31147750 PMCID: PMC11105573 DOI: 10.1007/s00018-019-03144-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
18
|
Schumacher J, Studt L, Tudzynski P. The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea. Fungal Genet Biol 2019; 123:14-24. [DOI: 10.1016/j.fgb.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
|
19
|
Bicocca VT, Ormsby T, Adhvaryu KK, Honda S, Selker EU. ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin. eLife 2018; 7:41497. [PMID: 30468429 PMCID: PMC6251624 DOI: 10.7554/elife.41497] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Methylation of histone H3 at lysine 36 (H3K36me), a widely-distributed chromatin mark, largely results from association of the lysine methyltransferase (KMT) SET-2 with RNA polymerase II (RNAPII), but most eukaryotes also have additional H3K36me KMTs that act independently of RNAPII. These include the orthologs of ASH1, which are conserved in animals, plants, and fungi but whose function and control are poorly understood. We found that Neurospora crassa has just two H3K36 KMTs, ASH1 and SET-2, and were able to explore the function and distribution of each enzyme independently. While H3K36me deposited by SET-2 marks active genes, inactive genes are modified by ASH1 and its activity is critical for their repression. ASH1-marked chromatin can be further modified by methylation of H3K27, and ASH1 catalytic activity modulates the accumulation of H3K27me2/3 both positively and negatively. These findings provide new insight into ASH1 function, H3K27me2/3 establishment, and repression in facultative heterochromatin. Not all genes in a cell’s DNA are active all the time. There are several ways to control this activity. One is by altering how the DNA is packaged into cells. DNA strands are wrapped around proteins called histones to form nucleosomes. Nucleosomes can then be packed together tightly, to restrict access to the DNA at genes that are not active, or loosely to allow access to the DNA of active genes. Chemical marks, such as methyl groups, can be attached to particular sites on histones to influence how they pack together. One important site for such marks is known as position 36 on histone H3, or H3K36 for short. Correctly adding methyl groups to this site is critical for normal development, and when this process goes wrong it can lead to diseases like cancer. An enzyme called SET-2 oversees the methylation of H3K36 in fungi, plants and animals. However, many species have several other enzymes that can also add methyl groups to H3K36, and their roles are less clear. A type of fungus called Neurospora crassa contains just two enzymes that can add methyl groups to H3K36: SET-2, and another enzyme called ASH1. By performing experiments that inactivated SET-2 and ASH1 in this fungus, Bicocca et al. found that each enzyme works on a different set of genes. Genes in regions marked by SET-2 were accessible for the cell to use, while genes marked by ASH1 were inaccessible. ASH1 also affects whether a methyl group is added to another site on histone H3. This mark is important for controlling the activity of genes that are critical for development. ASH1 is found in many other organisms, including humans. The results presented by Bicocca et al. could therefore be built upon to understand the more complicated systems for regulating H3K36 methylation in other species. From there, we can investigate how to intervene when things go wrong during developmental disorders and cancer.
Collapse
Affiliation(s)
- Vincent T Bicocca
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Tereza Ormsby
- Department of Biochemistry Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Shinji Honda
- Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|
20
|
Kronholm I, Ketola T. Effects of acclimation time and epigenetic mechanisms on growth of Neurospora in fluctuating environments. Heredity (Edinb) 2018; 121:327-341. [PMID: 30143790 PMCID: PMC6133946 DOI: 10.1038/s41437-018-0138-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023] Open
Abstract
Reaction norms or tolerance curves have often been used to predict how organisms deal with fluctuating environments. A potential drawback is that reaction norms measured in different constant environments may not capture all aspects of organismal responses to fluctuating environments. We examined growth of the filamentous fungus Neurospora crassa in fluctuating temperatures and tested if growth in fluctuating temperatures can be explained simply by the growth in different constant temperatures or if more complex models are needed. In addition, as previous studies on fluctuating environments have revealed that past temperatures that organisms have experienced can affect their response to current temperature, we tested the roles of different epigenetic mechanisms in response to fluctuating environments using different mutants. We found that growth of Neurospora can be predicted in fluctuating temperatures to some extent if acclimation times are taken into account in the model. Interestingly, while fluctuating environments have been linked with epigenetic responses, we found only some evidence of involvement of epigenetic mechanisms on tolerating fluctuating temperatures. Mutants which lacked H3K4 or H3K36 methylation had slightly impaired response to temperature fluctuations, in addition the H3K4 methylation mutant and a mutant in the RNA interference pathway had altered acclimation times.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014, Jyväskylä, Finland.
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
21
|
Gu Q, Ji T, Sun X, Huang H, Zhang H, Lu X, Wu L, Huo R, Wu H, Gao X. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides. FEMS Microbiol Lett 2018; 364:4094912. [PMID: 28957455 DOI: 10.1093/femsle/fnx184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022] Open
Abstract
Histone methylation plays important biological roles in eukaryotic cells. Methylation of lysine 9 at histone H3 (H3K9me) is critical for regulating chromatin structure and gene transcription. Dim5 is a lysine histone methyltransferase (KHMTase) enzyme, which is responsible for the methylation of H3K9 in eukaryotes. In the current study, we identified a single ortholog of Neurospora crassa Dim5 in Fusarium verticillioides. In this study, we report that FvDim5 regulates the trimethylation of H3K9 (H3K9me3). The FvDIM5 deletion mutant (ΔFvDim5) showed significant defects in conidiation, perithecium production and fungal virulence. Unexpectedly, we found that deletion of FvDIM5 resulted in increased tolerance to osmotic stresses and upregulated FvHog1 phosphorylation. These results indicate the importance of FvDim5 for the regulation of fungal development, pathogenicity and osmotic stress responses in F. verticillioides.
