1
|
Liu D, Chen R, He Y, Wang YJ, Lin LR, Liu LL, Yang TC, Tong ML. Longitudinal Variations in the tprK Gene of Treponema pallidum in an Amoy Strain-Infected Rabbit Model. Microbiol Spectr 2023; 11:e0106723. [PMID: 37347187 PMCID: PMC10433980 DOI: 10.1128/spectrum.01067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Heterogeneous tprK sequences have been hypothesized to be an important factor for persistent infection of Treponema pallidum subsp. pallidum (T. pallidum) in humans. Previous research has only explored tprK diversity using a rabbit model infected with almost clonal isolates, which is inconsistent with the fact that infected human isolates contain multiple heterogeneous tprK sequences. Here, we used the T. pallidum Amoy strain with heterogeneous tprK sequences to establish a rabbit infection model and explore longitudinal variations in the tprK gene under normal infection, immunosuppression treatment, and benzathine penicillin G (BPG) treatment using next-generation sequencing. The diversity of the tprK gene was high in all three groups but was highest in the control group and lowest in the BPG group. Interestingly, the overall diversity of tprK in all three groups decreased during infection, exhibiting a "more to less" trend, indicating that survival selection may be an important factor affecting tprK variation in the later infection stage. BPG treatment appeared to reduce the diversity of tprK but increased the frequency of predominant sequence changes, which might facilitate the escape of T. pallidum from the host immune clearance. Furthermore, the original predominant V region sequence did not disappear with disease progression but retained a relatively high proportion within the population, suggesting a new direction for tprK-related vaccine research. This study provides insights into longitudinal variations within the highly heterogeneous tprK gene sequences of T. pallidum and will contribute to further exploration of the pathogenesis of syphilis. IMPORTANCE The tprK variations are an important factor in persistent T. pallidum infection. A nearly clonal isolate has been used previously to investigate the mechanism of tprK gene variations; however, clinical T. pallidum isolates in infected humans exhibit multiple heterogeneous tprK sequences. Here, we use next-generation sequencing to explore longitudinal variations in the tprK gene under normal infection and immunosuppression and benzathine penicillin G treatment in a rabbit model infected with the Amoy strain with heterogeneous tprK sequences. The overall diversity of tprK in all three groups was high and decreased during infection, exhibiting a "more to less" trend. Benzathine penicillin G treatment reduced the diversity of tprK but increased the frequency of predominant sequence changes. Moreover, the original predominant V region sequence did not disappear as the disease progressed but remained at a relatively high proportion within the population. The research results give us a new understanding about tprK variation.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yun He
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Romeis E, Lieberman NAP, Molini B, Tantalo LC, Chung B, Phung Q, Avendaño C, Vorobieva A, Greninger AL, Giacani L. Treponema pallidum subsp. pallidum with an Artificially impaired TprK antigenic variation system is attenuated in the Rabbit model of syphilis. PLoS Pathog 2023; 19:e1011259. [PMID: 36940224 PMCID: PMC10063172 DOI: 10.1371/journal.ppat.1011259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND The TprK protein of the syphilis agent, Treponema pallidum subsp. pallidum (T. pallidum), undergoes antigenic variation in seven discrete variable (V) regions via non-reciprocal segmental gene conversion. These recombination events transfer information from a repertoire of 53 silent chromosomal donor cassettes (DCs) into the single tprK expression site to continually generate TprK variants. Several lines of research developed over the last two decades support the theory that this mechanism is central to T. pallidum's ability for immune avoidance and persistence in the host. Structural and modeling data, for example, identify TprK as an integral outer membrane porin with the V regions exposed on the pathogen's surface. Furthermore, infection-induced antibodies preferentially target the V regions rather than the predicted β-barrel scaffolding, and sequence variation abrogates the binding of antibodies elicited by antigenically different V regions. Here, we engineered a T. pallidum strain to impair its ability to vary TprK and assessed its virulence in the rabbit model of syphilis. PRINCIPAL FINDINGS A suicide vector was transformed into the wild-type (WT) SS14 T. pallidum isolate to eliminate 96% of its tprK DCs. The resulting SS14-DCKO strain exhibited an in vitro growth rate identical to the untransformed strain, supporting that the elimination of the DCs did not affect strain viability in absence of immune pressure. In rabbits injected intradermally with the SS14-DCKO strain, generation of new TprK sequences was impaired, and the animals developed attenuated lesions with a significantly reduced treponemal burden compared to control animals. During infection, clearance of V region variants originally in the inoculum mirrored the generation of antibodies to these variants, although no new variants were generated in the SS14-DCKO strain to overcome immune pressure. Naïve rabbits that received lymph node extracts from animals infected with the SS14-DCKO strain remained uninfected. CONCLUSION These data further support the critical role of TprK in T. pallidum virulence and persistence during infection.
Collapse
Affiliation(s)
- Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Nicole A. P. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Barbara Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Lauren C. Tantalo
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Chung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Carlos Avendaño
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Anastassia Vorobieva
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Romeis E, Lieberman NAP, Molini B, Tantalo LC, Chung B, Phung Q, Avendaño C, Vorobieva A, Greninger AL, Giacani L. Treponema pallidum subsp. pallidum with an Artificially Impaired TprK Antigenic Variation System is Attenuated in the Rabbit Model of Syphilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524629. [PMID: 36711914 PMCID: PMC9882362 DOI: 10.1101/2023.01.18.524629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The TprK protein of the syphilis agent, Treponema pallidum subsp. pallidum ( T. pallidum ), undergoes antigenic variation in seven discrete variable (V) regions via non-reciprocal segmental gene conversion. These recombination events transfer information from a repertoire of 53 silent chromosomal donor cassettes (DCs) into the single tprK expression site to continually generate TprK variants. Several lines of research developed over the last two decades support the theory that this mechanism is central to T. pallidum 's ability for immune avoidance and persistence in the host. Structural and modeling data, for example, identify TprK as an integral outer membrane porin with the V regions exposed on the pathogen's surface. Furthermore, infection-induced antibodies preferentially target the V regions rather than the predicted β-barrel scaffolding, and sequence variation abrogates the binding of antibodies elicited by antigenically different V regions. Here, we engineered a T. pallidum strain to impair its ability to vary TprK and assessed its virulence in the rabbit model of syphilis. Principal findings A suicide vector was transformed into the wild-type (WT) SS14 T. pallidum isolate to eliminate 96% of its tprK DCs. The resulting SS14-DC KO strain exhibited an in vitro growth rate identical to the untransformed strain, supporting that the elimination of the DCs did not affect strain viability in absence of immune pressure. In rabbits injected intradermally with the SS14-DC KO strain, generation of new TprK sequences was impaired, and the animals developed attenuated lesions with a significantly reduced treponemal burden compared to control animals. During infection, clearance of V region variants originally in the inoculum mirrored the generation of antibodies to these variants, although no new variants were generated in the SS14-DC KO strain to overcome immune pressure. Naïve rabbits that received lymph node extracts from animals infected with the SS14-DC KO strain remained uninfected. Conclusion These data further support the critical role of TprK in T. pallidum virulence and persistence during infection. Author Summary Syphilis is still endemic in low- and middle-income countries, and it has been resurgent in high-income nations, including the U.S., for years. In endemic areas, there is still significant morbidity and mortality associated with this disease, particularly when its causative agent, the spirochete Treponema pallidum subsp . pallidum ( T. pallidum ) infects the fetus during pregnancy. Improving our understanding of syphilis pathogenesis and T. pallidum biology could help investigators devise better control strategies for this serious infection. Now that tools to genetically manipulate this pathogen are available, we can engineer T. pallidum strains lacking specific genes or genomic regions known (or believed) to be associated with virulence. This approach can shed light on the role of the ablated genes or sequences in disease development using loss-of-function strains. Here, we derived a knockout (KO) T. pallidum mutant (SS14-DC KO ) impaired in its ability to undergo antigenic variation of TprK, a protein that has long been hypothesized to be central in evasion of the host immune response and pathogen persistence during infection. When compared to the WT isolate, which is still capable of antigenic variation, the SS14-DC KO strain is significantly attenuated in its ability to proliferate and to induce early disease manifestations in infected rabbits. Our results further support the importance of TprK antigenic variation in syphilis pathogenesis and pathogen persistence.