Collapse
Affiliation(s)
- Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Tiantian Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Xiao Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Hai Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Hao Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Xi Lu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Rong Huo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
22
|
Janevska S, Tudzynski B. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Appl Microbiol Biotechnol 2017; 102:615-630. [PMID: 29204899 DOI: 10.1007/s00253-017-8679-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023]
Abstract
The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.
Collapse
Affiliation(s)
- Slavica Janevska
- Institute of Biology and Biotechnology of Plants, University Münster, Schlossplatz 8, 48143, Munster, Germany
| | - Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, University Münster, Schlossplatz 8, 48143, Munster, Germany.
| |
Collapse
|
23
|
Elucidation of the Two H3K36me3 Histone Methyltransferases Set2 and Ash1 in Fusarium fujikuroi Unravels Their Different Chromosomal Targets and a Major Impact of Ash1 on Genome Stability. Genetics 2017; 208:153-171. [PMID: 29146582 DOI: 10.1534/genetics.117.1119] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/12/2017] [Indexed: 12/31/2022] Open
Abstract
In this work, we present a comprehensive analysis of the H3K36 histone methyltransferases Set2 and Ash1 in the filamentous ascomycete Fusarium fujikuroi In Saccharomyces cerevisiae, one single methyltransferase, Set2, confers all H3K36 methylation, while there are two members of the Set2 family in filamentous fungi, and even more H3K36 methyltransferases in higher eukaryotes. Whereas the yeast Set2 homolog has been analyzed in fungi previously, the second member of the Set2 family, designated Ash1, has not been described for any filamentous fungus. Western blot and ChIP-Seq analyses confirmed that F. fujikuroi Set2 and Ash1 are H3K36-specific histone methyltransferases that deposit H3K36me3 at specific loci: Set2 is most likely responsible for H3K36 methylation of euchromatic regions of the genome, while Ash1 methylates H3K36 at the subtelomeric regions (facultative heterochromatin) of all chromosomes, including the accessory chromosome XII. Our data indicate that H3K36me3 cannot be considered a hallmark of euchromatin in F. fujikuroi, and likely also other filamentous fungi, making them different to what is known about nuclear characteristics in yeast and higher eukaryotes. We suggest that the H3K36 methylation mark exerts specific functions when deposited at euchromatic or subtelomeric regions by Set2 or Ash1, respectively. We found an enhanced level of H3K27me3, an increased instability of subtelomeric regions and losses of the accessory chromosome XII over time in Δash1 mutants, indicating an involvement of Ash1 in DNA repair processes. Further phenotypic analyses revealed a role of H3K36 methylation in vegetative growth, sporulation, secondary metabolite biosynthesis, and virulence in F. fujikuroi.
Collapse
|
24
|
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
25
|
Gu Q, Wang Z, Sun X, Ji T, Huang H, Yang Y, Zhang H, Tahir HAS, Wu L, Wu H, Gao X. FvSet2 regulates fungal growth, pathogenicity, and secondary metabolism in Fusarium verticillioides. Fungal Genet Biol 2017; 107:24-30. [PMID: 28778753 DOI: 10.1016/j.fgb.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023]
Abstract
Histone H3 lysine 36 methylation (H3K36me) is generally associated with activation of gene expression in most eukaryotic cells. However, the function of H3K36me in filamentous fungi is largely unknown. Set2 is the sole lysine histone methyltransferase (KHMTase) enzyme responsible for the methylation of H3K36 in Saccharomyces cerevisiae. In the current study, we identified a single ortholog of S. cerevisiae Set2 in Fusarium verticillioides. We report that FvSet2 is responsible for the trimethylation of H3K36 (H3K36me3). The FvSET2 deletion mutant (ΔFvSet2) showed significant defects in vegetative growth, FB1 biosynthesis, pigmentation, and fungal virulence. Furthermore, trimethylation of H3K36 was found to be important for active transcription of genes involved in FB1 and bikaverin biosyntheses. These data indicate that FvSet2 plays an important role in the regulation of secondary metabolism, vegetative growth and fungal virulence in F. verticillioides.
Collapse
Affiliation(s)
- Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Xiao Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Tiantian Ji
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Hai Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Hao Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Hafiz Abdul Samad Tahir
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China.
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| |
Collapse
|
26
|
Liang L, Liu Y, Yang K, Lin G, Xu Z, Lan H, Wang X, Wang S. The Putative Histone Methyltransferase DOT1 Regulates Aflatoxin and Pathogenicity Attributes in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9070232. [PMID: 28737735 PMCID: PMC5535179 DOI: 10.3390/toxins9070232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Lysine methyltransferases transfer methyl groups in specific lysine sites, which regulates a variety of important biological processes in eukaryotes. In this study, we characterized a novel homolog of the yeast methyltransferase DOT1 in A. flavus, and observed the roles of dot1 in A. flavus. Deletion of dot1 showed a significant decrease in conidiation, but an increase in sclerotia formation. A change in viability to multiple stresses was also found in the Δdot1 mutant. Additionally, aflatoxin (AF) production was found severely impaired in the Δdot1 mutant. Further analysis by qRT-PCR revealed that the transcription of AF structural genes and their regulator gene aflS were prominently suppressed in the Δdot1 mutant. Furthermore, our data revealed that Dot1 is important for colonizing maize seeds in A. flavus. Our research indicates that Dot1 is involved in fungal development, aflatoxin biosynthesis and fungal virulence in A. flavus, which might provide a potential target for controlling A. flavus with new strategies.
Collapse
Affiliation(s)
- Linlin Liang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinghang Liu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guinan Lin
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhangling Xu
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huahui Lan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiuna Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
27
|
Huh A, Dubey A, Kim S, Jeon J, Lee YH. MoJMJ1, Encoding a Histone Demethylase Containing JmjC Domain, Is Required for Pathogenic Development of the Rice Blast Fungus, Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2017; 33:193-205. [PMID: 28381966 PMCID: PMC5378440 DOI: 10.5423/ppj.oa.11.2016.0244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 05/04/2023]
Abstract
Histone methylation plays important roles in regulating chromatin dynamics and transcription in eukaryotes. Implication of histone modifications in fungal pathogenesis is, however, beginning to emerge. Here, we report identification and functional analysis of a putative JmjC-domain-containing histone demethylase in Magnaporthe oryzae. Through bioinformatics analysis, we identified seven genes, which encode putative histone demethylases containing JmjC domain. Deletion of one gene, MoJMJ1, belonging to JARID group, resulted in defects in vegetative growth, asexual reproduction, appressorium formation as well as invasive growth in the fungus. Western blot analysis showed that global H3K4me3 level increased in the deletion mutant, compared to wild-type strain, indicating histone demethylase activity of MoJMJ1. Introduction of MoJMJ1 gene into ΔMojmj1 restored defects in pre-penetration developments including appressorium formation, indicating the importance of histone demethylation through MoJMJ1 during infection-specific morphogenesis. However, defects in penetration and invasive growth were not complemented. We discuss such incomplete complementation in detail here. Our work on MoJMJ1 provides insights into H3K4me3-mediated regulation of infection-specific development in the plant pathogenic fungus.
Collapse
Affiliation(s)
- Aram Huh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Akanksha Dubey
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541,
Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541,
Korea
- Co-corresponding authors. J Jeon Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail) . YH Lee, Phone) +82-2-880-4674, FAX) +82-2-873-2317, E-mail)
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
- Center for Fungal Genetic Resources and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Co-corresponding authors. J Jeon Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail) . YH Lee, Phone) +82-2-880-4674, FAX) +82-2-873-2317, E-mail)
| |
Collapse
|
28
|
Epigenetic Control of Phenotypic Plasticity in the Filamentous Fungus Neurospora crassa. G3-GENES GENOMES GENETICS 2016; 6:4009-4022. [PMID: 27694114 PMCID: PMC5144970 DOI: 10.1534/g3.116.033860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phenotypic plasticity is the ability of a genotype to produce different phenotypes under different environmental or developmental conditions. Phenotypic plasticity is a ubiquitous feature of living organisms, and is typically based on variable patterns of gene expression. However, the mechanisms by which gene expression is influenced and regulated during plastic responses are poorly understood in most organisms. While modifications to DNA and histone proteins have been implicated as likely candidates for generating and regulating phenotypic plasticity, specific details of each modification and its mode of operation have remained largely unknown. In this study, we investigated how epigenetic mechanisms affect phenotypic plasticity in the filamentous fungus Neurospora crassa. By measuring reaction norms of strains that are deficient in one of several key physiological processes, we show that epigenetic mechanisms play a role in homeostasis and phenotypic plasticity of the fungus across a range of controlled environments. In general, effects on plasticity are specific to an environment and mechanism, indicating that epigenetic regulation is context dependent and is not governed by general plasticity genes. Specifically, we found that, in Neurospora, histone methylation at H3K36 affected plastic response to high temperatures, H3K4 methylation affected plastic response to pH, but H3K27 methylation had no effect. Similarly, DNA methylation had only a small effect in response to sucrose. Histone deacetylation mainly decreased reaction norm elevation, as did genes involved in histone demethylation and acetylation. In contrast, the RNA interference pathway was involved in plastic responses to multiple environments.