Collapse
|
4
|
Romeis E, Tantalo L, Lieberman N, Phung Q, Greninger A, Giacani L. Genetic engineering of Treponema pallidum subsp. pallidum, the Syphilis Spirochete. PLoS Pathog 2021; 17:e1009612. [PMID: 34228757 PMCID: PMC8284648 DOI: 10.1371/journal.ppat.1009612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/16/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Despite more than a century of research, genetic manipulation of Treponema pallidum subsp. pallidum (T. pallidum), the causative agent of syphilis, has not been successful. The lack of genetic engineering tools has severely limited understanding of the mechanisms behind T. pallidum success as a pathogen. A recently described method for in vitro cultivation of T. pallidum, however, has made it possible to experiment with transformation and selection protocols in this pathogen. Here, we describe an approach that successfully replaced the tprA (tp0009) pseudogene in the SS14 T. pallidum strain with a kanamycin resistance (kanR) cassette. A suicide vector was constructed using the pUC57 plasmid backbone. In the vector, the kanR gene was cloned downstream of the tp0574 gene promoter. The tp0574prom-kanR cassette was then placed between two 1-kbp homology arms identical to the sequences upstream and downstream of the tprA pseudogene. To induce homologous recombination and integration of the kanR cassette into the T. pallidum chromosome, in vitro-cultured SS14 strain spirochetes were exposed to the engineered vector in a CaCl2-based transformation buffer and let recover for 24 hours before adding kanamycin-containing selective media. Integration of the kanR cassette was demonstrated by qualitative PCR, droplet digital PCR (ddPCR), and whole-genome sequencing (WGS) of transformed treponemes propagated in vitro and/or in vivo. ddPCR analysis of RNA and mass spectrometry confirmed expression of the kanR message and protein in treponemes propagated in vitro. Moreover, tprA knockout (tprAko-SS14) treponemes grew in kanamycin concentrations that were 64 times higher than the MIC for the wild-type SS14 (wt-SS14) strain and in infected rabbits treated with kanamycin. We demonstrated that genetic manipulation of T. pallidum is attainable. This discovery will allow the application of functional genetics techniques to study syphilis pathogenesis and improve syphilis vaccine development. Syphilis is still an endemic disease in many low- and middle-income countries, and it has been resurgent in high-income nations for almost two decades. In endemic areas, syphilis causes significant morbidity and mortality, particularly when its causative agent, the spirochete Treponema pallidum subsp. pallidum (T. pallidum) is transmitted to the fetus during pregnancy. A better understanding of T. pallidum biology and syphilis pathogenesis would help devise better control strategies for this infection. One of the limitations associated with working with T. pallidum was our inability to genetically alter this pathogen to evaluate the function of genes encoding virulence factors or create attenuated strains that could be informative for vaccine development when studied using the rabbit model of the disease. Here, we report a transformation protocol that allowed us to replace a specific region of the T. pallidum genome containing a pseudogene (i.e., a non-functional gene) with a stably integrated kanamycin resistance gene. To our knowledge, this is the first-ever report of a method to achieve a genetically modified T. pallidum strain.
Collapse
Affiliation(s)
- Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Lauren Tantalo
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Nicole Lieberman
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Quynh Phung
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alex Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Majander K, Pfrengle S, Kocher A, Neukamm J, du Plessis L, Pla-Díaz M, Arora N, Akgül G, Salo K, Schats R, Inskip S, Oinonen M, Valk H, Malve M, Kriiska A, Onkamo P, González-Candelas F, Kühnert D, Krause J, Schuenemann VJ. Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe. Curr Biol 2020; 30:3788-3803.e10. [PMID: 32795443 DOI: 10.1016/j.cub.2020.07.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022]
Abstract
Syphilis is a globally re-emerging disease, which has marked European history with a devastating epidemic at the end of the 15th century. Together with non-venereal treponemal diseases, like bejel and yaws, which are found today in subtropical and tropical regions, it currently poses a substantial health threat worldwide. The origins and spread of treponemal diseases remain unresolved, including syphilis' potential introduction into Europe from the Americas. Here, we present the first genetic data from archaeological human remains reflecting a high diversity of Treponema pallidum in early modern Europe. Our study demonstrates that a variety of strains related to both venereal syphilis and yaws-causing T. pallidum subspecies were already present in Northern Europe in the early modern period. We also discovered a previously unknown T. pallidum lineage recovered as a sister group to yaws- and bejel-causing lineages. These findings imply a more complex pattern of geographical distribution and etiology of early treponemal epidemics than previously understood.