Collapse
|
29
|
Zhang X, Liu X, Zhao Y, Cheng J, Xie J, Fu Y, Jiang D, Chen T. Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea. Front Microbiol 2016; 7:1289. [PMID: 27597848 PMCID: PMC4992730 DOI: 10.3389/fmicb.2016.01289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/31/2022] Open
Abstract
Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism, and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xinqiang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanli Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
30
|
Sun G, Zhou Z, Liu X, Gai K, Liu Q, Cha J, Kaleri FN, Wang Y, He Q. Suppression of WHITE COLLAR-independent frequency Transcription by Histone H3 Lysine 36 Methyltransferase SET-2 Is Necessary for Clock Function in Neurospora. J Biol Chem 2016; 291:11055-63. [PMID: 27002152 DOI: 10.1074/jbc.m115.711333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/25/2022] Open
Abstract
The circadian system in Neurospora is based on the transcriptional/translational feedback loops and rhythmic frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Our previous paper has shown that frq could be transcribed in a WC-independent pathway in a strain lacking the histone H3K36 methyltransferase, SET-2 (su(var)3-9-enhancer-of-zeste-trithorax-2) (1), but the mechanism was unclear. Here we disclose that loss of histone H3K36 methylation, due to either deletion of SET-2 or H3K36R mutation, results in arrhythmic frq transcription and loss of overt rhythmicity. Histone acetylation at frq locus increases in set-2(KO) mutant. Consistent with these results, loss of H3K36 methylation readers, histone deacetylase RPD-3 (reduced potassium dependence 3) or EAF-3 (essential SAS-related acetyltransferase-associated factor 3), also leads to hyperacetylation of histone at frq locus and WC-independent frq expression, suggesting that proper chromatin modification at frq locus is required for circadian clock operation. Furthermore, a mutant strain with three amino acid substitutions (histone H3 lysine 9, 14, and 18 to glutamine) was generated to mimic the strain with hyperacetylation state of histone H3. H3K9QK14QK18Q mutant exhibits the same defective clock phenotype as rpd-3(KO) mutant. Our results support a scenario in which H3K36 methylation is required to establish a permissive chromatin state for circadian frq transcription by maintaining proper acetylation status at frq locus.
Collapse
Affiliation(s)
- Guangyan Sun
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhipeng Zhou
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China, and
| | - Xiao Liu
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kexin Gai
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingqing Liu
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Joonseok Cha
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Farah Naz Kaleri
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,
| |
Collapse
|
31
|
Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proc Natl Acad Sci U S A 2015; 112:E6339-48. [PMID: 26578794 DOI: 10.1073/pnas.1511377112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress.
Collapse
|
32
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Pham KTM, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T, Ikeda KI, Nakayashiki H. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis. PLoS Genet 2015; 11:e1005385. [PMID: 26230995 PMCID: PMC4521839 DOI: 10.1371/journal.pgen.1005385] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more likely indirectly. 4) Among the 4,077 differentially expressed genes (DEGs) between mycelia and germination tubes, 1,201 and 882 genes were up- and down-regulated, respectively, in a Moset1-dependent manner. 5) The Moset1-dependent DEGs were enriched in several gene categories such as signal transduction, transport, RNA processing, and translation. This paper provides two major contributions to the field of genetics. First, we systematically studied the biological roles of eight histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. We investigated their roles, especially focusing on their involvement in infection-related morphogenesis and pathogenicity. The results showed that the eight KMTs were involved in various infection processes to varying degrees, and that MoSET1, one of the KMTs catalyzing methylation at histone H3 lysine 4 (H3K4), had the largest impact on the pathogenicity of the fungus. Second, we focused on the role of MoSET1 in global gene regulation. H3K4 methylation is generally believed to be an epigenetic mark for gene activation in higher eukaryotes. However, in Saccharomyces cerevisiae, SET1 was originally characterized as being required for transcriptional silencing of silent mating-type loci. We addressed this apparent discrepancy by examining genome-wide gene expression and H3K4 methylation during infection-related morphogenesis in M. oryzae. RNA-seq analysis of a MoSET1 deletion mutant revealed that MoSET1 was indeed required for proper gene activation and repression. ChIP-seq analyses of H3K4 methylation and MoSET1 suggested that MoSET1 could directly play a role in gene activation while MoSET1-dependent gene repression may be caused by indirect effects.
Collapse
Affiliation(s)
- Kieu Thi Minh Pham
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Yoshihiro Inoue
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Ba Van Vu
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Hanh Hieu Nguyen
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Toru Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Ken-ichi Ikeda
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
| | - Hitoshi Nakayashiki
- Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, Japan
- * E-mail:
| |
Collapse
|
34
|
Aghcheh RK, Kubicek CP. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol 2015; 99:6167-81. [PMID: 26115753 DOI: 10.1007/s00253-015-6763-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Filamentous fungi are today a major source of industrial biotechnology for the production of primary and secondary metabolites, as well as enzymes and recombinant proteins. All of them have undergone extensive improvement strain programs, initially by classical mutagenesis and later on by genetic manipulation. Thereby, strategies to overcome rate-limiting or yield-reducing reactions included manipulating the expression of individual genes, their regulatory genes, and also their function. Yet, research of the last decade clearly showed that cells can also undergo heritable changes in gene expression that do not involve changes in the underlying DNA sequences (=epigenetics). This involves three levels of regulation: (i) DNA methylation, (ii) chromatin remodeling by histone modification, and (iii) RNA interference. The demonstration of the occurrence of these processes in fungal model organisms such as Aspergillus nidulans and Neurospora crassa has stimulated its recent investigation as a tool for strain improvement in industrially used fungi. This review describes the progress that has thereby been obtained.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-5, 1060, Vienna, Austria,
| | | |
Collapse
|
35
|
Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol 2015; 96:839-60. [PMID: 25712266 PMCID: PMC4949671 DOI: 10.1111/mmi.12977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/28/2022]
Abstract
Aspergillus nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity towards lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that – in submerged early and late cultures – between 25% and 30% of the genome is under KdmA influence respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low‐density visible light on solid medium. Although KdmA acts as transcriptional co‐repressor of primary metabolism genes, it is required for full expression of several genes involved in biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Agnieszka Gacek-Matthews
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, 3010, Australia
| | - Clemens Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Campus Muthgasse, Vienna, A-1190, Austria
| | - Harald Berger
- Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department IFA Tulln, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria.,Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | | |
Collapse
|
36
|
Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 2014; 9:e110603. [PMID: 25333968 PMCID: PMC4204872 DOI: 10.1371/journal.pone.0110603] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023] Open
Abstract
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Collapse
Affiliation(s)
- Jennifer L. Chinnici
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Lauren M. Caccamise
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jason W. Arnold
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, Glass NL, Crosthwaite SK, Liu Y. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 2014; 514:650-3. [PMID: 25132551 PMCID: PMC4214883 DOI: 10.1038/nature13671] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/10/2014] [Indexed: 01/24/2023]
Abstract
Eukaryotic circadian oscillators consist of negative feedback loops that generate endogenous rhythmicities1. Natural antisense RNAs are found in a wide range of eukaryotic organisms2-5. Nevertheless, the physiological importance and mode of action of most antisense RNAs is not clear6-9. frequency (frq) encodes a component of the Neurospora core circadian negative feedback loop which was thought to generate sustained rhythmicity10. Transcription of qrf, the long non-coding frq antisense RNA, is light induced, and its level oscillates in antiphase to frq sense RNA3. Here we show that qrf transcription is regulated by both light-dependent and -independent mechanisms. Light-dependent qrf transcription represses frq expression and regulates clock resetting. qrf expression in the dark, on the other hand, is required for circadian rhythmicity. frq transcription also inhibits qrf expression and surprisingly, drives the antiphasic rhythm of qrf transcripts. The mutual inhibition of frq and qrf transcription thus forms a double negative feedback loop that is interlocked with the core feedback loop. Genetic and mathematical modeling analyses indicate that such an arrangement is required for robust and sustained circadian rhythmicity. Moreover, our results suggest that antisense transcription inhibits sense expression by mediating chromatin modifications and premature transcription termination. Together, our results established antisense transcription as an essential feature in a circadian system and shed light on the importance and mechanism of antisense action.
Collapse
Affiliation(s)
- Zhihong Xue
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Qiaohong Ye
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Simon R Anson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jichen Yang
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Guanghua Xiao
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
38
|
Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. Proc Natl Acad Sci U S A 2013; 110:E4867-74. [PMID: 24277852 DOI: 10.1073/pnas.1315133110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhythmic activation and repression of clock gene transcription is essential for the functions of eukaryotic circadian clocks. In the Neurospora circadian oscillator, frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Here, we show that the transcriptional corepressor regulation of conidiation-1 (RCO-1) is essential for clock function by regulating frq transcription. In rco-1 mutants, both overt and molecular rhythms are abolished, frq mRNA levels are constantly high, and WC binding to the frq promoter is dramatically reduced. Surprisingly, frq mRNA levels were constantly high in the rco-1 wc double mutants, indicating that RCO-1 suppresses WC-independent transcription and promotes WC complex binding to the frq promoter. Furthermore, RCO-1 is required for maintaining normal chromatin structure at the frq locus. Deletion of H3K36 methyltransferase su(var)3-9-enhancer-of-zeste-trithorax-2 (SET-2) or the chromatin remodeling factor CHD-1 leads to WC-independent frq transcription and loss of overt rhythms. Together, our results uncover a previously unexpected regulatory mechanism for clock gene transcription.