Collapse
Affiliation(s)
- Kerttu Majander
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany
| | - Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | | | - Marta Pla-Díaz
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich, Switzerland
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kati Salo
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Archaeology, Faculty of Arts, University of Helsinki, Unioninkatu 38F, 00014 Helsinki, Finland
| | - Rachel Schats
- Laboratory for Human Osteoarchaeology, Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - Sarah Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| | - Markku Oinonen
- Laboratory of Chronology, Finnish Museum of Natural History, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
| | - Heiki Valk
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Martin Malve
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Aivar Kriiska
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen, Tübingen, Germany.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Osias E, Hung P, Giacani L, Stafylis C, Konda KA, Vargas SK, Reyes-Díaz EM, Comulada WS, Haake DA, Haynes AM, Caceres CF, Klausner JD. Investigation of syphilis immunology and Treponema pallidum subsp. pallidum biology to improve clinical management and design a broadly protective vaccine: study protocol. BMC Infect Dis 2020; 20:444. [PMID: 32576149 PMCID: PMC7309211 DOI: 10.1186/s12879-020-05141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The syphilis epidemic continues to cause substantial morbidity and mortality worldwide, particularly in low- and middle-income countries, despite several recent disease control initiatives. Though our understanding of the pathogenesis of this disease and the biology of the syphilis agent, Treponema pallidum subsp. pallidum has improved over the last two decades, further research is necessary to improve clinical diagnosis and disease management protocols. Additionally, such research efforts could contribute to the identification of possible targets for the development of an effective vaccine to stem syphilis spread. METHODS This study will recruit two cohorts of participants with active syphilis infection, one with de novo infection, one with repeat infection. Whole blood specimens will be collected from each study participant at baseline, 4, 12, 24, 36, and 48 weeks, to track specific markers of their immunological response, as well as to compare humoral reactivity to Treponema pallidum antigens between the two groups. Additionally, we will use serum specimens to look for unique cytokine patterns in participants with early syphilis. Oral and blood samples, as well as samples from any syphilitic lesions present, will also be collected to sequence any Treponema pallidum DNA found. DISCUSSION By furthering our understanding of syphilis pathogenesis and human host immune response to Treponema pallidum, we will provide important data that will help in development of new point-of-care tests that could better identify active infection, leading to improved syphilis diagnosis and management. Findings could also contribute to vaccine development efforts.
Collapse
Affiliation(s)
- Ethan Osias
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Phoebe Hung
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Chrysovalantis Stafylis
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Kelika A Konda
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Silver K Vargas
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Michael Reyes-Díaz
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - W Scott Comulada
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - David A Haake
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Carlos F Caceres
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Mikalová L, Janečková K, Nováková M, Strouhal M, Čejková D, Harper KN, Šmajs D. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains. PLoS One 2020; 15:e0230926. [PMID: 32236138 PMCID: PMC7112178 DOI: 10.1371/journal.pone.0230926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). Until now, only a single TEN strain, Bosnia A, has been completely sequenced. The only other laboratory TEN strain available, Iraq B, was isolated in Iraq in 1951 by researchers from the US Centers for Disease Control and Prevention. In this study, the complete genome of the Iraq B strain was amplified as overlapping PCR products and sequenced using the pooled segment genome sequencing method and Illumina sequencing. Total average genome sequencing coverage reached 3469×, with a total genome size of 1,137,653 bp. Compared to the genome sequence of Bosnia A, a set of 37 single nucleotide differences, 4 indels, 2 differences in the number of tandem repetitions, and 18 differences in the length of homopolymeric regions were found in the Iraq B genome. Moreover, the tprF and tprG genes that were previously found deleted in the genome of the TEN Bosnia A strain (spanning 2.3 kb in length) were present in a subpopulation of TEN Iraq B and Bosnia A microbes, and their sequence was highly similar to those found in T. p. subsp. pertenue strains, which cause the disease yaws. The genome sequence of TEN Iraq B revealed close genetic relatedness between both available bejel-causing laboratory strains (i.e., Iraq B and Bosnia A) and also genetic variability within the bejel treponemes comparable to that found within yaws- or syphilis-causing strains. In addition, genetic relatedness to TPE strains was demonstrated by the sequence of the tprF and tprG genes found in subpopulations of both TEN Iraq B and Bosnia A. The loss of the tprF and tprG genes in most TEN microbes suggest that TEN genomes have been evolving via the loss of genomic regions, a phenomenon previously found among the treponemes causing both syphilis and rabbit syphilis.
Collapse
Affiliation(s)
- Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klára Janečková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Nováková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Kristin N. Harper
- Department of Population Biology, Ecology, and Evolution, Emory University, Atlanta, Georgia, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, Noda AA, Mechaly AE, Pospíšilová P, Čejková D, Grange PA, Dupin N, Strnadel R, Chen M, Denham I, Arora N, Picardeau M, Weston C, Forsyth RA, Šmajs D. Directly Sequenced Genomes of Contemporary Strains of Syphilis Reveal Recombination-Driven Diversity in Genes Encoding Predicted Surface-Exposed Antigens. Front Microbiol 2019; 10:1691. [PMID: 31417509 PMCID: PMC6685089 DOI: 10.3389/fmicb.2019.01691] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
Syphilis, caused by Treponema pallidum subsp. pallidum (TPA), remains an important public health problem with an increasing worldwide prevalence. Despite recent advances in in vitro cultivation, genetic variability of this pathogen during infection is poorly understood. Here, we present contemporary and geographically diverse complete treponemal genome sequences isolated directly from patients using a methyl-directed enrichment prior to sequencing. This approach reveals that approximately 50% of the genetic diversity found in TPA is driven by inter- and/or intra-strain recombination events, particularly in strains belonging to one of the defined genetic groups of syphilis treponemes: Nichols-like strains. Recombinant loci were found to encode putative outer-membrane proteins and the recombination variability was almost exclusively found in regions predicted to be at the host-pathogen interface. Genetic recombination has been considered to be a rare event in treponemes, yet our study unexpectedly showed that it occurs at a significant level and may have important impacts in the biology of this pathogen, especially as these events occur primarily in the outer membrane proteins. This study reveals the existence of strains with different repertoires of surface-exposed antigens circulating in the current human population, which should be taken into account during syphilis vaccine development.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Biology of Spirochetes Unit, Institut Pasteur, Paris, France
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Markéta Nováková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States.,Department of Global Health, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Anežka Niesnerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Angel A Noda
- Department of Mycology-Bacteriology, Instituto de Medicina Tropical "Pedro Kourí", Havana, Cuba
| | - Ariel E Mechaly
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czechia
| | - Philippe A Grange
- Faculté de Médecine, Laboratoire de Dermatologie-CNR IST Bactériennes, Institut Cochin U1016, Université Sorbonne Paris Descartes, Paris, France
| | - Nicolas Dupin
- Faculté de Médecine, Laboratoire de Dermatologie-CNR IST Bactériennes, Institut Cochin U1016, Université Sorbonne Paris Descartes, Paris, France.,AP-HP, Service de Dermatologie et Vénéréologie, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Paris, France
| | - Radim Strnadel
- Department of Dermatovenerology, University Hospital Brno, Brno, Czechia
| | - Marcus Chen
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ian Denham
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - R Allyn Forsyth
- GeneticPrime Dx, Inc., La Jolla, CA, United States.,Department of Biology, San Diego State University, San Diego, CA, United States
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Beale MA, Marks M, Sahi SK, Tantalo LC, Nori AV, French P, Lukehart SA, Marra CM, Thomson NR. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun 2019; 10:3255. [PMID: 31332179 PMCID: PMC6646400 DOI: 10.1038/s41467-019-11216-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
Syphilis is a sexually transmitted infection caused by Treponema pallidum subspecies pallidum and may lead to severe complications. Recent years have seen striking increases in syphilis in many countries. Previous analyses have suggested one lineage of syphilis, SS14, may have expanded recently, indicating emergence of a single pandemic azithromycin-resistant cluster. Here we use direct sequencing of T. pallidum combined with phylogenomic analyses to show that both SS14- and Nichols-lineages are simultaneously circulating in clinically relevant populations in multiple countries. We correlate the appearance of genotypic macrolide resistance with multiple independently evolved SS14 sub-lineages and show that genotypically resistant and sensitive sub-lineages are spreading contemporaneously. These findings inform our understanding of the current syphilis epidemic by demonstrating how macrolide resistance evolves in Treponema subspecies and provide a warning on broader issues of antimicrobial resistance.
Collapse
Affiliation(s)
- Mathew A Beale
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Hospital for Tropical Diseases, London, UK
| | - Sharon K Sahi
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Lauren C Tantalo
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | | | - Patrick French
- The Mortimer Market Centre CNWL, Camden Provider Services, London, UK
| | - Sheila A Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Christina M Marra
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
10
|
Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, Krbková L, Koščová P, Provazník I, Šmajs D. Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLoS Negl Trop Dis 2019; 13:e0007463. [PMID: 31216284 PMCID: PMC6602244 DOI: 10.1371/journal.pntd.0007463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis, yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rabbits). A set of 11 treponemal genome sequences including those of five Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes. METHODOLOGY/PRINCIPAL FINDINGS A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence of positively selected genes using both site and branch-site models with CODEML (PAML package). Subsequent analyses with sequences obtained from 62 treponemal draft genomes were used for the identification of positively selected amino acid positions. Synthetic biotinylated peptides were designed to cover positively selected protein regions and these peptides were tested for reactivity with the patient's syphilis sera. Altogether, 22 positively selected genes were identified in the TP genomes and TPA sets of positively selected genes differed from TPE genes. While genetic variability among TPA strains was predominantly present in a number of genetic loci, genetic variability within TPE and TEN strains was distributed more equally along the chromosome. Several syphilitic sera were shown to react with some peptides derived from the protein sequences evolving under positive selection. CONCLUSIONS/SIGNIFICANCE The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected genes. Most of the positively selected chromosomal loci were identified among the TPA treponemes. The local accumulation of genetic variability suggests that the diversification of TPA strains took place predominantly in a limited number of genomic regions compared to the more dispersed genetic diversity differentiating TPE and TEN strains. The identification of positively selected sites in tpr genes and genes encoding outer membrane proteins suggests their role during infection of human and animal hosts. The driving force for adaptive evolution at these loci thus appears to be the host immune response as supported by observed reactivity of syphilitic sera with some peptides derived from protein sequences showing adaptive evolution.
Collapse
Affiliation(s)
- Denisa Maděránková
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šimon Vadják
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ivana Kuklová
- Department of Dermatology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Krbková
- Department of Children's Infectious Diseases, Faculty of Medicine and University Hospital, Masaryk University, Brno, Czech Republic
| | - Pavlína Koščová
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ivo Provazník
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
11
|
Buyuktimkin B, Zafar H, Saier MH. Comparative genomics of the transportome of Ten Treponema species. Microb Pathog 2019; 132:87-99. [PMID: 31029716 DOI: 10.1016/j.micpath.2019.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Treponema is a diverse bacterial genus, the species of which can be pathogenic, symbiotic, or free living. These treponemes can cause various diseases in humans and other animals, such as periodontal disease, bovine digital dermatitis and animal skin lesions. However, the most important and well-studied disease of treponemes that affects humans is 'syphilis'. This disease is caused by Treponema pallidum subspecie pallidum with 11-12 million new cases around the globe on an annual basis. In this study we analyze the transportome of ten Treponema species, with emphasis on the types of encoded transport proteins and their substrates. Of the ten species examined, two (T. primitia and T. azonutricium) reside as symbionts in the guts of termites; six (T. pallidum, T. paraluiscuniculi, T. pedis, T. denticola, T. putidum and T. brennaborense) are pathogens of either humans or animals, and T. caldarium and T. succinifaciens are avirulent species, the former being thermophilic. All ten species have a repertoire of transport proteins that assists them in residing in their respective ecological niches. For instance, oral pathogens use transport proteins that take up nutrients uniquely present in their ecosystem; they also encode multiple multidrug/macromolecule exporters that protect against antimicrobials and aid in biofilm formation. Proteins of termite gut symbionts convert cellulose into other sugars that can be metabolized by the host. As often observed for pathogens and symbionts, several of these treponemes have reduced genome sizes, and their small genomes correlate with their dependencies on the host. Overall, the transportomes of T. pallidum and other pathogens have a conglomerate of parasitic lifestyle-assisting proteins. For example, a T. pallidum repeat protein (TprK) mediates immune evasion; outer membrane proteins (OMPs) allow nutrient uptake and end product export, and several ABC transporters catalyze sugar uptake, considered pivotal to parasitic lifestyles. Taken together, the results of this study yield new information that may help open new avenues of treponeme research.
Collapse
Affiliation(s)
- Bora Buyuktimkin
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0116, USA
| | - Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0116, USA; Institute of Microbiology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093-0116, USA.
| |
Collapse
|
12
|
Meffray A, Perrin M, Richier A, Schmitt A, Ardagna Y, Biagini P. Molecular detection of Treponema pallidum subspecies pallidum in 150-year-old foetal remains, southeastern France. J Med Microbiol 2019; 68:761-769. [PMID: 30994442 DOI: 10.1099/jmm.0.000978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Syphilis, caused by Treponema pallidum subspecies pallidum , is considered as an old disease affecting humans; traces of such infections, including congenital syphilis, are potentially identifiable in archaeological samples. The aim of this research was to perform macroscopic and molecular investigations of T. pallidum on six infant remains, buried between 1837 and 1867, from the cemetery of 'Les Crottes' in Marseille city (southeastern France). METHODOLOGY Pathological analysis of bones from individuals, aged from the twenty-ninth week of amenorrhea to 4-9 months, was performed. Samples served also as a source of ancient DNA (aDNA) for PCR-based molecular investigations targeting T. pallidum DNA; all samples were also tested for Mycobacterium tuberculosis and Plasmodium falciparum DNA. Sequences characterized were cloned and sequenced, and compared to those available in databases.Results/Key findings. All samples tested displayed widespread osteoporotic lesions across the skeleton possibly related to some metabolic or infectious disorders. Subsequent molecular analysis revealed that one individual, SP332 (unborn, 29 amenorrhea weeks, inhumation date 1864-1866), exhibited positive signals for the five T. pallidum amplification systems tested; sequence analysis provided strong evidence for the effective detection of T. pallidum subspecies pallidum DNA. CONCLUSIONS Individual SP332 is the first PCR-confirmed palaeopathological case of syphilis identified in France, and the youngest specimen ever to be diagnosed with certainty for congenital syphilis. Future research aimed at better characterizing this 150-year-old treponeme genome and exploring new archaelogical cases of syphilis in the very young should contribute to a better comprehension of the disease's history.