Collapse
|
39
|
Connolly LR, Smith KM, Freitag M. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 2013; 9:e1003916. [PMID: 24204317 PMCID: PMC3814326 DOI: 10.1371/journal.pgen.1003916] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/10/2013] [Indexed: 12/16/2022] Open
Abstract
The cereal pathogen Fusarium graminearum produces secondary metabolites toxic to humans and animals, yet coordinated transcriptional regulation of gene clusters remains largely a mystery. By chromatin immunoprecipitation and high-throughput DNA sequencing (ChIP-seq) we found that regions with secondary metabolite clusters are enriched for trimethylated histone H3 lysine 27 (H3K27me3), a histone modification associated with gene silencing. H3K27me3 was found predominantly in regions that lack synteny with other Fusarium species, generally subtelomeric regions. Di- or trimethylated H3K4 (H3K4me2/3), two modifications associated with gene activity, and H3K27me3 are predominantly found in mutually exclusive regions of the genome. To find functions for H3K27me3, we deleted the gene for the putative H3K27 methyltransferase, KMT6, a homolog of Drosophila Enhancer of zeste, E(z). The kmt6 mutant lacks H3K27me3, as shown by western blot and ChIP-seq, displays growth defects, is sterile, and constitutively expresses genes for mycotoxins, pigments and other secondary metabolites. Transcriptome analyses showed that 75% of 4,449 silent genes are enriched for H3K27me3. A subset of genes that were enriched for H3K27me3 in WT gained H3K4me2/3 in kmt6. A largely overlapping set of genes showed increased expression in kmt6. Almost 95% of the remaining 2,720 annotated silent genes showed no enrichment for either H3K27me3 or H3K4me2/3 in kmt6. In these cases mere absence of H3K27me3 was insufficient for expression, which suggests that additional changes are required to activate genes. Taken together, we show that absence of H3K27me3 allowed expression of an additional 14% of the genome, resulting in derepression of genes predominantly involved in secondary metabolite pathways and other species-specific functions, including putative secreted pathogenicity factors. Results from this study provide the framework for novel targeted strategies to control the “cryptic genome”, specifically secondary metabolite expression. Changes in chromatin structure are required for time- and tissue-specific gene regulation. How exactly these changes are mediated is under intense scrutiny. The interplay between activating histone modifications, e.g. H3K4me, and the silencing H3K27me3 mark has been recognized as critical to orchestrate differentiation and development in plants and animals. Here we show that filamentous fungi, exemplified by the cereal pathogen Fusarium graminearum, can use H3K27 methylation to generate silenced, facultative heterochromatin, covering more than a third of the genome, much more than the 5–8% of Neurospora or metazoan genomes. Removal of the silencing mark by mutation of the methyltransferase subunit of the PRC2 silencing complex resulted in activation of more than 1,500 genes, 14% of the genome. We show that generation of facultative heterochromatin by H3K27 methylation is an ancestral process that has been lost in certain lineages (e.g. at least some hemiascomycetes, the genus Aspergillus and some basidiomycetes). Our studies will open the door to future precise “epigenetic engineering” of gene clusters that generate bioactive compounds, e.g. putative mycotoxins, antibiotics and industrial feedstocks. Availability of tractable fungal model systems for studies of the control and function of H3K27 methylation may accelerate mechanistic research.
Collapse
Affiliation(s)
- Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
40
|
Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3-GENES GENOMES GENETICS 2013; 3:369-78. [PMID: 23390613 PMCID: PMC3564997 DOI: 10.1534/g3.112.005140] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 11/25/2022]
Abstract
The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi, and it can modify heterochromatin structure in Aspergillus nidulans. We have recently shown that the LaeA ortholog of Trichoderma reesei (LAE1), a fungus that is an industrial producer of cellulase and hemicellulase enzymes, regulates the expression of cellulases and polysaccharide hydrolases. To learn more about the function of LAE1 in T. reesei, we assessed the effect of deletion and overexpression of lae1 on genome-wide gene expression. We found that in addition to positively regulating 7 of 17 polyketide or nonribosomal peptide synthases, genes encoding ankyrin-proteins, iron uptake, heterokaryon incompatibility proteins, PTH11-receptors, and oxidases/monoxygenases are major gene categories also regulated by LAE1. chromatin immunoprecipitation sequencing with antibodies against histone modifications known to be associated with transcriptionally active (H3K4me2 and -me3) or silent (H3K9me3) chromatin detected 4089 genes bearing one or more of these methylation marks, of which 75 exhibited a correlation between either H3K4me2 or H3K4me3 and regulation by LAE1. Transformation of a laeA-null mutant of A. nidulans with the T. reesei lae1 gene did not rescue sterigmatocystin formation and further impaired sexual development. LAE1 did not interact with A. nidulans VeA in yeast two-hybrid assays, whereas it interacted with the T. reesei VeA ortholog, VEL1. LAE1 was shown to be required for the expression of vel1, whereas the orthologs of velB and VosA are unaffected by lae1 deletion. Our data show that the biological roles of A. nidulans LaeA and T. reesei LAE1 are much less conserved than hitherto thought. In T. reesei, LAE1 appears predominantly to regulate genes increasing relative fitness in its environment.
Collapse
|
41
|
Ontogenetic survey of histone modifications in an annelid. GENETICS RESEARCH INTERNATIONAL 2012; 2012:392903. [PMID: 22567386 PMCID: PMC3335605 DOI: 10.1155/2012/392903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/21/2011] [Indexed: 01/06/2023]
Abstract
Histone modifications are widely recognized for their fundamental importance in regulating gene expression in embryonic development in a wide range of eukaryotes, but they have received relatively little attention in the development of marine invertebrates. We surveyed histone modifications throughout the development of a marine annelid, Polydora cornuta, to determine if modifications could be detected immunohistochemically and if there were characteristic changes in modifications throughout ontogeny (surveyed at representative stages from oocyte to adult). We found a common time of onset for three histone modifications in early cleavage (H3K14ac, H3K9me, and H3K4me2), some differences in the distribution of modifications among germ layers, differences in epifluorescence intensity in specific cell lineages suggesting that hyperacetylation (H3K14ac) and hypermethylation (H3K9me) occur during differentiation, and an overall decrease in the distribution of modifications from larvae to adults. Although preliminary, these results suggest that histone modifications are involved in activating early development and differentiation in a marine invertebrate.