Collapse
Affiliation(s)
- Avril Meffray
- Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Marie Perrin
- Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Anne Richier
- Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France.,INRAP Mediterranee, Marseille, France
| | | | - Yann Ardagna
- Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | | |
Collapse
|
13
|
Liu D, Tong ML, Luo X, Liu LL, Lin LR, Zhang HL, Lin Y, Niu JJ, Yang TC. Profile of the tprK gene in primary syphilis patients based on next-generation sequencing. PLoS Negl Trop Dis 2019; 13:e0006855. [PMID: 30789907 PMCID: PMC6400401 DOI: 10.1371/journal.pntd.0006855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/05/2019] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
Background The highly variable tprK gene of Treponema pallidum has been acknowledged to be one of the mechanisms that causes persistent infection. Previous studies have mainly focused on the heterogeneity in tprK in propagated strains using a clone-based Sanger approach. Few studies have investigated tprK directly from clinical samples using deep sequencing. Methods/Principal findings We conducted a comprehensive analysis of 14 primary syphilis clinical isolates of T. pallidum via next-generation sequencing to gain better insight into the profile of tprK in primary syphilis patients. Our results showed that there was a mixture of distinct sequences within each V region of tprK. Except for the predominant sequence for each V region as previously reported using the clone-based Sanger approach, there were many minor variants of all strains that were mainly observed at a frequency of 1–5%. Interestingly, the identified distinct sequences within the regions were variable in length and differed by only 3 bp or multiples of 3 bp. In addition, amino acid sequence consistency within each V region was found among the 14 strains. Among the regions, the sequence IASDGGAIKH in V1 and the sequence DVGHKKENAANVNGTVGA in V4 showed a high stability of inter-strain redundancy. Conclusions The seven V regions of the tprK gene in primary syphilis infection demonstrated high diversity; they generally contained a high proportion sequence and numerous low-frequency minor variants, most of which are far below the detection limit of Sanger sequencing. The rampant variation in each V region was regulated by a strict gene conversion mechanism that maintained the length difference to 3 bp or multiples of 3 bp. The highly stable sequence of inter-strain redundancy may indicate that the sequences play a critical role in T. pallidum virulence. These highly stable peptides are also likely to be potential targets for vaccine development. Variations in tprK have been acknowledged to be the major contributors to persistent Treponema pallidum infections. Previous studies were based on the clone-based Sanger approach, and most of them were performed in propagated strains using rabbits, which could not reflect the actual heterogeneous characteristics of tprK in the context of human infection. In the present study, we employed next-generation sequencing (NGS) to explore the profile of tprK directly from 14 patients with primary syphilis. Our results showed a mixture of distinct sequences within each V region of tprK in these clinical samples. First, the length of identified distinct sequences within the region was variable, which differed by only 3 bp or multiples of 3 bp. Then, among the mixtures, a predominant sequence was usually observed for each V region, and the remaining minor variants were mainly observed at a frequency of 1–5%. In addition, there was a scenario of amino acid sequence consistency within the regions among the 14 primary syphilis strains. The identification of the profile of tprK in the context of human primary syphilis infection contributes to further exploration of the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Zhongshan Hospital, Fujian Medical University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
14
|
Grillova L, Jolley K, Šmajs D, Picardeau M. A public database for the new MLST scheme for Treponema pallidum subsp. pallidum: surveillance and epidemiology of the causative agent of syphilis. PeerJ 2019; 6:e6182. [PMID: 30643682 PMCID: PMC6330039 DOI: 10.7717/peerj.6182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease with worldwide prevalence. Several different molecular typing schemes are currently available for this pathogen. To enable population biology studies of the syphilis agent and for epidemiological surveillance at the global scale, a harmonized typing tool needs to be introduced. Recently, we published a new multi-locus sequence typing (MLST) with the potential to significantly enhance the epidemiological data in several aspects (e.g., distinguishing genetically different clades of syphilis, subtyping inside these clades, and finally, distinguishing different subspecies of non-cultivable pathogenic treponemes). In this short report, we introduce the PubMLST database for treponemal DNA data storage and for assignments of allelic profiles and sequencing types. Moreover, we have summarized epidemiological data of all treponemal strains (n = 358) with available DNA sequences in typing loci and found several association between genetic groups and characteristics of patients. This study proposes the establishment of a single MLST of T. p. pallidum and encourages researchers and public health communities to use this PubMLST database as a universal tool for molecular typing studies of the syphilis pathogen.
Collapse
Affiliation(s)
- Linda Grillova
- Biology of Spirochetes Unit, Institut Pasteur, Paris, France
| | - Keith Jolley
- Department of Zoology, University of Oxford, Oxford, UK
| | - David Šmajs
- Department of Biology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
15
|
Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, Oppelt J, Čejková D, Šmajs D. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes. PLoS Negl Trop Dis 2018; 12:e0006867. [PMID: 30303967 PMCID: PMC6197692 DOI: 10.1371/journal.pntd.0006867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multistage disease endemic in tropical regions in Africa, Asia, Oceania, and South America. To date, seven TPE strains have been completely sequenced and analyzed including five TPE strains of human origin (CDC-2, CDC 2575, Gauthier, Ghana-051, and Samoa D) and two TPE strains isolated from the baboons (Fribourg-Blanc and LMNP-1). This study revealed the complete genome sequences of two TPE strains, Kampung Dalan K363 and Sei Geringging K403, isolated in 1990 from villages in the Pariaman region of Sumatra, Indonesia and compared these genome sequences with other known TPE genomes. METHODOLOGY/PRINCIPAL FINDINGS The genomes were determined using the pooled segment genome sequencing method combined with the Illumina sequencing platform resulting in an average coverage depth of 1,021x and 644x for the TPE Kampung Dalan K363 and TPE Sei Geringging K403 genomes, respectively. Both Indonesian TPE strains were genetically related to each other and were more distantly related to other, previously characterized TPE strains. The modular character of several genes, including TP0136 and TP0858 gene orthologs, was identified by analysis of the corresponding sequences. To systematically detect genes potentially having a modular genetic structure, we performed a whole genome analysis-of-occurrence of direct or inverted repeats of 17 or more nucleotides in length. Besides in tpr genes, a frequent presence of repeats was found in the genetic regions spanning TP0126-TP0136, TP0856-TP0858, and TP0896 genes. CONCLUSIONS/SIGNIFICANCE Comparisons of genome sequences of TPE Kampung Dalan K363 and Sei Geringging K403 with other TPE strains revealed a modular structure of several genomic loci including the TP0136, TP0856, and TP0858 genes. Diversification of TPE genomes appears to be facilitated by intra-strain genome recombination events.
Collapse
Affiliation(s)
- Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Haviernik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Sylvia Bruisten
- Public Health Laboratory, Department of Infectious Diseases GGD Amsterdam, WT Amsterdam, the Netherlands
| | - Gerda T. Noordhoek
- Izore, Centrum Infectieziekten Friesland, EN Leeuwarden, the Netherlands
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Grillová L, Giacani L, Mikalová L, Strouhal M, Strnadel R, Marra C, Centurion-Lara A, Poveda L, Russo G, Čejková D, Vašků V, Oppelt J, Šmajs D. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal Antibodies Enrichment: First complete whole genome sequence obtained directly from human clinical material. PLoS One 2018; 13:e0202619. [PMID: 30130365 PMCID: PMC6103504 DOI: 10.1371/journal.pone.0202619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Treponema pallidum subsp. pallidum (TPA) is the infectious agent of syphilis, a disease that infects more than 5 million people annually. Since TPA is an uncultivable bacterium, most of the information on TPA genetics comes from genome sequencing and molecular typing studies. This study presents the first complete TPA genome (without sequencing gaps) of clinical isolate (UZ1974), which was obtained directly from clinical material, without multiplication in rabbits. Whole genome sequencing was performed using a newly developed Anti-Treponemal Antibody Enrichment technique combined with previously reported Pooled Segment Genome Sequencing. We identified the UW074B genome, isolated from a sample previously propagated in rabbits, to be the closest relative of the UZ1974 genome and calculated the TPA mutation rate as 2.8 x 10(-10) per site per generation.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, United States of America
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Strnadel
- Department of Dermatovenerology, University Hospital Brno, Brno, Czech Republic
| | - Christina Marra
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, United States of America
| | - Arturo Centurion-Lara
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, United States of America
| | - Lucy Poveda
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Vladimír Vašků
- 1 Dermatovenereological Clinic St. Anne´s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K, Strouhal M, Sednaoui P, Ferry T, Cavassini M, Lautenschlager S, Dutly F, Pla-Díaz M, Krützen M, González-Candelas F, Bagheri HC, Šmajs D, Arora N, Bosshard PP. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One 2018; 13:e0200773. [PMID: 30059541 PMCID: PMC6066202 DOI: 10.1371/journal.pone.0200773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP0705. Together with analysis of the 23S rRNA gene mutations for macrolide resistance, we propose these loci as MLST for TPA. Among clinical samples, 23 allelic profiles as well as a high percentage (80% samples) of macrolide resistance were revealed. The new MLST has higher discriminatory power compared to previous typing schemes, enabling distinction of TPA from other treponemal bacteria, distinction between the two main TPA clades (Nichols and SS14), and differentiation of strains within these clades.
Collapse
Affiliation(s)
- Linda Grillová
- Department of Biology, Masaryk University, Brno, Czech Republic
| | - Tanika Bawa
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Lenka Mikalová
- Department of Biology, Masaryk University, Brno, Czech Republic
| | - Angèle Gayet-Ageron
- Division of Clinical Epidemiology, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Michal Strouhal
- Department of Biology, Masaryk University, Brno, Czech Republic
| | | | | | - Matthias Cavassini
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Fabrizio Dutly
- IMD Institut für medizinische & molekulare Diagnostik AG, Zurich, Switzerland
| | - Marta Pla-Díaz
- Unidad Mixta Infección y Salud Pública FISABIO/Universidad de Valencia, CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Michael Krützen
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO/Universidad de Valencia, CIBER in Epidemiology and Public Health, Valencia, Spain
| | | | - David Šmajs
- Department of Biology, Masaryk University, Brno, Czech Republic
| | - Natasha Arora
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Philipp P. Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Sekiya M, Shimoyama Y, Ishikawa T, Sasaki M, Futai M, Nakanishi-Matsui M. Porphyromonas gingivalis is highly sensitive to inhibitors of a proton-pumping ATPase. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. INFECTION GENETICS AND EVOLUTION 2018; 61:92-107. [PMID: 29578082 DOI: 10.1016/j.meegid.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Treponema pallidum is an uncultivable bacterium and the causative agent of syphilis (subsp. pallidum [TPA]), human yaws (subsp. pertenue [TPE]), and bejel (subsp. endemicum). Several species of nonhuman primates in Africa are infected by treponemes genetically undistinguishable from known human TPE strains. Besides Treponema pallidum, the equally uncultivable Treponema carateum causes pinta in humans. In lagomorphs, Treponema paraluisleporidarum ecovar Cuniculus and ecovar Lepus are the causative agents of rabbit and hare syphilis, respectively. All uncultivable pathogenic treponemes harbor a relatively small chromosome (1.1334-1.1405 Mbp) and show gene synteny with minimal genetic differences (>98% identity at the DNA level) between subspecies and species. While uncultivable pathogenic treponemes contain a highly conserved core genome, there are a number of highly variable and/or recombinant chromosomal loci. This is also reflected in the occurrence of intrastrain heterogeneity (genetic diversity within an infecting bacterial population). Molecular differences at several different chromosomal loci identified among TPA strains or isolates have been used for molecular typing and the epidemiological characterization of syphilis isolates. This review summarizes genome structure of uncultivable pathogenic treponemes including genetically variable regions.
Collapse
Affiliation(s)
- David Šmajs
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Michal Strouhal
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany,.
| |
Collapse
|
20
|
Strouhal M, Oppelt J, Mikalová L, Arora N, Nieselt K, González-Candelas F, Šmajs D. Reanalysis of Chinese Treponema pallidum samples: all Chinese samples cluster with SS14-like group of syphilis-causing treponemes. BMC Res Notes 2018; 11:16. [PMID: 29325576 PMCID: PMC5765698 DOI: 10.1186/s13104-017-3106-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/19/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Treponema pallidum subsp. pallidum (TPA) is the causative agent of syphilis. Genetic analyses of TPA reference strains and human clinical isolates have revealed two genetically distinct groups of syphilis-causing treponemes, called Nichols-like and SS14-like groups. So far, no genetic intermediates, i.e. strains containing a mixed pattern of Nichols-like and SS14-like genomic sequences, have been identified. Recently, Sun et al. (Oncotarget 2016. https://doi.org/10.18632/oncotarget.10154 ) described a new "phylogenetic group" (called Lineage 2) among Chinese TPA strains. This lineage exhibited a "mosaic genomic structure" of Nichols-like and SS14-like lineages. RESULTS We reanalyzed the primary sequencing data (Project Number PRJNA305961) from the Sun et al. publication with respect to the molecular basis of Lineage 2. While Sun et al. based the analysis on several selected genomic single nucleotide variants (SNVs) and a subset of highly variable but phylogenetically poorly informative genes, which may confound the phylogenetic analysis, our reanalysis primarily focused on a complete set of whole genomic SNVs. Based on our reanalysis, only two separate TPA clusters were identified: one consisted of Nichols-like TPA strains, the other was formed by the SS14-like TPA strains, including all Chinese strains.