Collapse
|
42
|
Sun X, Zhang H, Zhang Z, Wang Y, Li S. Involvement of a helix–loop–helix transcription factor CHC-1 in CO2-mediated conidiation suppression in Neurospora crassa. Fungal Genet Biol 2011; 48:1077-86. [DOI: 10.1016/j.fgb.2011.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/19/2011] [Accepted: 09/29/2011] [Indexed: 01/25/2023]
|
43
|
Wilkinson JR, Kale SP, Bhatnagar D, Yu J, Ehrlich KC. Expression profiling of non-aflatoxigenic Aspergillus parasiticus mutants obtained by 5-azacytosine treatment or serial mycelial transfer. Toxins (Basel) 2011; 3:932-48. [PMID: 22069749 PMCID: PMC3202869 DOI: 10.3390/toxins3080932] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Previous studies found that repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced colonies with a fluffy phenotype and inability to produce aflatoxins. To understand how these treatments affect expression of genes involved in aflatoxin production and development, we carried out expressed sequence tag (EST)-based microarray assays to identify genes in treated clones that are differentially expressed compared to the wild-type. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to encode membrane-bound proteins. Based on this result we hypothesize that the treatments cause changes in the structure of cellular and organelle membranes that prevent normal development and aflatoxin biosynthesis.
Collapse
Affiliation(s)
- Jeffrey R. Wilkinson
- Southern Regional Research Center, ARS/USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (J.R.W.); (D.B.); (J.Y)
| | - Shubha P. Kale
- Department of Biology, 1 Drexel Dr., Box 85B, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | - Deepak Bhatnagar
- Southern Regional Research Center, ARS/USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (J.R.W.); (D.B.); (J.Y)
| | - Jiujiang Yu
- Southern Regional Research Center, ARS/USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (J.R.W.); (D.B.); (J.Y)
| | - Kenneth C. Ehrlich
- Southern Regional Research Center, ARS/USDA, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (J.R.W.); (D.B.); (J.Y)
| |
Collapse
|
44
|
Thorstensen T, Grini PE, Aalen RB. SET domain proteins in plant development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:407-20. [PMID: 21664308 DOI: 10.1016/j.bbagrm.2011.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/08/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Post-translational methylation of lysine residues on histone tails is an epigenetic modification crucial for regulation of chromatin structure and gene expression in eukaryotes. The majority of the histone lysine methyltransferases (HKMTases) conferring such modifications are proteins with a conserved SET domain responsible for the enzymatic activity. The SET domain proteins in the model plant Arabidopsis thaliana can be assigned to evolutionarily conserved classes with different specificities allowing for different outcomes on chromatin structure. Here we review the present knowledge of the biochemical and biological functions of plant SET domain proteins in developmental processes. This article is part of a Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Tage Thorstensen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
45
|
Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 2011; 48:62-9. [PMID: 20659575 PMCID: PMC3935439 DOI: 10.1016/j.fgb.2010.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 01/07/2023]
Abstract
Chromatin, composed of DNA wrapped around an octamer of histones, is the relevant substrate for all genetic processes in eukaryotic nuclei. Changes in chromatin structure are associated with the activation and silencing of gene transcription and reversible post-translational modifications of histones are now known to direct chromatin structure transitions. Recent studies in several fungal species have identified a chromatin-based regulation of secondary metabolism (SM) gene clusters representing an upper-hierarchical level for the coordinated control of large chromosomal elements. Regulation by chromatin transition processes provides a mechanistic model to explain how different SM clusters located at dispersed genomic regions can be simultaneously silenced during primary metabolism. Activation of SM clusters has been shown to be associated with increased acetylation of histones H3 and H4 and, consequently, inhibition of histone de-acetylase activities also leads to increased production of secondary metabolites. New findings suggest that SM clusters are silenced by heterochromatic histone marks and that the "closed" heterochromatic structures are reversed during SM activation. This process is mediated by the conserved activator of SM, LaeA. Despite the increase in knowledge about these processes, much remains to be learned from chromatin-level regulation of SM. For example, which proteins "position" the chromatin restructuring signal onto SM clusters or how exactly LaeA works to mediate the low level of heterochromatic marks inside different clusters remain open questions. Answers to these and other chromatin-related questions would certainly complete our understanding of SM gene regulation and signaling and, because for many predicted SM clusters corresponding products have not been identified so far, anti-silencing strategies would open new ways for the identification of novel bioactive substances.