Collapse
Affiliation(s)
- Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Kay Nieselt
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO, Universidad de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology (I2SysBio), Universidad de Valencia-CSIC, Valencia, Spain.,CIBER Epidemiologia y Salud Pública (CIBERESP), Valencia, Spain
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| |
Collapse
|
21
|
Sun J, Meng Z, Wu K, Liu B, Zhang S, Liu Y, Wang Y, Zheng H, Huang J, Zhou P. Tracing the origin of Treponema pallidum in China using next-generation sequencing. Oncotarget 2018; 7:42904-42918. [PMID: 27344187 PMCID: PMC5189996 DOI: 10.18632/oncotarget.10154] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/01/2016] [Indexed: 12/29/2022] Open
Abstract
Syphilis is a systemic sexually transmitted disease caused by Treponema pallidum ssp. pallidum (TPA). The origin and genetic background of Chinese TPA strains remain unclear. We identified a total of 329 single-nucleotide variants (SNVs) in eight Chinese TPA strains using next-generation sequencing. All of the TPA strains were clustered into three lineages, and Chinese TPA strains were grouped in Lineage 2 based on phylogenetic analysis. The phylogeographical data showed that TPA strains originated earlier than did T. pallidum ssp. pertenue (TPE) and T. pallidum ssp. endemicum (TPN) strains and that Chinese TPA strains might be derived from recombination between Lineage 1 and Lineage 3. Moreover, we found through a homology modeling analysis that a nonsynonymous substitution (I415F) in the PBP3 protein might affect the structural flexibility of PBP3 and the binding constant for substrates based on its possible association with penicillin resistance in T. pallidum. Our findings provide new insight into the molecular foundation of the evolutionary origin of TPA and support the development of novel diagnostic/therapeutic technology for syphilis.
Collapse
Affiliation(s)
- Jun Sun
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, China
| | - Zhefeng Meng
- Oncology Bioinformatics Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Kaiqi Wu
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Biao Liu
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sufang Zhang
- Shanghai Skin Disease Hospital, Clinical School of Anhui Medical University, Shanghai, China
| | - Yudan Liu
- Shanghai Skin Disease Hospital, Clinical School of Anhui Medical University, Shanghai, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center and National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center and National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Jian Huang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center and National Engineering Center for Biochip at Shanghai, Shanghai, China.,Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pingyu Zhou
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, China.,Shanghai Skin Disease Hospital, Clinical School of Anhui Medical University, Shanghai, China
| |
Collapse
|
22
|
Tong ML, Zhao Q, Liu LL, Zhu XZ, Gao K, Zhang HL, Lin LR, Niu JJ, Ji ZL, Yang TC. Whole genome sequence of the Treponema pallidum subsp. pallidum strain Amoy: An Asian isolate highly similar to SS14. PLoS One 2017; 12:e0182768. [PMID: 28787460 PMCID: PMC5546693 DOI: 10.1371/journal.pone.0182768] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/24/2017] [Indexed: 01/18/2023] Open
Abstract
Treponema pallidum ssp. pallidum (T. pallidum), the causative agent of the sexually transmitted disease syphilis, is an uncultivatable human pathogen. The geographical differences in T. pallidum genomes leading to differences in pathogenicity are not yet understood. Presently, twelve T. pallidum genomes are available to the public, all of which are American in origin and often co-infect patients with human immunodeficiency virus (HIV). In this study, we examined the T. pallidum subsp. pallidum strain Amoy, a syphilis pathogen found in Xiamen, China. We sequenced its genome using Illumina next-generation sequencing technology and obtained a nearly (98.83%) complete genome of approximately 1.12 Mbps. The new genome shows good synteny with its five T. pallidum sibling strains (Nichols, SS14, Mexico A, DAL-1, and Chicago), among which SS14 is the strain closest to the Amoy strain. Compared with strain SS14, the Amoy strain possesses four uncharacterized strain-specific genes and is likely missing six genes, including a gene encoding the TPR domain protein, which may partially account for the comparatively low virulence and toxicity of the Amoy strain in animal infection. Notably, we did not detect the 23S rRNA A2058G/A2059G mutation in the Amoy strain, which likely explains the sensitivity of Amoy strain to macrolides. The results of this study will lead to a better understanding of the pathogenesis of syphilis and the geographical distribution of T. pallidum genotypes.
Collapse
Affiliation(s)
- Man-Li Tong
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
- Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, China
| | - Qiang Zhao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Li-Li Liu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Xiao-Zhen Zhu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Kun Gao
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
- * E-mail: (TCY); (ZLJ); (JJN)
| | - Zhi-Liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
- * E-mail: (TCY); (ZLJ); (JJN)
| | - Tian-Ci Yang
- Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
- Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, China
- * E-mail: (TCY); (ZLJ); (JJN)
| |
Collapse
|
23
|
Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2016; 2:16245. [PMID: 27918528 DOI: 10.1038/nmicrobiol.2016.245] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/03/2016] [Indexed: 11/08/2022]
Abstract
The abrupt onslaught of the syphilis pandemic that started in the late fifteenth century established this devastating infectious disease as one of the most feared in human history1. Surprisingly, despite the availability of effective antibiotic treatment since the mid-twentieth century, this bacterial infection, which is caused by Treponema pallidum subsp. pallidum (TPA), has been re-emerging globally in the last few decades with an estimated 10.6 million cases in 2008 (ref. 2). Although resistance to penicillin has not yet been identified, an increasing number of strains fail to respond to the second-line antibiotic azithromycin3. Little is known about the genetic patterns in current infections or the evolutionary origins of the disease due to the low quantities of treponemal DNA in clinical samples and difficulties in cultivating the pathogen4. Here, we used DNA capture and whole-genome sequencing to successfully interrogate genome-wide variation from syphilis patient specimens, combined with laboratory samples of TPA and two other subspecies. Phylogenetic comparisons based on the sequenced genomes indicate that the TPA strains examined share a common ancestor after the fifteenth century, within the early modern era. Moreover, most contemporary strains are azithromycin-resistant and are members of a globally dominant cluster, named here as SS14-Ω. The cluster diversified from a common ancestor in the mid-twentieth century subsequent to the discovery of antibiotics. Its recent phylogenetic divergence and global presence point to the emergence of a pandemic strain cluster.
Collapse
|
24
|
Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2016; 2:16190. [PMID: 27748767 DOI: 10.1038/nmicrobiol.2016.190] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022]
Abstract
Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.
Collapse
|
25
|
Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 2016; 14:744-759. [PMID: 27721440 DOI: 10.1038/nrmicro.2016.141] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Genetics and Genomic Science, Molecular Biology and Biophysics, and Immunology, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - Arvind Anand
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
26
|
Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions. PLoS Negl Trop Dis 2015; 9:e0004110. [PMID: 26436423 PMCID: PMC4593590 DOI: 10.1371/journal.pntd.0004110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic uncultivable treponemes comprise human and animal pathogens including agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14), 4 T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPLC) were examined with respect to the presence of nucleotide intrastrain heterogeneous sites. METHODOLOGY/PRINCIPAL FINDINGS The number of identified intrastrain heterogeneous sites in individual genomes ranged between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes) were found in 5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5), DAL-1 (n = 4), and SS14 (n = 7), TPE strain Samoa D (n = 1), and TEN strain Bosnia A (n = 5). Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific and were identified in four tpr genes (tprC, GI, I, K), in genes involved in bacterial motility and chemotaxis (fliI, cheC-fliY), in genes involved in cell structure (murC), translation (prfA), general and DNA metabolism (putative SAM dependent methyltransferase, topA), and in seven hypothetical genes. CONCLUSIONS/SIGNIFICANCE Heterogeneous sites likely represent both the selection of adaptive changes during infection of the host as well as an ongoing diversifying evolutionary process.
Collapse
Affiliation(s)
- Darina Čejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Steven J. Norris
- Pathology & Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - George M. Weinstock
- The Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
Šmajs D, Paštěková L, Grillová L. Macrolide Resistance in the Syphilis Spirochete, Treponema pallidum ssp. pallidum: Can We Also Expect Macrolide-Resistant Yaws Strains? Am J Trop Med Hyg 2015; 93:678-83. [PMID: 26217043 PMCID: PMC4596581 DOI: 10.4269/ajtmh.15-0316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/05/2015] [Indexed: 11/07/2022] Open
Abstract
Treponema pallidum ssp. pallidum (TPA) causes over 10 million new cases of syphilis worldwide whereas T. pallidum ssp. pertenue (TPE), the causative agent of yaws, affects about 2.5 million people. Although penicillin remains the drug of choice in the treatment of syphilis, in penicillin-allergic patients, macrolides have been used in this indication since the 1950s. Failures of macrolides in syphilis treatment have been well documented in the literature and since 2000, there has been a dramatic increase in a number of clinical samples with macrolide-resistant TPA. Scarce data regarding the genetics of macrolide-resistant mutations in TPA suggest that although macrolide-resistance mutations have emerged independently several times, the increase in the proportion of TPA strains resistant to macrolides is mainly due to the spread of resistant strains, especially in developed countries. The emergence of macrolide resistance in TPA appears to require a two-step process including either A2058G or A2059G mutation in one copy of the 23S rRNA gene and a subsequent gene conversion unification of both rRNA genes. Given the enormous genetic similarity that was recently revealed between TPA and TPE strains, there is a low but reasonable risk of emergence and spread of macrolide-resistant yaws strains following azithromycin treatment.
Collapse
Affiliation(s)
- David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Paštěková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Linda Grillová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
|
29
|
Ma DY, Giacani L, Centurión-Lara A. The molecular epidemiology of Treponema pallidum subspecies pallidum. Sex Health 2015; 12:141-7. [PMID: 25844928 PMCID: PMC5659262 DOI: 10.1071/sh14197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/18/2015] [Indexed: 11/23/2022]
Abstract
Pathogens adapt and evolve in response to pressures exerted by host environments, leading to generation of genetically diverse variants. Treponema pallidum subspecies pallidum displays a substantial amount of interstrain diversity. These variants have been identified in various parts of the world, indicating transmission linkage between geographical regions. Genotyping is based on molecular characterisation of various loci in the syphilis treponeme genome, but still require further development and continued research, as new bacterial types are continually being detected. The goal for studying the molecular epidemiology of Treponema pallidum variants is the global monitoring of the transmission of genetically distinct organisms with different drug sensitivities and, potentially, different virulence proprieties.
Collapse
Affiliation(s)
- Daphne Y. Ma
- University of Washington, Department of Global Health, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Lorenzo Giacani
- University of Washington, Department of Global Health, 325 9th Avenue, Seattle, WA, 98104, USA
- University of Washington, Division of Allergy and Infectious Diseases, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Arturo Centurión-Lara
- Universidad Peruana Cayetano Heredia, Facultad de Salud Pública, Avenida Honorio Delgado 430, San Martín de Porres 15102, Lima, Perú
| |
Collapse
|
30
|
Ke W, Molini BJ, Lukehart SA, Giacani L. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop Dis 2015; 9:e0003662. [PMID: 25793702 PMCID: PMC4368718 DOI: 10.1371/journal.pntd.0003662] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022] Open
Abstract
Adherence-mediated colonization plays an important role in pathogenesis of microbial infections, particularly those caused by extracellular pathogens responsible for systemic diseases, such as Treponema pallidum subsp. pallidum (T. pallidum), the agent of syphilis. Among T. pallidum adhesins, TP0136 is known to bind fibronectin (Fn), an important constituent of the host extracellular matrix. To deepen our understanding of the TP0136-Fn interaction dynamics, we used two naturally-occurring sequence variants of the TP0136 protein to investigate which region of the protein is responsible for Fn binding, and whether TP0136 would adhere to human cellular Fn in addition to plasma Fn and super Fn as previously reported. Fn binding assays were performed with recombinant proteins representing the two full-length TP0136 variants and their discrete regions. As a complementary approach, we tested inhibition of T. pallidum binding to Fn by recombinant full-length TP0136 proteins and fragments, as well as by anti-TP0136 immune sera. Our results show that TP0136 adheres more efficiently to cellular Fn than to plasma Fn, that the TP0136 NH2-terminal conserved region of the protein is primarily responsible for binding to plasma Fn but that binding sites for cellular Fn are also present in the protein’s central and COOH-terminal regions. Additionally, message quantification studies show that tp0136 is highly transcribed during experimental infection, and that its message level increases in parallel to the host immune pressure on the pathogen, which suggests a possible role for this protein in T. pallidum persistence. In a time where syphilis incidence is high, our data will help in the quest to identify suitable targets for development of a much needed vaccine against this important disease. The study of Treponema pallidum subsp. pallidum (T. pallidum) proteins that mediate adhesion to host tissue components is pivotal to understand how the syphilis agent establishes infection and is able to invade virtually every organ system following dissemination from the site of entry. This study focuses on T. pallidum TP0136, a known plasma fibronectin (Fn) and super Fn binding protein that is heterogeneous in sequence among T. pallidum isolates. This study shows that TP0136 also mediates attachment to human cellular Fn, that TP0136 conserved NH2-terminus is primarily responsible for binding to plasma Fn, but that cellular Fn binding sites appears to be scattered throughout the molecule. Message quantification experiments reveal that tp0136 transcription is high during experimental syphilis and increases at the time of bacterial immune clearance, suggesting a role for this antigen in counteracting the host defenses during infection, as reported for other Fn binding proteins in other pathogens. Our data deepen the current knowledge of the function of T. pallidum TP0136 and further support a role for this virulence factor in syphilis pathogenesis.
Collapse
Affiliation(s)
- Wujian Ke
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
- Graduate School, Southern Medical University, Guangzhou, PR China
- Division of STD, Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou, PR China
| | - Barbara J. Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
| | - Sheila A. Lukehart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|