Collapse
Affiliation(s)
- Joseph Strauss
- Corresponding author. Fax: +43 1 36006 6392. (J. Strauss)
| | | |
Collapse
|
46
|
Palmer JM, Mallaredy S, Perry DW, Sanchez JF, Theisen JM, Szewczyk E, Oakley BR, Wang CCC, Keller NP, Mirabito PM. Telomere position effect is regulated by heterochromatin-associated proteins and NkuA in Aspergillus nidulans. MICROBIOLOGY-SGM 2010; 156:3522-3531. [PMID: 20724388 PMCID: PMC3068700 DOI: 10.1099/mic.0.039255-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gene-silencing mechanisms are being shown to be associated with an increasing number of fungal developmental processes. Telomere position effect (TPE) is a eukaryotic phenomenon resulting in gene repression in areas immediately adjacent to telomere caps. Here, TPE is shown to regulate expression of transgenes on the left arm of chromosome III and the right arm of chromosome VI in Aspergillus nidulans. Phenotypes found to be associated with transgene repression included reduction in radial growth and the absence of sexual spores; however, these pleiotropic phenotypes were remedied when cultures were grown on media with appropriate supplementation. Simple radial growth and ascosporogenesis assays provided insights into the mechanism of TPE, including a means to determine its extent. These experiments revealed that the KU70 homologue (NkuA) and the heterochromatin-associated proteins HepA, ClrD and HdaA were partially required for transgene silencing. This study indicates that TPE extends at least 30 kb on chromosome III, suggesting that this phenomenon may be important for gene regulation in subtelomeric regions of A. nidulans.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Sandeep Mallaredy
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin W Perry
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - James F Sanchez
- School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9023, USA
| | - Jeffrey M Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Edyta Szewczyk
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.,Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Clay C C Wang
- School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9023, USA
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Peter M Mirabito
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
47
|
Xiong L, Adhvaryu KK, Selker EU, Wang Y. Mapping of lysine methylation and acetylation in core histones of Neurospora crassa. Biochemistry 2010; 49:5236-43. [PMID: 20433192 PMCID: PMC2902163 DOI: 10.1021/bi1001322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Core histones are susceptible to a variety of post-translational modifications (PTMs), among which methylation and acetylation play critical roles in various chromatin-dependent processes. The nature and biological functions of these PTMs have been extensively studied in plants, animals, and yeasts. In contrast, the histone modifications in Neurospora crassa, a convenient model organism for multicellular eukaryotes, remained largely undefined. In this study, we used several mass spectrometric techniques, coupled with HPLC separation and multiple-protease digestion, to identify the methylation and acetylation sites in core histones isolated from Neurospora. Electron transfer dissociation (ETD) was employed to fragment the heavily modified long N-terminal peptides. In addition, accurate mass measurement of fragment ions allowed for unambiguous differentiation of acetylation from trimethylation. Many modification sites conserved in other organisms were identified in Neurospora. In addition, some unique modification sites in histone H2B, including N-terminal alpha methylation, methylation at K3, and acetylation at K19, K28, and K29, were observed. Our analysis provides a potentially comprehensive picture of methylation and acetylation of core histones in Neurospora, which should serve as a foundation for future studies of the function of histone PTMs in this model organism.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | | | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, 97403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
48
|
Grini PE, Thorstensen T, Alm V, Vizcay-Barrena G, Windju SS, Jørstad TS, Wilson ZA, Aalen RB. The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PLoS One 2009; 4:e7817. [PMID: 19915673 PMCID: PMC2772814 DOI: 10.1371/journal.pone.0007817] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/20/2009] [Indexed: 01/05/2023] Open
Abstract
Background SET-domain proteins are histone lysine (K) methyltransferases (HMTase) implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2) protein (also called SDG8, EFS and CCR1) has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. Methodology/Principal Findings A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to ∼90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99) we observed a reduction of H3K36 trimethylation (me3), but not H3K4me3 or H3K36me2. Conclusions/Significance The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to the observed defects, implicates ASHH2 in regulation of gene expression via H3K36 trimethylation in chromatin of Arabidopsis inflorescences.
Collapse
Affiliation(s)
- Paul E. Grini
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Tage Thorstensen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Vibeke Alm
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | - Susanne S. Windju
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Tommy S. Jørstad
- Department of Biology, Norwegian University of Sciences and Technology, Trondheim, Norway
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reidunn B. Aalen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
49
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
50
|
Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 2009; 11:87-102. [PMID: 19434510 DOI: 10.1007/s10522-009-9231-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 12/31/2022]
Abstract
Histone post-translational modifications (PTMs) are involved in diverse biological processes and methylation was regarded as a long-term epigenetic mark. Though aging represented one of the major risk factors for neurodegenerative diseases, no systematic investigations had correlated the patterns of histone PTMs in the brain with aging and the roles of such concerted histone PTMs in brain aging are still unknown. In this study, enzyme digestion, nano-LC, MALDI-TOF/TOF MS analysis and Western blotting were combined to investigate the defined methylation of core histones (H2A, H2B, H3 and H4) in the brain of 12-month-old senescence accelerated mouse prone 8 (SAMP8). The expression of several modified histones in the brain of 3-, and 12-month-old SAMP8 mice as well as that of the age-matched control senescence accelerated-resistant mouse (SAMR1) was compared. In the brain of 12-month-old SAMP8 mice, seven methylation sites (H3K24, H3K27, H3K36, H3K79, H3R128, H4K20 and H2A R89) were detected and most PTMs sites were located on histone H3. Mono-methylated H4K20 decreased significantly in the brain of 12-month-old SAMP8 mice. Methylated H3K27 and H3K36 coexisted in the aged brain with different methylation multiplicities. Di-methylated H3K79 expressed in the neurons of cerebral cortex and hippocampus. This study showed histone methylation patterns in the aged SAMP8 mice brain and provided the experimental evidences for further research on histone PTMs in the aged brain. We hope these results could initiate a platform for the exchange of comprehensive information concerning aging or neurodegenerative disease and help us interpret the change of gene expression and DNA repair ability at epigenetic level.
Collapse
Affiliation(s)
- Chun Mei Wang
- Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | | | | | | | | |
Collapse
|